Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Systematic Review Article

抗原特异性免疫治疗在非小细胞肺癌患者治疗中的疗效和安全性:系统评价和Meta分析

卷 19, 期 3, 2019

页: [199 - 209] 页: 11

弟呕挨: 10.2174/1568009618666180430124738

价格: $65

摘要

背景和目的:我们进行了系统评价和荟萃分析,以评估抗原特异性免疫治疗(Belagenpumatucel-L,MAGE-A3,L-BLP25和TG4010)治疗非小患者的疗效和安全性。细胞肺癌(NSCLC)。 方法:对PubMed,Embase和Web of Science进行全面的文献检索。符合条件的研究是接受抗原特异性免疫治疗的NSCLC患者的临床试验。计算总生存(OS),无进展生存期(PFS)的95%置信区间(95%CI)的汇总风险比(HR)。计算总体反应率(ORR)和不良事件发生率的汇总风险比(RR)。 结果:共纳入6项随机对照试验(RCT),共4,806例患者。汇总结果显示,抗原特异性免疫治疗并未显着延长OS(HR = 0.92,95%CI:0.83,1.01; P = 0.087)和PFS(HR = 0.93,95%CI:0.85,1.01; P = 0.088) ,但ORR得到改善(RR = 1.72,95%CI:1.11,2.68; P = 0.016)。基于治疗药物的亚组分析显示,tecemotide与OS显着改善相关(HR = 0.85,95%CI:0.74,0.99; P = 0.03)和PFS(HR = 0.70,95%CI:0.49,0.99, P = 0.044); TG4010与PFS的改善相关(HR = 0.87,95%CI:0.75,1.00,P = 0.058)。此外,接受抗原特异性免疫治疗的NSCLC患者的不良事件发生率显着高于其他治疗组(RR = 1.11,95%CI:1.00,1.24; P = 0.046)。 结论:我们的研究证明了tecemotide和TG4010在NSCLC治疗中的临床生存益处。但是,这些证据可能受到潜在偏见的限制。因此,需要进一步开展良好的大规模随机对照试验来验证我们的研究结果。

关键词: 非小细胞肺癌,抗原特异性免疫治疗,荟萃分析,汇总风险比,TG4010,T细胞活性。

图形摘要

[1]
Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127: 2893-917.
[2]
Sher T, Dy GK, Adjei AA. Small cell lung cancer. Mayo Clin Proc 2008; 83: 355-67.
[3]
Goldstraw P, Crowley J, Chansky K, et al. The IASLC lung cancer staging project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol 2007; 2: 706-14.
[4]
Pignon JP, Tribodet H, Scagliotti GV, et al. Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J Clin Oncol 2008; 26: 3552-9.
[5]
Jackman DM, Miller VA, Cioffredi LA, et al. Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated non-small cell lung cancer patients: results of an online tumor registry of clinical trials. Clin Cancer Res 2009; 15: 5267-73.
[6]
Hall RD, Gray JE, Chiappori AA. Beyond the standard of care: a review of novel immunotherapy trials for the treatment of lung cancer. Cancer Contr 2013; 20: 22-31.
[7]
Declerck S, Vansteenkiste J. Immunotherapy for lung cancer: ongoing clinical trials. Future Oncol 2014; 10: 91-105.
[8]
Domingues D, Turner A, Silva MD, et al. Immunotherapy and lung cancer: current developments and novel targeted therapies. Immunotherapy 2014; 6: 1221-35.
[9]
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009; 339: b2535.
[10]
Higgins JP, Altman DG, Gøtzsche PC, et al. The cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011; 343: d5928.
[11]
Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008; 336: 924-6.
[12]
Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557-60.
[13]
DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177-88.
[14]
Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959; 22: 719-48.
[15]
Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994; 50: 1088-101.
[16]
Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629-34.
[17]
Giaccone G, Bazhenova LA, Nemunaitis J, et al. A phase III study of belagenpumatucel-L, an allogeneic tumour cell vaccine, as maintenance therapy for non-small cell lung cancer. Eur J Cancer 2015; 51: 2321-9.
[18]
Vansteenkiste JF, Cho BC, Vanakesa T, et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2016; 17: 822-35.
[19]
Vansteenkiste J, Zielinski M, Linder A, et al. Adjuvant MAGE-A3 immunotherapy in resected non-small-cell lung cancer: phase II randomized study results. J Clin Oncol 2013; 31: 2396-403.
[20]
Butts C, Socinski MA, Mitchell PL, et al. Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial. Lancet Oncol 2014; 15: 59-68.
[21]
Butts C, Maksymiuk A, Goss G, et al. Updated survival analysis in patients with stage IIIB or IV non-small-cell lung cancer receiving BLP25 liposome vaccine (L-BLP25): phase IIB randomized, multicenter, open-label trial. J Cancer Res Clin Oncol 2011; 137: 1337-42.
[22]
Quoix E, Ramlau R, Westeel V, et al. Therapeutic vaccination with TG4010 and first-line chemotherapy in advanced non-small-cell lung cancer: a controlled phase 2B trial. Lancet Oncol 2011; 12: 1125-33.
[23]
Mitchell P, Thatcher N, Socinski MA, et al. Tecemotide in unresectable stage III non-small-cell lung cancer in the phase III START study: updated overall survival and biomarker analyses. Ann Oncol 2015; 26: 1134-42.
[24]
Butts C, Murray N, Maksymiuk A, et al. Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J Clin Oncol 2005; 23: 6674-81.
[25]
Wang M, Cao JX, Liu YS, et al. Evaluation of tumour vaccine immunotherapy for the treatment of advanced non-small cell lung cancer: a systematic meta-analysis. BMJ Open 2015; 5: e006321.
[26]
Dammeijer F, Lievense LA, Veerman GD, et al. Efficacy of tumor vaccines and cellular immunotherapies in non-small-cell lung cancer: a systematic review and meta-analysis. J Clin Oncol 2016; 34: 3204-12.
[27]
Ding M, Yang J. Therapeutic vaccination for non-small-cell lung cancer: a meta-analysis. Med Oncol 2014; 31: 928.
[28]
Zhou L, Wang XL, Deng QL, Du YQ, Zhao NQ. The efficacy and safety of immunotherapy in patients with advanced NSCLC: a systematic review and meta-analysis. Sci Rep 2016; 6: 32020.
[29]
Gelbard A, Garnett CT, Abrams SI, et al. Combination chemotherapy and radiation of human squamous cell carcinoma of the head and neck augments CTL-mediated lysis. Clin Cancer Res 2006; 12: 1897-905.
[30]
Obeid M, Panaretakis T, Tesniere A, et al. Leveraging the immune system during chemotherapy: moving calreticulin to the cell surface converts apoptotic death from “silent” to immunogenic. Cancer Res 2007; 67: 7941-4.
[31]
Zitvogel L, Kepp O, Senovilla L, Menger L, Chaput N, Kroemer G. Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway. Clin Cancer Res 2010; 16: 3100-4.
[32]
Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst 2013; 105: 256-65.
[33]
Formenti SC, Demaria S. Systemic effects of local radiotherapy. Lancet Oncol 2009; 10: 718-26.
[34]
Roses RE, Xu M, Koski GK, Czerniecki BJ. Radiation therapy and Toll-like receptor signaling: implications for the treatment of cancer. Oncogene 2008; 27: 200-7.
[35]
Danna EA, Sinha P, Gilbert M, Clements VK, Pulaski BA, Ostrand-Rosenberg S. Surgical removal of primary tumor reverses tumor-induced immunosuppression despite the presence of metastatic disease. Cancer Res 2004; 64: 2205-11.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy