Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Phospholipid Analogues as Chemotherapeutic Agents Against Trypanosomatids

Author(s): Evanthia Chazapi, George E. Magoulas, Kyriakos C. Prousis and Theodora Calogeropoulou*

Volume 27, Issue 15, 2021

Published on: 10 December, 2020

Page: [1790 - 1806] Pages: 17

DOI: 10.2174/1381612826666201210115340

Price: $65

Abstract

Background: Neglected tropical diseases (NTDs) represent a serious problem in a number of countries around the world and especially in Africa and South America, affecting mostly the poor population which has limited access to the healthcare system. The drugs currently used for the treatment of NTDs are dated many decades ago and consequently, present in some cases very low efficacy, high toxicity and development of drug resistance. In the search for more efficient chemotherapeutic agents for NTDs, a large number of different compound classes have been synthesized and tested. Among them, ether phospholipids, with their prominent member miltefosine, are considered one of the most promising.

Objective: This review summarizes the literature concerning the development of antiparasitic phospholipid derivatives, describing the efforts towards more efficient and less toxic analogues while providing an overview of the mechanism of action of this compound class against trypanosomatids.

Conclusion: Phospholipid analogues are already known for their antiprotozoal activity. Several studies have been conducted in order to synthesize novel derivatives with the aim to improve current treatments such as miltefosine, with promising results. Photolabeling and fluorescent alkyl phospholipid analogues have contributed to the clarification of the mode of action of this drug family.

Keywords: Neglected tropical diseases, Leishmaniasis, Chagas disease, Human African Trypanosomiasis, miltefosine, ether phospholipids, alkylphosphocholines.

[1]
Hotez PJ, Aksoy S, Brindley PJ, Kamhawi S. What constitutes a neglected tropical disease? PLoS Negl Trop Dis 2020; 14(1)
[http://dx.doi.org/10.1371/journal.pntd.0008001] [PMID: 31999732]
[2]
World Health Organization Available from:. https://www.who.int/neglected_diseases/diseases/en/
[3]
Trouiller P, Olliaro P, Torreele E, Orbinski J, Laing R, Ford N. Drug development for neglected diseases: a deficient market and a public-health policy failure. Lancet 2002; 359(9324): 2188-94.
[http://dx.doi.org/10.1016/S0140-6736(02)09096-7] [PMID: 12090998]
[4]
Filardy AA, Guimarães-Pinto K, Nunes MP, et al. Human kinetoplastid protozoan infections: Where are we going next? Front Immunol 2018; 9: 1493.
[http://dx.doi.org/10.3389/fimmu.2018.01493] [PMID: 30090098]
[5]
Savoia D. Recent updates and perspectives on leishmaniasis. J Infect Dev Ctries 2015; 9(6): 588-96.
[http://dx.doi.org/10.3855/jidc.6833] [PMID: 26142667]
[6]
Lopes AH, Souto-Padrón T, Dias FA, et al. Trypanosomatids: Odd organisms, devastating diseases. Open Parasitol J 2010; 4: 30-59.
[http://dx.doi.org/10.2174/1874421401004010030]
[7]
Santos LO, Garcia-Gomes AS, Catanho M, et al. Aspartic peptidases of human pathogenic trypanosomatids: perspectives and trends for chemotherapy. Curr Med Chem 2013; 20(25): 3116-33.
[http://dx.doi.org/10.2174/0929867311320250007] [PMID: 23298141]
[8]
Hussain H, Al-Harrasi A, Al-Rawahi A, Green IR, Gibbons S. Fruitful decade for antileishmanial compounds from 2002 to late 2011. Chem Rev 2014; 114(20): 10369-428.
[http://dx.doi.org/10.1021/cr400552x] [PMID: 25253511]
[9]
Nagle AS, Khare S, Kumar AB, et al. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem Rev 2014; 114(22): 11305-47.
[http://dx.doi.org/10.1021/cr500365f] [PMID: 25365529]
[10]
de Souza ML, Gonzaga da Costa LA, Silva EO, de Sousa ALMD, Dos Santos WM, Rolim Neto PJ. Recent strategies for the development of oral medicines for the treatment of visceral leishmaniasis. Drug Dev Res 2020; 81(7): 803-14.
[http://dx.doi.org/10.1002/ddr.21684] [PMID: 32394440]
[11]
Lindoso JA, Cunha MA, Queiroz IT, Moreira CH. Leishmaniasis-HIV coinfection: current challenges. HIV AIDS (Auckl) 2016; 8: 147-56.
[http://dx.doi.org/10.2147/HIV.S93789] [PMID: 27785103]
[12]
Monge-Maillo B, Norman FF, Cruz I, Alvar J, López-Vélez R. Visceral leishmaniasis and HIV coinfection in the Mediterranean region. PLoS Negl Trop Dis 2014; 8(8): e3021.
[http://dx.doi.org/10.1371/journal.pntd.0003021] [PMID: 25144380]
[13]
Büscher P, Cecchi G, Jamonneau V, Priotto G. Human African trypanosomiasis. Lancet 2017; 390(10110): 2397-409.
[http://dx.doi.org/10.1016/S0140-6736(17)31510-6] [PMID: 28673422]
[14]
Aksoy S, Buscher P, Lehane M, Solano P, Van Den Abbeele J. Human African trypanosomiasis control: Achievements and challenges. PLoS Negl Trop Dis 2017; 11(4): e0005454.
[http://dx.doi.org/10.1371/journal.pntd.0005454] [PMID: 28426685]
[15]
Dickie EA, Giordani F, Gould MK, et al. New drugs for human African trypanosomiasis: A twenty first century success story. Trop Med Infect Dis 2020; 5(1): 1-15.
[http://dx.doi.org/10.3390/tropicalmed5010029] [PMID: 32092897]
[16]
Croft SL, Chatelain E, Barrett MP. Antileishmanial and antitrypanosomal drug identification. Emerg Top Life Sci 2017; 1: 613-20.
[http://dx.doi.org/10.1042/ETLS20170103]
[17]
Barrett MP, Burchmore RJS, Stich A, et al. The trypanosomiases. Lancet 2003; 362(9394): 1469-80.
[http://dx.doi.org/10.1016/S0140-6736(03)14694-6] [PMID: 14602444]
[18]
Altamura F, Rajesh R, Catta-Preta CMC, Moretti NS, Cestari I. The current drug discovery landscape for trypanosomiasis and leishmaniasis: Challenges and strategies to identify drug targets. Drug Dev Res 2020; 1-28.
[http://dx.doi.org/10.1002/ddr.21664] [PMID: 32249457]
[19]
Cavalli A, Bolognesi ML. Neglected tropical diseases: multi-target-directed ligands in the search for novel lead candidates against Trypanosoma and Leishmania. J Med Chem 2009; 52(23): 7339-59.
[http://dx.doi.org/10.1021/jm9004835] [PMID: 19606868]
[20]
de Souza W, Godinho J, Barrias E, Roussaki M, Rodrigues JCFF. Calogeropoulou T Effects of phospholipid analogues on trypanosomatids Molecular biology of kinetoplastid parasites. Caister Academic Press 2018; pp. 221-42.
[http://dx.doi.org/10.21775/9781910190715.13]
[21]
Croft SL, Neal RA, Pendergast W, Chan JH. The activity of alkyl phosphorylcholines and related derivatives against Leishmania donovani. Biochem Pharmacol 1987; 36(16): 2633-6.
[http://dx.doi.org/10.1016/0006-2952(87)90543-0] [PMID: 3606662]
[22]
Eibl H, Arnold D, Weltzien HU, Westphal O. Zur Synthese von alpha- und beta-Lecithinen und ihren Atheranaloga. Justus Liebigs Ann Chem 1967; 709: 226-30.
[http://dx.doi.org/10.1002/jlac.19677090124] [PMID: 5584876]
[23]
Pachioni J de A, Magalhães JG, Lima EJC, et al. Alkylphospholipids - a promising class of chemotherapeutic agents with a broad pharmacological spectrum. J Pharm Pharm Sci 2013; 16(5): 742-59.
[http://dx.doi.org/10.18433/J3CW23] [PMID: 24393556]
[24]
MRE Varela JA, Villa-Pulgarin E, Yepes , et al. In vitro and in vivo efficacy of ether lipid edelfosine against leishmania spp. and sbv-resistant parasites. PLoS Negl Trop Dis 2012; 6(4): e1612.
[http://dx.doi.org/10.1371/journal.pntd.0001612]]
[25]
Croft SL, Snowdon D, Yardley V. The activities of four anticancer alkyllysophospholipids against Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. J Antimicrob Chemother 1996; 38(6): 1041-7.
[http://dx.doi.org/10.1093/jac/38.6.1041] [PMID: 9023651]
[26]
Croft SL, Neal RA, Thornton EA, Herrmann DBJ. Antileishmanial activity of the ether phospholipid ilmofosine. Trans R Soc Trop Med Hyg 1993; 87(2): 217-9.
[http://dx.doi.org/10.1016/0035-9203(93)90499-G] [PMID: 8337733]
[27]
Croft SL, Seifert K, Duchêne M. Antiprotozoal activities of phospholipid analogues. Mol Biochem Parasitol 2003; 126(2): 165-72.
[http://dx.doi.org/10.1016/S0166-6851(02)00283-9] [PMID: 12615315]
[28]
Sundar S, Jha TK, Thakur CP, et al. Oral miltefosine for Indian visceral leishmaniasis. N Engl J Med 2002; 347(22): 1739-46.
[http://dx.doi.org/10.1056/NEJMoa021556] [PMID: 12456849]
[29]
Sundar S, Olliaro PL. Miltefosine in the treatment of leishmaniasis: Clinical evidence for informed clinical risk management. Ther Clin Risk Manag 2007; 3(5): 733-40.
[PMID: 18472998]
[30]
Croft SL, Barrett MP, Urbina JA. Chemotherapy of trypanosomiases and leishmaniasis. Trends Parasitol 2005; 21(11): 508-12.
[http://dx.doi.org/10.1016/j.pt.2005.08.026] [PMID: 16150644]
[31]
Machado PRL, Penna G. Miltefosine and cutaneous leishmaniasis. Curr Opin Infect Dis 2012; 25(2): 141-4.
[http://dx.doi.org/10.1097/QCO.0b013e3283509cac] [PMID: 22248979]
[32]
Dorlo TPC, Balasegaram M, Beijnen JH, de Vries PJ. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother 2012; 67(11): 2576-97.
[http://dx.doi.org/10.1093/jac/dks275] [PMID: 22833634]
[33]
Cabrera-Serra MG, Lorenzo-Morales J, Romero M, Valladares B, Piñero JE. In vitro activity of perifosine: a novel alkylphospholipid against the promastigote stage of Leishmania species. Parasitol Res 2007; 100(5): 1155-7.
[http://dx.doi.org/10.1007/s00436-006-0408-4] [PMID: 17206506]
[34]
Cabrera-Serra MG, Valladares B, Piñero JE. In vivo activity of perifosine against Leishmania amazonensis. Acta Trop 2008; 108(1): 20-5.
[http://dx.doi.org/10.1016/j.actatropica.2008.08.005] [PMID: 18801328]
[35]
López-Arencibia A, Martín-Navarro C, Sifaoui I, et al. Perifosine mechanisms of action in Leishmania species. Antimicrob Agents Chemother 2017; 61(4): e02127-16.
[http://dx.doi.org/10.1128/AAC.02127-16] [PMID: 28096161]
[36]
Fortin A, Hendrickx S, Yardley V, Cos P, Jansen H, Maes L. Efficacy and tolerability of oleylphosphocholine (OlPC) in a laboratory model of visceral leishmaniasis. J Antimicrob Chemother 2012; 67(11): 2707-12.
[http://dx.doi.org/10.1093/jac/dks273] [PMID: 22782488]
[37]
Fortin A, Caridha DP, Leed S, et al. Direct comparison of the efficacy and safety of oral treatments with oleylphosphocholine (OlPC) and miltefosine in a mouse model of L. major cutaneous leishmaniasis. PLoS Negl Trop Dis 2014; 8(9): e3144.
[http://dx.doi.org/10.1371/journal.pntd.0003144] [PMID: 25210745]
[38]
Fortin A, Dorlo TPC, Hendrickx S, Maes L. Pharmacokinetics and pharmacodynamics of oleylphosphocholine in a hamster model of visceral leishmaniasis. J Antimicrob Chemother 2016; 71(7): 1892-8.
[http://dx.doi.org/10.1093/jac/dkw089] [PMID: 27084920]
[39]
Raj S, Sasidharan S, Balaji SN, Saudagar P. An overview of biochemically characterized drug targets in metabolic pathways of Leishmania parasite. Parasitol Res 2020; 119(7): 2025-37.
[http://dx.doi.org/10.1007/s00436-020-06736-x] [PMID: 32504119]
[40]
Clive S, Gardiner J, Leonard RCF. Miltefosine as a topical treatment for cutaneous metastases in breast carcinoma. Cancer Chemother Pharmacol 1999; 44(Suppl.): S29-30.
[http://dx.doi.org/10.1007/s002800051114] [PMID: 10602908]
[41]
Sundar S, Singh A, Rai M, et al. Efficacy of miltefosine in the treatment of visceral leishmaniasis in India after a decade of use. Clin Infect Dis 2012; 55(4): 543-50.
[http://dx.doi.org/10.1093/cid/cis474] [PMID: 22573856]
[42]
Luna KP, Hernández IP, Rueda CM, Zorro MM, Croft SL, Escobar P. In vitro susceptibility of Trypanosoma cruzi strains from Santander, Colombia, to hexadecylphosphocholine (miltefosine), nifurtimox and benznidazole. Biomedica 2009; 29(3): 448-55.
[http://dx.doi.org/10.7705/biomedica.v29i3.15] [PMID: 20436996]
[43]
Verma NK, Dey CS. Possible mechanism of miltefosine-mediated death of Leishmania donovani. Antimicrob Agents Chemother 2004; 48(8): 3010-5.
[http://dx.doi.org/10.1128/AAC.48.8.3010-3015.2004] [PMID: 15273114]
[44]
Zulueta Díaz YLM, Ambroggio EE, Fanani ML. Miltefosine inhibits the membrane remodeling caused by phospholipase action by changing membrane physical properties. Biochim Biophys Acta Biomembr 2020; 1862(10): 183407.
[http://dx.doi.org/10.1016/j.bbamem.2020.183407] [PMID: 32628918]
[45]
Berman JD. Development of miltefosine for the leishmaniases. Mini Rev Med Chem 2006; 6(2): 145-51.
[http://dx.doi.org/10.2174/138955706775475993] [PMID: 16472183]
[46]
Santa-Rita RM, Santos Barbosa H, Meirelles MN, de Castro SL. Effect of the alkyl-lysophospholipids on the proliferation and differentiation of Trypanosoma cruzi. Acta Trop 2000; 75(2): 219-28.
[http://dx.doi.org/10.1016/S0001-706X(00)00052-8] [PMID: 10708662]
[47]
Palić S, Bhairosing P, Beijnen JH, Dorlo TPC. Systematic review of host-mediated activity of miltefosine in leishmaniasis through immunomodulation. Antimicrob Agents Chemother 2019; 63(7): e02507-18.
[http://dx.doi.org/10.1128/AAC.02507-18] [PMID: 31036692]
[48]
Giepmans BNG, Adams SR, Ellisman MH, Tsien RY. The fluorescent toolbox for assessing protein location and function. Science 2006; 312(5771): 217-24.
[http://dx.doi.org/10.1126/science.1124618] [PMID: 16614209]
[49]
Huang F, Qu F, Peng Q, Xia Y, Peng L. Synthesis and characterization of photolabeling probes of miltefosine. J Fluor Chem 2005; 126: 739-43.
[http://dx.doi.org/10.1016/j.jfluchem.2005.02.019]
[50]
Saugar JM, Delgado J, Hornillos V, et al. Synthesis and biological evaluation of fluorescent leishmanicidal analogues of hexadecylphosphocholine (miltefosine) as probes of antiparasite mechanisms. J Med Chem 2007; 50(24): 5994-6003.
[http://dx.doi.org/10.1021/jm070595+] [PMID: 17973359]
[51]
Seifert K, Pérez-Victoria FJ, Stettler M, et al. Inactivation of the miltefosine transporter, LdMT, causes miltefosine resistance that is conferred to the amastigote stage of Leishmania donovani and persists in vivo. Int J Antimicrob Agents 2007; 30(3): 229-35.
[http://dx.doi.org/10.1016/j.ijantimicag.2007.05.007] [PMID: 17628445]
[52]
Quesada E, Delgado J, Gajate C, Mollinedo F, Acuña AU, Amat-Guerri F. Fluorescent phenylpolyene analogues of the ether phospholipid edelfosine for the selective labeling of cancer cells. J Med Chem 2004; 47(22): 5333-5.
[http://dx.doi.org/10.1021/jm049808a] [PMID: 15481970]
[53]
Hornillos V, Carrillo E, Rivas L, Amat-Guerri F, Acuña AU. Synthesis of BODIPY-labeled alkylphosphocholines with leishmanicidal activity, as fluorescent analogues of miltefosine. Bioorg Med Chem Lett 2008; 18(24): 6336-9.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.089] [PMID: 18990566]
[54]
de la Torre BG, Hornillos V, Luque-Ortega JR, et al. A BODIPY-embedding miltefosine analog linked to cell-penetrating Tat(48-60) peptide favors intracellular delivery and visualization of the antiparasitic drug. Amino Acids 2014; 46(4): 1047-58.
[http://dx.doi.org/10.1007/s00726-013-1661-3] [PMID: 24445871]
[55]
Luque-Ortega JR, de la Torre BG, Hornillos V, et al. Defeating Leishmania resistance to miltefosine (hexadecylphosphocholine) by peptide-mediated drug smuggling: a proof of mechanism for trypanosomatid chemotherapy. J Control Release 2012; 161(3): 835-42.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.023] [PMID: 22609351]
[56]
Godinho JLP, Georgikopoulou K, Calogeropoulou T, de Souza W, Rodrigues JCF. A novel alkyl phosphocholine-dinitroaniline hybrid molecule exhibits biological activity in vitro against Leishmania amazonensis. Exp Parasitol 2013; 135(1): 153-65.
[http://dx.doi.org/10.1016/j.exppara.2013.06.015] [PMID: 23845259]
[57]
Santa-Rita RM, Henriques-Pons A, Barbosa HS, de Castro SL. Effect of the lysophospholipid analogues edelfosine, ilmofosine and miltefosine against Leishmania amazonensis. J Antimicrob Chemother 2004; 54(4): 704-10.
[http://dx.doi.org/10.1093/jac/dkh380] [PMID: 15329361]
[58]
Walther TC, Farese RV Jr. The life of lipid droplets. Biochim Biophys Acta 2009; 1791(6): 459-66.
[http://dx.doi.org/10.1016/j.bbalip.2008.10.009] [PMID: 19041421]
[59]
Calogeropoulou T, Makriyannis A. Synthesis and anti-HIV evaluation of alkyl and alkoxyethyl phosphodiester AZT derivatives 1995; 6: 43-9.
[http://dx.doi.org/10.1177/095632029500600106]
[60]
Koufaki M, Polychroniou V, Calogeropoulou T, et al. Alkyl and Alkoxyethyl Antineoplastic Phospholipids. J Med Chem 1996; 39(13): 2609-14.
[http://dx.doi.org/10.1021/jm9509152]
[61]
Avlonitis N, Lekka E, Detsi A, Koufaki M, et al. Antileishmanial ring-substituted ether phospholipids. J Med Chem 2003; 46: 755-67.
[http://dx.doi.org/10.1021/jm020972c]
[62]
Barrias E, Reignault LC, Calogeropoulou T, de Souza W. In vitro activities of adamantylidene-substituted alkylphosphocholine TCAN26 against Trypanosoma cruzi: Antiproliferative and ultrastructural effects. Exp Parasitol 2019; 206: 107730.
[http://dx.doi.org/10.1016/j.exppara.2019.107730] [PMID: 31494215]
[63]
Calogeropoulou T, Angelou P, Detsi A, Fragiadaki I, Scoulica E. Design and synthesis of potent antileishmanial cycloalkylidene-substituted ether phospholipid derivatives. J Med Chem 2008; 51(4): 897-908.
[http://dx.doi.org/10.1021/jm701166b] [PMID: 18220332]
[64]
Papanastasiou I, Prousis KC, Georgikopoulou K, et al. Design and synthesis of new adamantyl-substituted antileishmanial ether phospholipids. Bioorg Med Chem Lett 2010; 20(18): 5484-7.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.078] [PMID: 20719503]
[65]
Fragiadaki I, Katogiritis A, Calogeropoulou T, Brückner H, Scoulica E. Synergistic combination of alkylphosphocholines with peptaibols in targeting Leishmania infantum in vitro. Int J Parasitol Drugs Drug Resist 2018; 8(2): 194-202.
[http://dx.doi.org/10.1016/j.ijpddr.2018.03.005] [PMID: 29631127]
[66]
Chugh JK, Wallace BA. Peptaibols: models for ion channels. Biochem Soc Trans 2001; 29(Pt 4): 565-70.
[http://dx.doi.org/10.1042/bst0290565] [PMID: 11498029]
[67]
Ahmed H, Carter KC. Structure and Antiparasitic Activity Relationship of Alkylphosphocholine Analogues against Leishmania donovani. Microorganisms 2020; 8: 1117.
[http://dx.doi.org/10.3390/microorganisms8081117]
[68]
Stroppa PHF, Antinarelli LMR, Carmo AML, Gameiro J, Coimbra ES, da Silva AD. Effect of 1,2,3-triazole salts, non-classical bioisosteres of miltefosine, on Leishmania amazonensis. Bioorg Med Chem 2017; 25(12): 3034-45.
[http://dx.doi.org/10.1016/j.bmc.2017.03.051] [PMID: 28433512]
[69]
Boren J, Brindle KM. Apoptosis-induced mitochondrial dysfunction causes cytoplasmic lipid droplet formation. Cell Death Differ 2012; 19(9): 1561-70.
[http://dx.doi.org/10.1038/cdd.2012.34] [PMID: 22460322]
[70]
Lee SJ, Zhang J, Choi AMK, Kim HP. Mitochondrial dysfunction induces formation of lipid droplets as a generalized response to stress. Oxid Med Cell Longev 2013; 2013: 327167.
[http://dx.doi.org/10.1155/2013/327167] [PMID: 24175011]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy