Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Naphthoquinones and Derivatives for Chemotherapy: Perspectives and Limitations of their Anti-trypanosomatids Activities

Author(s): Luíza Dantas-Pereira, Edézio F. Cunha-Junior, Valter V. Andrade-Neto, John F. Bower, Guilherme A.M. Jardim, Eufrânio N. da Silva Júnior, Eduardo C. Torres-Santos and Rubem F.S. Menna-Barreto*

Volume 27, Issue 15, 2021

Published on: 09 November, 2020

Page: [1807 - 1824] Pages: 18

DOI: 10.2174/1381612826666201109111802

Price: $65

Abstract

Chagas disease, Sleeping sickness and Leishmaniasis, caused by trypanosomatids Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp., respectively, are considered neglected tropical diseases, and they especially affect impoverished populations in the developing world. The available chemotherapies are very limited, and a search for alternatives is still necessary. In folk medicine, natural naphthoquinones have been employed for the treatment of a great variety of illnesses, including parasitic infections. This review is focused on the anti-trypanosomatid activity and mechanistic analysis of naphthoquinones and derivatives. Among all the series of derivatives tested in vitro, naphthoquinone-derived 1,2,3-triazoles were very active on T. cruzi infective forms in blood bank conditions, as well as in amastigotes of Leishmania spp. naphthoquinones containing a CF3 on a phenyl amine ring inhibited T. brucei proliferation in the nanomolar range, and naphthopterocarpanquinones stood out for their activity on a range of Leishmania species. Some of these compounds showed a promising selectivity index (SI) (30 to 1900), supporting further analysis in animal models. Indeed, high toxicity to the host and inactivation by blood components are crucial obstacles to be overcome to use naphthoquinones and/or their derivatives for chemotherapy. Multidisciplinary initiatives embracing medicinal chemistry, bioinformatics, biochemistry, and molecular and cellular biology need to be encouraged to allow the optimization of these compounds. Large scale automated tests are pivotal for the efficiency of the screening step, and subsequent evaluation of both the mechanism of action in vitro and pharmacokinetics in vivo is essential for the development of a novel, specific and safe derivative, minimizing adverse effects.

Keywords: T. cruzi, Leishmania spp., T. brucei, Chagas disease, Leishmaniasis, sleeping sickness, chemotherapy, naphthoquinones, naphthoimidazoles.

[1]
Weaver MG, Pettus TRR. Synthesis of para- and ortho-Quinones Comprehensive Organic Synthesis. 2nd ed. Oxford: Elsevier 2014.
[2]
Nic M, Jirat J, Kosata B. IUPAC Compendium of Chemical Terminology Gold Book Version 233 2014.
[3]
von R. A. Morton. Biochemistry of Quinones. 1st ed. New York, London: Academic Press Inc. 1965.
[4]
Price CE, Driessen AJM. Biogenesis of membrane bound respiratory complexes in Escherichia coli. Biochim Biophys Acta 2010; 1803(6): 748-66.
[http://dx.doi.org/10.1016/j.bbamcr.2010.01.019] [PMID: 20138092]
[5]
Thomson RH. Naturally Occurring Quinones IV. London: Blackie Academic 1997.
[6]
Jesionowski T, Klapiszewski Ł, Milczarek G. Kraft lignin and silica as precursors of advanced composite materials and electroactive blends. J Mater Sci 2014; 49: 1376-85.
[http://dx.doi.org/10.1007/s10853-013-7822-7]
[7]
Koyama J. Anti-infective quinone derivatives of recent patents. Recent Pat Antiinfect Drug Discov 2006; 1(1): 113-25.
[http://dx.doi.org/10.2174/157489106775244073] [PMID: 18221140]
[8]
Adams MW, Mortenson LE, Chen JS. Hydrogenase. Biochim Biophys Acta 1980; 594(2-3): 105-76.
[http://dx.doi.org/10.1016/0304-4173(80)90007-5] [PMID: 6786341]
[9]
Ernster L, Dallner G. Biochemical, physiological and medical aspects of ubiquinone function. BBA - Mol Basis Dis 1995; 195: 204.
[http://dx.doi.org/10.1016/0925-4439(95)00028-3]
[10]
Aplin CG, Lovell CR. Contact dermatitis due to hardy Primula species and their cultivars. Contact Dermat 2001; 44(1): 23-9.
[http://dx.doi.org/10.1034/j.1600-0536.2001.440105.x] [PMID: 11156007]
[11]
Zachariae C, Engkilde K, Johansen JD, Menné T. Primin in the European standard patch test series for 20 years. Contact Dermat 2007; 56(6): 344-6.
[http://dx.doi.org/10.1111/j.1600-0536.2007.01122.x] [PMID: 17577376]
[12]
Bieber LW, Chiappeta ADA, De Moraes E, et al. Simple synthesis of primin and its analogues via lithiation of protected guaiacol. J Nat Prod 1990; 53: 706-9.
[http://dx.doi.org/10.1021/np50069a029]
[13]
Hayakawa Y, Matsuoka M, Shin-ya K, Seto H. Quinolidomicins A1, A2 and B1, novel 60-membered macrolide antibiotics. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity. J Antibiot (Tokyo) 1993; 46(10): 1557-62.
[http://dx.doi.org/10.7164/antibiotics.46.1557] [PMID: 8244883]
[14]
Hayakawa Y, Shin-ya K, Furihata K, Seto H. Quinolidomicins A1, A2 and B1, novel 60-membered macrolide antibiotics. II. Structure elucidation. J Antibiot (Tokyo) 1993; 46(10): 1563-9.
[http://dx.doi.org/10.7164/antibiotics.46.1563] [PMID: 8244884]
[15]
Kumagai Y, Shinkai Y, Miura T, Cho AK. The chemical biology of naphthoquinones and its environmental implications. Annu Rev Pharmacol Toxicol 2012; 52: 221-47.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134517] [PMID: 21942631]
[16]
López López LI, Nery Flores SD, Silva Belmares SY, Sáenz Galindo A. Naphthoquinones: Biological properties and synthesis of lawsone and derivatives - a structured review. Vitae 2014; 21: 248-58.
[17]
Jelly R, Lewis SW, Lennard C, Lim KF, Almog J. Lawsone: a novel reagent for the detection of latent fingermarks on paper surfaces. Chem Commun (Camb) 2008; 14(30): 3513-5.
[http://dx.doi.org/10.1039/b808424f] [PMID: 18654697]
[18]
Soderquist CJ. Juglone and allelopathy. J Chem Educ 1973; 50(11): 782-3.
[http://dx.doi.org/10.1021/ed050p782] [PMID: 4747927]
[19]
Bechtold T, Mussak R. Handbook of Natural Colorants. 1st ed. New Jersey: John Wiley & Sons 2009.
[http://dx.doi.org/10.1002/9780470744970]
[20]
de Paiva SR, Figueiredo MR, Aragão TV, Kaplan MA. Antimicrobial activity in vitro of plumbagin isolated from Plumbago species. Mem Inst Oswaldo Cruz 2003; 98(7): 959-61.
[http://dx.doi.org/10.1590/S0074-02762003000700017] [PMID: 14762525]
[21]
Checker R, Sharma D, Sandur SK, et al. Plumbagin inhibits proliferative and inflammatory responses of T cells independent of ROS generation but by modulating intracellular thiols. J Cell Biochem 2010; 110(5): 1082-93.
[http://dx.doi.org/10.1002/jcb.22620] [PMID: 20564204]
[22]
Son TG, Camandola S, Arumugam TV, et al. Plumbagin, a novel Nrf2/ARE activator, protects against cerebral ischemia. J Neurochem 2010; 112(5): 1316-26.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06552.x] [PMID: 20028456]
[23]
Ding Y, Chen Z-J, Liu S, Che D, Vetter M, Chang CH. Inhibition of Nox-4 activity by plumbagin, a plant-derived bioactive naphthoquinone. J Pharm Pharmacol 2005; 57(1): 111-6.
[http://dx.doi.org/10.1211/0022357055119] [PMID: 15638999]
[24]
Gupta S, Ali M, Pillai KK, Sarwar Alam M. Evaluation of anti-inflammatory activity of some constituents of Lawsonia inermis. Fitoterapia 1993; 64: 365-6.
[25]
Papageorgiou VP, Assimopoulou AN, Couladouros EA, Hepworth D, Nicolaou KC. The chemistry and biology of alkannin, shikonin, and related naphthazarin natural products. Angew Chem Int Ed Engl 1999; 38(3): 270-301.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990201)38:3<270:AID-ANIE270>3.0.CO;2-0] [PMID: 29711637]
[26]
Culpepeer N. The english physitian enlarged. London: Churchill 1695.
[27]
US Government. A barefoot doctor’s manual (translation of a chinese instruction to certain chinese health personnel). 1977.
[28]
Michaelides C, Striglis C, Panayotou P, Ioannovich I. The therapeutic action of Alkanna root extract in the conservative treatment of partial-thickness burn injuries. Ann Medit Burn Club 1993; 6: 24.
[29]
Bhakuni DS, Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN. Screening of Indian plants for biological activity. II. Indian J Exp Biol 1969; 7(4): 250-62.
[PMID: 5359097]
[30]
Driscoll JS, Hazard GF Jr, Wood HB Jr, Goldin A. Structure-antitumor activity relationships among quinone derivatives. Cancer Chemother Rep 2 1974; 4(2): 1-362.
[PMID: 4856629]
[31]
Hayashi M. Pharmacological studies of Shikon and Tooki. (1) Pharmacological effects of the water and ether extracts. Nippon Yakurigaku Zasshi 1977; 73(2): 177-91.
[http://dx.doi.org/10.1254/fpj.73.177]] [PMID: 301843]
[32]
Tsoukatou M, Maréchal JP, Hellio C, et al. Evaluation of the activity of the sponge metabolites avarol and avarone and their synthetic derivatives against fouling micro- and macroorganisms. Molecules 2007; 12(5): 1022-34.
[http://dx.doi.org/10.3390/12051022] [PMID: 17873837]
[33]
Belisario MA, Maturo M, Avagnale G, De Rosa S, Scopacasa F, De Caterina M. In vitro effect of avarone and avarol, a quinone/hydroquinone couple of marine origin, on platelet aggregation. Pharmacol Toxicol 1996; 79(6): 300-4.
[http://dx.doi.org/10.1111/j.1600-0773.1996.tb00013.x] [PMID: 9000256]
[34]
Amigó M, Terencio MC, Mitova M, Iodice C, Payá M, De Rosa S. Potential antipsoriatic avarol derivatives as antioxidants and inhibitors of PGE(2) generation and proliferation in the HaCaT cell line. J Nat Prod 2004; 67(9): 1459-63.
[http://dx.doi.org/10.1021/np049873n] [PMID: 15387642]
[35]
Takeuchi Y, Sudani M, Yoshii E. Total synthesis of (.+-.)-sarubicin A (U-58,431). J Org Chem 1983; 48: 4151.
[http://dx.doi.org/10.1021/jo00170a068]
[36]
Reinhardt G, Bradler G, Eckardt K, Tresselt D, Ihn W. Isolation and characterization of sarubicin A, a new antibiotic. J Antibiot (Tokyo) 1980; 33(8): 787-90.
[http://dx.doi.org/10.7164/antibiotics.33.787] [PMID: 7429980]
[37]
Motohashi K, Sue M, Furihata K, Ito S, Seto H. Terpenoids produced by Actinomycetes: Napyradiomycins from Streptomyces antimycoticus NT17. J Nat Prod 2008; 71(4): 595-601.
[http://dx.doi.org/10.1021/np070575a] [PMID: 18271555]
[38]
Higa M, Noha N, Yokaryo H, Ogihara K, Yogi S. Three new naphthoquinone derivatives from Diospyros maritima Blume. Chem Pharm Bull (Tokyo) 2002; 50(5): 590-3.
[http://dx.doi.org/10.1248/cpb.50.590] [PMID: 12036010]
[39]
Solanki R, Khanna M, Lal R. Bioactive compounds from marine actinomycetes. Indian J Microbiol 2008; 48(4): 410-31.
[http://dx.doi.org/10.1007/s12088-008-0052-z] [PMID: 23100742]
[40]
Gallagher KA, Rauscher K, Pavan Ioca L, Jensen PR. Phylogenetic and chemical diversity of a hybrid-isoprenoid-producing streptomycete lineage. Appl Environ Microbiol 2013; 79(22): 6894-902.
[http://dx.doi.org/10.1128/AEM.01814-13] [PMID: 23995934]
[41]
Pathirana C, Jensen PR, Fenical W. Marinone and debromomarinone: Antibiotic sesquiterpenoid naphthoquinones of a new structure class from a marine bacterium. Tetrahedron Lett 1993; 50: 7663-6.
[42]
Lisboa Cda S, Santos VG, Vaz BG, de Lucas NC, Eberlin MN, Garden SJ. C-H functionalization of 1,4-naphthoquinone by oxidative coupling with anilines in the presence of a catalytic quantity of copper(II) acetate. J Org Chem 2011; 76(13): 5264-73.
[http://dx.doi.org/10.1021/jo200354u] [PMID: 21604796]
[43]
Yadav JS, Reddy BVS, Swamy T, Shankar KS. Green protocol for conjugate addition of amines to p-quinones accelerated by water. Monatsh Chem 2008; 139: 1317.
[http://dx.doi.org/10.1007/s00706-008-0917-1]
[44]
Akine S, Kusama D, Takatsuki Y, Nabeshima T. Synthesis of tetrafunctionalized pentiptycenequinones for construction of cyclic dimers with a cylindrical shape by boronate ester formation. Tetrahedron Lett 2015; 34: 4880-4.
[http://dx.doi.org/10.1016/j.tetlet.2015.06.070]
[45]
Cheng Y, An LK, Wu N, et al. Synthesis, cytotoxic activities and structure-activity relationships of topoisomerase I inhibitors: indolizinoquinoline-5,12-dione derivatives. Bioorg Med Chem 2008; 16(8): 4617-25.
[http://dx.doi.org/10.1016/j.bmc.2008.02.036] [PMID: 18296054]
[46]
Cai J, Li Y, Chen J, Wang P, Ji M. Novel and convenient synthesis of 5-benzoyl-1,4-naphthoquinone and its derivatives. Res Chem Intermed 2015; 41: 1-9.
[http://dx.doi.org/10.1007/s11164-013-1162-8]
[47]
Bhasin D, Cisek K, Pandharkar T, et al. Design, synthesis, and studies of small molecule STAT3 inhibitors. Bioorg Med Chem Lett 2008; 18(1): 391-5.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.031] [PMID: 18006313]
[48]
Ren J, Lu L, Xu J, Yu T, Zeng BB. Selective oxidation of 1-Tetralones to 1,2-Naphthoquinones with IBX and to 1,4-Naphthoquinones with Oxone® and 2-Iodobenzoic acid. Synth 2015; 47: 2270-80.
[http://dx.doi.org/10.1055/s-0034-1380657]
[49]
Dias GG, Rogge T, Kuniyil R, et al. Ruthenium-catalyzed C-H oxygenation of quinones by weak O-coordination for potent trypanocidal agents. Chem Commun (Camb) 2018; 54(91): 12840-3.
[http://dx.doi.org/10.1039/C8CC07572G] [PMID: 30374498]
[50]
Bahia SBBB, Reis WJ, Jardim GAM, et al. Molecular hybridization as a powerful tool towards multitarget quinoidal systems: Synthesis, trypanocidal and antitumor activities of naphthoquinone-based 5-iodo-1,4-disubstituted-, 1,4- and 1,5-disubstituted-1,2,3-triazoles. MedChemComm 2016; 7: 1555-63.
[http://dx.doi.org/10.1039/C6MD00216A]
[51]
Dias GG, Nascimento TA, de Almeida AKA, et al. Ruthenium(II)-catalyzed c–h alkenylation of quinones: diversity-oriented strategy for trypanocidal compounds. Eur J Org Chem 2018; 24: 15227-35.
[52]
Hussain H, Krohn K, Uddin Ahmad VU, et al. Lapachol: An overview. ARKIVOC 2007; ii: 145-71.
[http://dx.doi.org/10.3998/ark.5550190.0008.204]
[53]
Hooker SC, Steyermark A. Conversion of Ortho into Para, and of Para into Ortho Quinone Derivatives. Part IV. Synthesis of Furan Derivatives of α- and β-Naphthoquinones. J Am Chem Soc 1936; 58: 1202-7.
[http://dx.doi.org/10.1021/ja01298a035]
[54]
Pinto AV, de Castro SL. The trypanocidal activity of naphthoquinones: a review. Molecules 2009; 14(11): 4570-90.
[http://dx.doi.org/10.3390/molecules14114570] [PMID: 19924086]
[55]
Lopes JN, Cruz FS, Docampo R, et al. In vitro and in vivo evaluation of the toxicity of 1,4-naphthoquinone and 1,2-naphthoquinone derivatives against Trypanosoma cruzi. Ann Trop Med Parasitol 1978; 72(6): 523-31.
[http://dx.doi.org/10.1080/00034983.1978.11719356] [PMID: 367298]
[56]
Gonçalves AM, Vasconcellos ME, Docampo R, Cruz FS, de Souza W, Leon W. Evaluation of the toxicity of 3-allyl-β-lapachone against Trypanosoma cruzi bloodstream forms. Mol Biochem Parasitol 1980; 1(3): 167-76.
[http://dx.doi.org/10.1016/0166-6851(80)90015-8] [PMID: 6777696]
[57]
Lopetegui R, Sosa Miatello C. Inhibitory effect of the blood on the lethal anticrithidia Trypanosoma cruzi activity of menadione in vitro. Rev Soc Argent Biol 1961; 37: 134-40.
[PMID: 14466565]
[58]
de Castro SL, Pinto MC, Pinto AV. Screening of natural and synthetic drugs against Trypanosoma cruzi. 1. Establishing a structure/activity relationship. Microbios 1994; 78(315): 83-90.
[PMID: 8047025]
[59]
Goijman SG, Stoppani AOM. Effects of β-lapachone, a peroxide-generating quinone, on macromolecule synthesis and degradation in Trypanosoma cruzi. Arch Biochem Biophys 1985; 240(1): 273-80.
[http://dx.doi.org/10.1016/0003-9861(85)90033-5] [PMID: 2409922]
[60]
Silva JS, Ferrioli-Filho F, Kanesiro MM, et al. Evaluation of some organic compounds on bloodstream forms of Trypanosoma cruzi. Mem Inst Oswaldo Cruz 1992; 87(3): 345-51.
[http://dx.doi.org/10.1590/S0074-02761992000300003] [PMID: 1343643]
[61]
Goulart MOF, Zani CL, Tonholo J, et al. Trypanocidal activity and redox potential of heterocyclic- and 2-hydroxy-naphthoquinones. Bioorg Med Chem Lett 1997; 7: 2043-8.
[http://dx.doi.org/10.1016/S0960-894X(97)00354-5]
[62]
Pinto AV, Pinto CN, Pinto Mdo C, Rita RS, Pezzella CAC, de Castro SL. Trypanocidal activity of synthetic heterocyclic derivatives of active quinones from Tabebuia sp. Arzneimittelforschung 1997; 47(1): 74-9.
[PMID: 9037448]
[63]
de Moura KCG, Emery FS, Neves-Pinto C, et al. Trypanocidal activity of isolated Naphthoquinones from Tabebuia and some heterocyclic derivatives: a review from an interdisciplinary study. J Braz Chem Soc 2001; 47(1): 74-9.
[http://dx.doi.org/10.1590/S0103-50532001000300003]
[64]
De Moura KCG, Salomão K, Menna-Barreto RFS, et al. Studies on the trypanocidal activity of semi-synthetic pyran[b-4,3]naphtho[1,2-d]imidazoles from β-lapachone. Eur J Med Chem 2004; 39(7): 639-45.
[http://dx.doi.org/10.1016/j.ejmech.2004.02.015] [PMID: 15236845]
[65]
Menna-Barreto RFS, Henriques-Pons A, Pinto AV, Morgado-Diaz JA, Soares MJ, De Castro SL. Effect of a β-lapachone-derived naphthoimidazole on Trypanosoma cruzi: identification of target organelles. J Antimicrob Chemother 2005; 56(6): 1034-41.
[http://dx.doi.org/10.1093/jac/dki403] [PMID: 16269551]
[66]
Menna-Barreto RFS, Corrêa JR, Pinto AV, Soares MJ, de Castro SL. Mitochondrial disruption and DNA fragmentation in Trypanosoma cruzi induced by naphthoimidazoles synthesized from β-lapachone. Parasitol Res 2007; 101(4): 895-905.
[http://dx.doi.org/10.1007/s00436-007-0556-1] [PMID: 17546464]
[67]
Menna-Barreto RF, Corrêa JR, Cascabulho CM, et al. Naphthoimidazoles promote different death phenotypes in Trypanosoma cruzi. Parasitology 2009; 136(5): 499-510.
[http://dx.doi.org/10.1017/S0031182009005745] [PMID: 19281638]
[68]
Menna-Barreto RFS, Beghini DG, Ferreira ATS, Pinto AV, De Castro SL, Perales J. A proteomic analysis of the mechanism of action of naphthoimidazoles in Trypanosoma cruzi epimastigotes in vitro. J Proteomics 2010; 73(12): 2306-15.
[http://dx.doi.org/10.1016/j.jprot.2010.07.002] [PMID: 20621210]
[69]
Brunoro GV, Faça VM, Caminha MA, et al. Differential gel electrophoresis (DIGE) evaluation of naphthoimidazoles mode of action: a study in Trypanosoma cruzi bloodstream trypomastigotes. PLoS Negl Trop Dis 2016; 10(8): e0004951.
[http://dx.doi.org/10.1371/journal.pntd.0004951] [PMID: 27551855]
[70]
Bombaça ACS, Viana PG, Santos ACC, et al. Mitochondrial disfunction and ROS production are essential for anti-Trypanosoma cruzi activity of β-lapachone-derived naphthoimidazoles. Free Radic Biol Med 2019; 130: 408-18.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.11.012] [PMID: 30445126]
[71]
Cascabulho CM, Meuser-Batista M, Moura KCG, et al. Antiparasitic and anti-inflammatory activities of ß-lapachone-derived naphthoimidazoles in experimental acute Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz 2020; 115: e190389.
[http://dx.doi.org/10.1590/0074-02760190389] [PMID: 32074167]
[72]
da Silva AM, Araújo-Silva L, Bombaça ACS, et al. Synthesis and biological evaluation of N-alkyl naphthoimidazoles derived from β-lapachone against Trypanosoma cruzi bloodstream trypomastigotes. MedChemComm 2017; 8(5): 952-9.
[http://dx.doi.org/10.1039/C7MD00069C] [PMID: 30108809]
[73]
Neves-Pinto C, Malta VRS, Pinto Mdo C, Santos RHA, de Castro SL, Pinto AV. A trypanocidal phenazine derived from β-lapachone. J Med Chem 2002; 45(10): 2112-5.
[http://dx.doi.org/10.1021/jm010377v] [PMID: 11985478]
[74]
da Silva EN Jr, Menna-Barreto RFS, Pinto Mdo C, et al. Naphthoquinoidal [1,2,3]-triazole, a new structural moiety active against Trypanosoma cruzi. Eur J Med Chem 2008; 43(8): 1774-80.
[http://dx.doi.org/10.1016/j.ejmech.2007.10.015] [PMID: 18045742]
[75]
Fernandes MC, Da Silva EN. Junior, Pinto AV, De Castro SL, Menna-Barreto RFS. A novel triazolic naphthofuranquinone induces autophagy in reservosomes and impairment of mitosis in Trypanosoma cruzi. Parasitology 2012; 139(1): 26-36.
[http://dx.doi.org/10.1017/S0031182011001612] [PMID: 21939585]
[76]
Silva RSF, Costa EM, Trindade ÚLT, et al. Synthesis of naphthofuranquinones with activity against Trypanosoma cruzi. Eur J Med Chem 2006; 41(4): 526-30.
[http://dx.doi.org/10.1016/j.ejmech.2005.12.006] [PMID: 16500733]
[77]
Olímpio da Silva A, da Silva Lopes R, Vieira de Lima R, et al. Synthesis and biological activity against Trypanosoma cruzi of substituted 1,4-naphthoquinones. Eur J Med Chem 2013; 60: 51-6.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.034] [PMID: 23279867]
[78]
Diogo EBT, Dias GG, Rodrigues BL, et al. Synthesis and anti-Trypanosoma cruzi activity of naphthoquinone-containing triazoles: electrochemical studies on the effects of the quinoidal moiety. Bioorg Med Chem 2013; 21(21): 6337-48.
[http://dx.doi.org/10.1016/j.bmc.2013.08.055] [PMID: 24074878]
[79]
Cardoso MFDC, Salomão K, Bombaça AC, et al. Synthesis and anti-Trypanosoma cruzi activity of new 3-phenylthio-nor-β-lapachone derivatives. Bioorg Med Chem 2015; 23(15): 4763-8.
[http://dx.doi.org/10.1016/j.bmc.2015.05.039] [PMID: 26118339]
[80]
da Silva EN Jr, Guimarães TT, Menna-Barreto RFS, et al. The evaluation of quinonoid compounds against Trypanosoma cruzi: synthesis of imidazolic anthraquinones, nor-β-lapachone derivatives and β-lapachone-based 1,2,3-triazoles. Bioorg Med Chem 2010; 18(9): 3224-30.
[http://dx.doi.org/10.1016/j.bmc.2010.03.029] [PMID: 20378360]
[81]
da Silva Júnior EN, de Melo IM, Diogo EB, et al. On the search for potential anti-Trypanosoma cruzi drugs: synthesis and biological evaluation of 2-hydroxy-3-methylamino and 1,2,3-triazolic naphthoquinoidal compounds obtained by click chemistry reactions. Eur J Med Chem 2012; 52: 304-12.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.039] [PMID: 22483633]
[82]
Da Rocha DR, De Souza AMT, De Souza ACG, et al. Effect of 9-hydroxy-α-and 7-hydroxy-β-pyran naphthoquinones on Trypanosoma cruzi and structure-Activity relationship studies. Med Chem (Los Angeles) 2014; 10: 564-70.
[83]
de Carvalho RL, Jardim GAM, Santos ACC, et al. Combination of Aryl Diselenides/Hydrogen Peroxide and Carbon-Nanotube/Rhodium Nanohybrids for Naphthol Oxidation: An Efficient Route towards Trypanocidal Quinones. Chemistry 2018; 24(57): 15227-35.
[http://dx.doi.org/10.1002/chem.201802773] [PMID: 29904959]
[84]
Jardim GAM, Bozzi ÍAO, Oliveira WXC, et al. Copper complexes and carbon nanotube-copper ferrite-catalyzed benzenoid A-ring selenation of quinones: An efficient method for the synthesis of trypanocidal agents. New J Chem 2019; 43: 13751-63.
[http://dx.doi.org/10.1039/C9NJ02026H]
[85]
Zani CL, Chiari E, Krettli AU, et al. Anti-plasmodial and anti-trypanosomal activity of synthetic naphtho[2,3-b]thiopen-4,9-quinones. Bioorg Med Chem 1997; 5(12): 2185-92.
[http://dx.doi.org/10.1016/S0968-0896(97)00155-7] [PMID: 9459016]
[86]
Salomão K, De Santana NA, Molina MT, De Castro SL, Menna-Barreto RFS. Trypanosoma cruzi mitochondrial swelling and membrane potential collapse as primary evidence of the mode of action of naphthoquinone analogues. BMC Microbiol 2013; 13: 196.
[http://dx.doi.org/10.1186/1471-2180-13-196] [PMID: 24004461]
[87]
Jardim GAM, Silva TL, Goulart MOF, et al. Rhodium-catalyzed C-H bond activation for the synthesis of quinonoid compounds: Significant anti-Trypanosoma cruzi activities and electrochemical studies of functionalized quinones. Eur J Med Chem 2017; 136: 406-19.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.011] [PMID: 28521262]
[88]
Lara LS, Moreira CS, Calvet CM, et al. Efficacy of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinone derivatives against different Trypanosoma cruzi discrete type units: Identification of a promising hit compound. Eur J Med Chem 2018; 144: 572-81.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.052] [PMID: 29289882]
[89]
Naujorks AADS, da Silva AO, Lopes Rda S, et al. Novel naphthoquinone derivatives and evaluation of their trypanocidal and leishmanicidal activities. Org Biomol Chem 2015; 13(2): 428-37.
[http://dx.doi.org/10.1039/C4OB01869A] [PMID: 25370790]
[90]
Dantas ED, de Souza FJJ, Nogueira WNL, et al. Characterization and trypanocidal activity of a novel pyranaphthoquinone. Molecules 2017; 22(10): E1631.
[http://dx.doi.org/10.3390/molecules22101631] [PMID: 28973960]
[91]
Salas C, Tapia RA, Ciudad K, et al. Trypanosoma cruzi: activities of lapachol and α- and β-lapachone derivatives against epimastigote and trypomastigote forms. Bioorg Med Chem 2008; 16(2): 668-74.
[http://dx.doi.org/10.1016/j.bmc.2007.10.038] [PMID: 18029184]
[92]
Bourguignon SC, Castro HC, Santos DO, et al. Trypanosoma cruzi: in vitro activity of Epoxy-α-Lap, a derivative of α-lapachone, on trypomastigote and amastigote forms. Exp Parasitol 2009; 122(2): 91-6.
[http://dx.doi.org/10.1016/j.exppara.2009.03.002] [PMID: 19285074]
[93]
Vera B, Vázquez K, Mascayano C, et al. Structural analysis and molecular docking of trypanocidal aryloxy-quinones in trypanothione and glutathione reductases: a comparison with biochemical data. J Biomol Struct Dyn 2017; 35(8): 1785-803.
[http://dx.doi.org/10.1080/07391102.2016.1195283] [PMID: 27232454]
[94]
Khraiwesh MH, Lee CM, Brandy Y, et al. Antitrypanosomal activities and cytotoxicity of some novel imido-substituted 1,4-naphthoquinone derivatives. Arch Pharm Res 2012; 35(1): 27-33.
[http://dx.doi.org/10.1007/s12272-012-0103-1] [PMID: 22297740]
[95]
Sieveking I, Thomas P, Estévez JC, et al. 2-Phenylaminonaphthoquinones and related compounds: synthesis, trypanocidal and cytotoxic activities. Bioorg Med Chem 2014; 22(17): 4609-20.
[http://dx.doi.org/10.1016/j.bmc.2014.07.030] [PMID: 25127463]
[96]
Amuchástegui PI, Moretti ER, Basso B, Sperandeo N, de Bertorello MM. Isoxazolylnaphthoquinone effects on the growth of Trypanosoma cruzi. Rev Argent Microbiol 1990; 22(4): 199-207.
[PMID: 2129475]
[97]
Sperandeo NR, Brun R. Synthesis and biological evaluation of pyrazolylnaphthoquinones as new potential antiprotozoal and cytotoxic agents. ChemBioChem 2003; 4(1): 69-72.
[http://dx.doi.org/10.1002/cbic.200390016] [PMID: 12512078]
[98]
Ramos EI, Garza KM, Krauth-Siegel RL, Bader J, Martinez LE, Maldonado RA. 2,3-diphenyl-1,4-naphthoquinone: a potential chemotherapeutic agent against Trypanosoma cruzi. J Parasitol 2009; 95(2): 461-6.
[http://dx.doi.org/10.1645/GE-1686.1] [PMID: 18788881]
[99]
Carneiro PF, do Nascimento SB, Pinto AV, et al. New oxirane derivatives of 1,4-naphthoquinones and their evaluation against T. cruzi epimastigote forms. Bioorg Med Chem 2012; 20(16): 4995-5000.
[http://dx.doi.org/10.1016/j.bmc.2012.06.027] [PMID: 22795899]
[100]
Morello A, Pavani M, Garbarino JA, et al. Effects and mode of action of 1,4-naphthoquinones isolated from Calceolaria sessilis on tumoral cells and Trypanosoma parasites. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 1995; 112(2): 119-28.
[http://dx.doi.org/10.1016/0742-8413(95)02003-9] [PMID: 8788584]
[101]
Alves TM, Alves R, Romanha AJ, Zani CL, dos Santos MH, Nagem TJ. Biological activities of 7-epiclusianone. J Nat Prod 1999; 62(2): 369-71.
[http://dx.doi.org/10.1021/np9803833] [PMID: 10075791]
[102]
Brengio SD, Belmonte SA, Guerreiro E, Giordano OS, Pietrobon EO, Sosa MA. The sesquiterpene lactone dehydroleucodine (DhL) affects the growth of cultured epimastigotes of Trypanosoma cruzi. J Parasitol 2000; 86(2): 407-12.
[http://dx.doi.org/10.1645/0022-3395(2000)086[0407:TSLDDA]2.0.CO;2] [PMID: 10780563]
[103]
Grady RW, Blobstein SH, Meshnick SR, et al. The in vitro trypanocidal activity of N-substituted p-benzoquinone imines: assessment of biochemical structure-activity relationships using the Hansch approach. J Cell Biochem 1984; 25(1): 15-29.
[http://dx.doi.org/10.1002/jcb.240250103] [PMID: 6470049]
[104]
Samant BS, Chakaingesu C. Novel naphthoquinone derivatives: synthesis and activity against human African trypanosomiasis. Bioorg Med Chem Lett 2013; 23(5): 1420-3.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.075] [PMID: 23337598]
[105]
Moideen SVK, Houghton PJ, Rock P, Croft SL, Aboagye-Nyame F. Activity of extracts and naphthoquinones from Kigelia pinnata against Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense. Planta Med 1999; 65(6): 536-40.
[http://dx.doi.org/10.1055/s-1999-14011] [PMID: 10483374]
[106]
Ellendorff T, Brun R, Kaiser M, Sendker J, Schmidt TJ. PLS-Prediction and confirmation of hydrojuglone glucoside as the antitrypanosomal constituent of juglans spp. Molecules 2015; 20(6): 10082-94.
[http://dx.doi.org/10.3390/molecules200610082] [PMID: 26035104]
[107]
Mahal K, Ahmad A, Schmitt F, et al. Improved anticancer and antiparasitic activity of new lawsone Mannich bases. Eur J Med Chem 2017; 126: 421-31.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.043] [PMID: 27912173]
[108]
Salmon-Chemin L, Buisine E, Yardley V, et al. 2- and 3-substituted 1,4-naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosoma cruzi: synthesis and correlation between redox cycling activities and in vitro cytotoxicity. J Med Chem 2001; 44(4): 548-65.
[http://dx.doi.org/10.1021/jm001079l] [PMID: 11170645]
[109]
Sperandeo NR, Briñón MC, Brun R. Synthesis, antiprotozoal and cytotoxic activities of new N-(3,4-dimethyl-5-isoxazolyl)-1,2-naphthoquinone-4-amino derivatives. Farmaco 2004; 59(6): 431-5.
[http://dx.doi.org/10.1016/j.farmac.2004.03.003] [PMID: 15178304]
[110]
Prati F, Bergamini C, Molina MT, et al. 2-Phenoxy-1,4-naphthoquinones: From a Multitarget Antitrypanosomal to a Potential Antitumor Profile. J Med Chem 2015; 58(16): 6422-34.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00748] [PMID: 26237241]
[111]
Rabinovitch M, Dedet JP, Ryter A, Robineaux R, Topper G, Brunet E. Destruction of Leishmania mexicana amazonensis amastigotes within macrophages in culture by phenazine methosulfate and other electron carriers. J Exp Med 1982; 155(2): 415-31.
[http://dx.doi.org/10.1084/jem.155.2.415] [PMID: 7057140]
[112]
Croft SL, Evans AT, Neal RA. The activity of plumbagin and other electron carriers against Leishmania donovani and Leishmania mexicana amazonensis. Ann Trop Med Parasitol 1985; 79(6): 651-3.
[http://dx.doi.org/10.1080/00034983.1985.11811974] [PMID: 3834847]
[113]
Ali A, Assimopoulou AN, Papageorgiou VP, Kolodziej H. Structure/antileishmanial activity relationship study of naphthoquinones and dependency of the mode of action on the substitution patterns. Planta Med 2011; 77(18): 2003-12.
[http://dx.doi.org/10.1055/s-0031-1280092] [PMID: 21800278]
[114]
Montoya A, Daza A, Muñoz D, et al. Development of a novel formulation with hypericin to treat cutaneous leishmaniasis based on photodynamic therapy in in vitro and in vivo studies. Antimicrob Agents Chemother 2015; 59(9): 5804-13.
[http://dx.doi.org/10.1128/AAC.00545-15] [PMID: 26169411]
[115]
Araújo IAC, de Paula RC, Alves CL, et al. Efficacy of lapachol on treatment of cutaneous and visceral leishmaniasis. Exp Parasitol 2019; 199: 67-73.
[http://dx.doi.org/10.1016/j.exppara.2019.02.013] [PMID: 30797783]
[116]
Teixeira MJ, de Almeida YM, Viana JR, et al. In vitro and in vivo Leishmanicidal activity of 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone (lapachol). Phytother Res 2001; 15(1): 44-8.
[http://dx.doi.org/10.1002/1099-1573(200102)15:1<44:AID-PTR685>3.0.CO;2-1] [PMID: 11180522]
[117]
da Silva Júnior EN, Jardim GAM, Jacob C, Dhawa U, Ackermann L, de Castro SL. Synthesis of quinones with highlighted biological applications: A critical update on the strategies towards bioactive compounds with emphasis on lapachones. Eur J Med Chem 2019; 179: 863-915.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.056] [PMID: 31306817]
[118]
Mendonça DVC, Tavares GSV, Lage DP, et al. In vivo antileishmanial efficacy of a naphthoquinone derivate incorporated into a Pluronic® F127-based polymeric micelle system against Leishmania amazonensis infection. Biomed Pharmacother 2019; 109: 779-87.
[http://dx.doi.org/10.1016/j.biopha.2018.10.143] [PMID: 30551531]
[119]
Mendonça DVC, Lage DP, Calixto SL, et al. Antileishmanial activity of a naphthoquinone derivate against promastigote and amastigote stages of Leishmania infantum and Leishmania amazonensis and its mechanism of action against L. amazonensis species. Parasitol Res 2018; 117(2): 391-403.
[http://dx.doi.org/10.1007/s00436-017-5713-6] [PMID: 29248978]
[120]
Al Nasr I, Jentzsch J, Winter I, et al. Antiparasitic activities of new lawsone Mannich bases. Arch Pharm (Weinheim) 2019; 352(11): e1900128.
[http://dx.doi.org/10.1002/ardp.201900128] [PMID: 31536649]
[121]
Oliveira LFG, Souza-Silva F, de Castro Côrtes LM, et al. Antileishmanial Activity of 2-Methoxy-4H-spiro-[naphthalene-1,2′-oxiran]-4-one (Epoxymethoxy-lawsone): A Promising New Drug Candidate for Leishmaniasis Treatment. Molecules 2018; 23(4): E864.
[http://dx.doi.org/10.3390/molecules23040864] [PMID: 29642584]
[122]
Guimarães TT, Pinto Mdo C, Lanza JS, et al. Potent naphthoquinones against antimony-sensitive and -resistant Leishmania parasites: synthesis of novel α- and nor-α-lapachone-based 1,2,3-triazoles by copper-catalyzed azide-alkyne cycloaddition. Eur J Med Chem 2013; 63: 523-30.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.038] [PMID: 23535320]
[123]
Souza-Silva F, do Nascimento SB, Bourguignon SC, et al. Evidences for leishmanicidal activity of the naphthoquinone derivative epoxy-α-lapachone. Exp Parasitol 2014; 147: 81-4.
[http://dx.doi.org/10.1016/j.exppara.2014.10.002] [PMID: 25307687]
[124]
Souza-Silva F, Bourguignon SC, Pereira BAS, et al. Epoxy-α-lapachone has in vitro and in vivo anti-leishmania (Leishmania) amazonensis effects and inhibits serine proteinase activity in this parasite. Antimicrob Agents Chemother 2015; 59(4): 1910-8.
[http://dx.doi.org/10.1128/AAC.04742-14] [PMID: 25583728]
[125]
Lima NMF, Correia CS, Leon LL, et al. Antileishmanial activity of lapachol analogues. Mem Inst Oswaldo Cruz 2004; 99(7): 757-61.
[http://dx.doi.org/10.1590/S0074-02762004000700017] [PMID: 15654435]
[126]
Rocha MN, Nogueira PM, Demicheli C, et al. Cytotoxicity and in vitro antileishmanial activity of antimony (v), bismuth (v), and tin (iv) complexes of lapachol. Bioinorg Chem Appl 2013; 2013: 961783.
[http://dx.doi.org/10.1155/2013/961783] [PMID: 23781165]
[127]
da Cunha-Júnior EF, Pacienza-Lima W, Ribeiro GA, et al. Effectiveness of the local or oral delivery of the novel naphthopterocarpanquinone LQB-118 against cutaneous leishmaniasis. J Antimicrob Chemother 2011; 66(7): 1555-9.
[http://dx.doi.org/10.1093/jac/dkr158] [PMID: 21531758]
[128]
Cunha-Júnior EF, Martins TM, Canto-Cavalheiro MM, et al. Preclinical studies evaluating subacute toxicity and therapeutic efficacy of LQB-118 in experimental visceral leishmaniasis. Antimicrob Agents Chemother 2016; 60(6): 3794-801.
[http://dx.doi.org/10.1128/AAC.01787-15] [PMID: 27067332]
[129]
Costa L, Pinheiro RO, Dutra PML, et al. Pterocarpanquinone LQB-118 induces apoptosis in Leishmania (Viannia) braziliensis and controls lesions in infected hamsters. PLoS One 2014; 9(10): e109672.
[http://dx.doi.org/10.1371/journal.pone.0109672] [PMID: 25340550]
[130]
Faiões VDS, da Frota LCRM, Cunha-Junior EF, et al. Second-generation pterocarpanquinones: synthesis and antileishmanial activity. J Venom Anim Toxins Incl Trop Dis 2018; 24: 35.
[http://dx.doi.org/10.1186/s40409-018-0174-7] [PMID: 30519257]
[131]
Buarque CD, Militão GCG, Lima DJB, et al. Pterocarpanquinones, aza-pterocarpanquinone and derivatives: synthesis, antineoplasic activity on human malignant cell lines and antileishmanial activity on Leishmania amazonensis. Bioorg Med Chem 2011; 19(22): 6885-91.
[http://dx.doi.org/10.1016/j.bmc.2011.09.025] [PMID: 22000949]
[132]
Pérez-Pertejo Y, Escudero-Martínez JM, Reguera RM, et al. Antileishmanial activity of terpenylquinones on Leishmania infantum and their effects on Leishmania topoisomerase IB. Int J Parasitol Drugs Drug Resist 2019; 11: 70-9.
[http://dx.doi.org/10.1016/j.ijpddr.2019.10.004] [PMID: 31678841]
[133]
Lezama-Dávila CM, Isaac-Márquez AP, Kapadia G, et al. Leishmanicidal activity of two naphthoquinones against Leishmania donovani. Biol Pharm Bull 2012; 35(10): 1761-4.
[http://dx.doi.org/10.1248/bpb.b12-00419] [PMID: 23037165]
[134]
Boveris A, Docampo R, Turrens JF, Stoppani AO. Effect of beta and alpha-lapachone on the production of H202 and on the growth of Trypanosoma cruzi. Rev Asoc Argent Microbiol 1977; 9(2): 54-61.
[PMID: 339293]
[135]
Boveris A, Stoppani AOM, Docampo R, Cruz FS. Superoxide anion production and trypanocidal action of naphthoquinones on Trypanosoma cruzi. Comp Biochem Physiol C Comp Pharmacol 1978; 61(C): 327-9.
[http://dx.doi.org/10.1016/0306-4492(78)90063-1] [PMID: 33002]
[136]
Docampo R, De Souza W, Cruz FS, Roitman I, Cover B, Gutteridge WE. Ultrastructural alterations and peroxide formation induced by naphthoquinones in different stages of Trypanosoma cruzi. Z Parasitenkd 1978; 57(3): 189-98.
[http://dx.doi.org/10.1007/BF00928032] [PMID: 216177]
[137]
Docampo R, Lopes JN, Cruz FS, Souza W. Trypanosoma cruzi: ultrastructural and metabolic alterations of epimastigotes by β-lapachone. Exp Parasitol 1977; 42(1): 142-9.
[http://dx.doi.org/10.1016/0014-4894(77)90071-6] [PMID: 324785]
[138]
Goijman SG, Stoppani AO. Effects of nifurtimox, benznidazole, and beta-lapachone on the metabolism of DNA, RNA and proteins in Trypanosoma cruzi. Rev Argent Microbiol 1983; 15(4): 193-204.
[PMID: 6086046]
[139]
de Tarlovsky MN, Goijman SG, Molina Portela MP, Stoppani AOM. Effects of isoxazolyl-naphthoquinoneimines on growth and oxygen radical production in Trypanosoma cruzi and Crithidia fasciculata. Experientia 1990; 46(5): 502-5.
[http://dx.doi.org/10.1007/BF01954247] [PMID: 2189749]
[140]
Biscardi AM, Fernandez Villamil SH, Stoppani AO. Inhibition of oxidative phosphorylation in Crithidia fasciculata and Trypanosoma cruzi by lipophilic o-quinones and nifurtimox. Rev Argent Microbiol 1994; 26(2): 72-86.
[PMID: 7938505]
[141]
Garavaglia PA, Cannata JJB, Ruiz AM, et al. Identification, cloning and characterization of an aldo-keto reductase from Trypanosoma cruzi with quinone oxido-reductase activity. Mol Biochem Parasitol 2010; 173(2): 132-41.
[http://dx.doi.org/10.1016/j.molbiopara.2010.05.019] [PMID: 20595031]
[142]
Jockers-Scherübl MC, Schirmer RH, Krauth-Siegel RL. Trypanothione reductase from Trypanosoma cruzi. Catalytic properties of the enzyme and inhibition studies with trypanocidal compounds. Eur J Biochem 1989; 180(2): 267-72.
[http://dx.doi.org/10.1111/j.1432-1033.1989.tb14643.x] [PMID: 2647489]
[143]
Salmon-Chemin L, Lemaire A, De Freitas S, Deprez B, Sergheraert C, Davioud-Charvet E. Parallel synthesis of a library of 1,4-naphthoquinones and automated screening of potential inhibitors of trypanothione reductase from Trypanosoma cruzi. Bioorg Med Chem Lett 2000; 10(7): 631-5.
[http://dx.doi.org/10.1016/S0960-894X(00)00056-1] [PMID: 10762041]
[144]
Garavaglia PA, Rubio MF, Laverrière M, et al. Trypanosoma cruzi: death phenotypes induced by ortho-naphthoquinone substrates of the aldo-keto reductase (TcAKR). Role of this enzyme in the mechanism of action of β-lapachone. Parasitology 2018; 145(9): 1251-9.
[http://dx.doi.org/10.1017/S0031182018000045] [PMID: 29400267]
[145]
Menna-Barreto RFS, Goncalves RLS, Costa EM, et al. The effects on Trypanosoma cruzi of novel synthetic naphthoquinones are mediated by mitochondrial dysfunction. Free Radic Biol Med 2009; 47(5): 644-53.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.06.004] [PMID: 19501647]
[146]
Menna-Barreto RFS, Salomão K, Dantas AP, et al. Different cell death pathways induced by drugs in Trypanosoma cruzi: an ultrastructural study. Micron 2009; 40(2): 157-68.
[http://dx.doi.org/10.1016/j.micron.2008.08.003] [PMID: 18849169]
[147]
Ogindo CO, Khraiwesh MH, George M Jr, et al. Novel drug design for Chagas disease via targeting Trypanosoma cruzi tubulin: Homology modeling and binding pocket prediction on Trypanosoma cruzi tubulin polymerization inhibition by naphthoquinone derivatives. Bioorg Med Chem 2016; 24(16): 3849-55.
[http://dx.doi.org/10.1016/j.bmc.2016.06.031] [PMID: 27345756]
[148]
Meshnick SR, Blobstein SH, Grady RW, Cerami A. An approach to the development of new drugs for African trypanosomiasis. J Exp Med 1978; 148(2): 569-79.
[http://dx.doi.org/10.1084/jem.148.2.569] [PMID: 702049]
[149]
Turrens JF, Bickar D, Lehninger AL. Inhibitors of the mitochondrial cytochrome b-c1 complex inhibit the cyanide-insensitive respiration of Trypanosoma brucei. Mol Biochem Parasitol 1986; 19(3): 259-64.
[http://dx.doi.org/10.1016/0166-6851(86)90008-3] [PMID: 3016533]
[150]
Pieretti S, Haanstra JR, Mazet M, et al. Naphthoquinone derivatives exert their antitrypanosomal activity via a multi-target mechanism. PLoS Negl Trop Dis 2013; 7(1): e2012.
[http://dx.doi.org/10.1371/journal.pntd.0002012] [PMID: 23350008]
[151]
Bruno S, Uliassi E, Zaffagnini M, et al. Molecular basis for covalent inhibition of glyceraldehyde-3-phosphate dehydrogenase by a 2-phenoxy-1,4-naphthoquinone small molecule. Chem Biol Drug Des 2017; 90(2): 225-35.
[http://dx.doi.org/10.1111/cbdd.12941] [PMID: 28079302]
[152]
Awasthi BP, Kathuria M, Pant G, Kumari N, Mitra K. Plumbagin, a plant-derived naphthoquinone metabolite induces mitochondria mediated apoptosis-like cell death in Leishmania donovani: an ultrastructural and physiological study. Apoptosis 2016; 21(8): 941-53.
[http://dx.doi.org/10.1007/s10495-016-1259-9] [PMID: 27315817]
[153]
Sharma G, Chowdhury S, Sinha S, Majumder HK, Kumar SV. Antileishmanial activity evaluation of bis-lawsone analogs and DNA topoisomerase-I inhibition studies. J Enzyme Inhib Med Chem 2014; 29(2): 185-9.
[http://dx.doi.org/10.3109/14756366.2013.765413] [PMID: 23534930]
[154]
Ribeiro GA, Cunha-Júnior EF, Pinheiro RO, et al. LQB-118, an orally active pterocarpanquinone, induces selective oxidative stress and apoptosis in Leishmania amazonensis. J Antimicrob Chemother 2013; 68(4): 789-99.
[http://dx.doi.org/10.1093/jac/dks498] [PMID: 23288404]
[155]
Singh S, Kumari E, Bhardwaj R, Kumar R, Dubey VK. Molecular events leading to death of Leishmania donovani under spermidine starvation after hypericin treatment. Chem Biol Drug Des 2017; 90(5): 962-71.
[http://dx.doi.org/10.1111/cbdd.13022] [PMID: 28509385]
[156]
Sharma N, Shukla AK, Das M, Dubey VK. Evaluation of plumbagin and its derivative as potential modulators of redox thiol metabolism of Leishmania parasite. Parasitol Res 2012; 110(1): 341-8.
[http://dx.doi.org/10.1007/s00436-011-2498-x] [PMID: 21717278]
[157]
Hazra S, Ghosh S, Das Sarma M, et al. Evaluation of a diospyrin derivative as antileishmanial agent and potential modulator of ornithine decarboxylase of Leishmania donovani. Exp Parasitol 2013; 135(2): 407-13.
[http://dx.doi.org/10.1016/j.exppara.2013.07.021] [PMID: 23973194]
[158]
Mukherjee P, Majee SB, Ghosh S, Hazra B. Apoptosis-like death in Leishmania donovani promastigotes induced by diospyrin and its ethanolamine derivative. Int J Antimicrob Agents 2009; 34(6): 596-601.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.08.007] [PMID: 19783125]
[159]
Shahidullah A, Lee J-Y, Kim YJ, et al. Anti-inflammatory effects of diospyrin on lipopolysaccharide-induced inflammation using RAW 264.7 mouse macrophages. Biomedicines 2020; 8(1): E11.
[http://dx.doi.org/10.3390/biomedicines8010011] [PMID: 31940845]
[160]
Singh S, Dubey VK. Quantitative proteome analysis of Leishmania donovani under spermidine starvation. PLoS One 2016; 11(4): e0154262.
[http://dx.doi.org/10.1371/journal.pone.0154262] [PMID: 27123864]
[161]
Menna-Barreto RFS, de Castro SL. Clear shot at primary aim: susceptibility of Trypanosoma cruzi organelles, structures and molecular targets to drug treatment. Curr Top Med Chem 2017; 17(10): 1212-34.
[http://dx.doi.org/10.2174/1568026616666161025161858] [PMID: 27784255]
[162]
Cruz FS, Docampo R, Boveris A. Generation of superoxide anions and hydrogen peroxide from β-lapachone in bacteria. Antimicrob Agents Chemother 1978; 14(4): 630-3.
[http://dx.doi.org/10.1128/AAC.14.4.630] [PMID: 214029]
[163]
Docampo R, Cruz FS, Boveris A, Muniz RPA, Esquivel DMS. Lipid peroxidation and the generation of free radicals, superoxide anion, and hydrogen peroxide in β-lapachone-treated Trypanosoma cruzi epimastigotes. Arch Biochem Biophys 1978; 186(2): 292-7.
[http://dx.doi.org/10.1016/0003-9861(78)90438-1] [PMID: 205176]
[164]
Molina Portela MP, Fernandez Villamil SHF, Perissinotti LJ, Stoppani AOM. Redox cycling of o-naphthoquinones in trypanosomatids. Superoxide and hydrogen peroxide production. Biochem Pharmacol 1996; 52(12): 1875-82.
[http://dx.doi.org/10.1016/S0006-2952(96)00601-6] [PMID: 8951346]
[165]
Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A. Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science 1985; 227(4693): 1485-7.
[http://dx.doi.org/10.1126/science.3883489] [PMID: 3883489]
[166]
Docampo R, Moreno SN. Free radical metabolites in the mode of action of chemotherapeutic agents and phagocytic cells on Trypanosoma cruzi. Rev Infect Dis 1984; 6(2): 223-38.
[http://dx.doi.org/10.1093/clinids/6.2.223] [PMID: 6328615]
[167]
Krauth-Siegel LR, Comini MA, Schlecker T. The trypanothione system. Subcell Biochem 2007; 44: 231-51.
[http://dx.doi.org/10.1007/978-1-4020-6051-9_11] [PMID: 18084897]
[168]
Menna-Barreto RFS, de Castro SL. The double-edged sword in pathogenic trypanosomatids: the pivotal role of mitochondria in oxidative stress and bioenergetics. BioMed Res Int 2014; 2014: 614014.
[http://dx.doi.org/10.1155/2014/614014] [PMID: 24800243]
[169]
Boveris A, Stoppani AO. Hydrogen peroxide generation in Trypanosoma cruzi. Experientia 1977; 33(10): 1306-8.
[http://dx.doi.org/10.1007/BF01920148] [PMID: 20323]
[170]
Tomás AM, Castro H. Redox metabolism in mitochondria of trypanosomatids. Antioxid Redox Signal 2013; 19(7): 696-707.
[http://dx.doi.org/10.1089/ars.2012.4948] [PMID: 23025438]
[171]
Menna-Barreto RFS. Cell death pathways in pathogenic trypanosomatids: lessons of (over)kill. Cell Death Dis 2019; 10(2): 93.
[http://dx.doi.org/ 10.1038/s41419-019-1370-2] [PMID: 30700697]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy