Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

阿尔茨海默氏病患者氧化应激与胆固醇代谢改变之间的关联

卷 17, 期 9, 2020

页: [823 - 834] 页: 12

弟呕挨: 10.2174/1567205017666201203123046

价格: $65

摘要

背景:氧化应激是包括阿尔茨海默氏病(AD)在内的多种疾病的主要特征。最近报道了氧固醇衍生物的参与。 目的:本研究的目的是评估氧化应激对AD患者胆固醇损伤的影响。 方法:对56例AD患者和97例对照进行了病例对照研究。用分光光度法对红细胞(RBC)和血浆进行了氧化生物标记物水平的测定,包括脂质过氧化产物和抗氧化酶活性。胆固醇前体和氧固醇(7-酮胆固醇(7KC),7α-羟基胆固醇(7α-OHC),7β-羟基胆固醇(7β-OHC),24S-羟基胆固醇(24S-OH),25-羟基胆固醇(25-OHC)和27-羟基胆固醇通过气相色谱-质谱法定量测定血浆中的(27-OHC)。 结果:在AD患者的RBC和血浆中,发现谷胱甘肽过氧化物酶(GPx)活性显着下降与丙二醛(MDA)水平升高相关。在AD患者中,与对照组相比,血浆AD患者血浆中的羊毛甾醇水平降低和7β-OHC,24S-OHC,27-OHC和25-OHC的积累也较高。小精神状态检查(MMSE)得分与血浆中的MDA和共轭二烯(CD)水平相关。此外,红细胞中的MDA水平与7β-OHC相关。二元逻辑回归显示GPx活性与AD之间存在关联(OR = 0.895,95%CI:0.848-0.945。P <0.001)。 结论:我们的数据巩固了AD中氧化还原稳态的破裂与脂质和胆固醇氧化之间的关系。

关键词: 阿尔茨海默氏病,氧化应激,氧固醇,脂质过氧化,抗氧化酶,胆固醇。

[1]
Sies H, Jones D. Oxidative stress Encyclopedia of stress Fink G Ed 2nd ed Elsevier: Amsterdam 2007; 3: pp.: 45-8.
[http://dx.doi.org/10.1016/B978-012373947-6.00285-3]
[2]
Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 2005; 70(2): 200-14.
[http://dx.doi.org/10.1007/s10541-005-0102-7 ] [PMID: 15807660]
[3]
Karelson E, Bogdanovic N, Garlind A, et al. The cerebrocortical areas in normal brain aging and in Alzheimer’s disease: Noticeable differences in the lipid peroxidation level and in antioxidant defense. Neurochem Res 2001; 26(4): 353-61.
[http://dx.doi.org/10.1023/A:1010942929678 ] [PMID: 11495345]
[4]
Siems W, Grune T. Lipid peroxidation measurements – methodological approaches and clinical importance Free radicals and diseases: Gene expression cellular metabolism and pathophysiology Grune T. Amsterdam, Berlin, Oxford, Tokyo, Washington: IOS Press 2005; Vol. 367: pp. 11-22.
[5]
Doorn JA, Petersen DR. Covalent modification of amino acid nucleophiles by the lipid peroxidation products 4-hydroxy-2-nonenal and 4-oxo-2-nonenal. Chem Res Toxicol 2002; 15(11): 1445-50.
[http://dx.doi.org/10.1021/tx025590o ] [PMID: 12437335]
[6]
Skoumalová A, Mádlová P, Topinková E. End products of lipid peroxidation in erythrocyte membranes in Alzheimer’s disease. Cell Biochem Funct 2012; 30(3): 205-10.
[http://dx.doi.org/10.1002/cbf.1836 ] [PMID: 22161584]
[7]
Kosenko EA, Aliev G, Tikhonova LA, Li Y, Poghosyan AC, Kaminsky YG. Antioxidant status and energy state of erythrocytes in Alzheimer dementia: Probing for markers. CNS Neurol Disord Drug Targets 2012; 11(7): 926-32.
[http://dx.doi.org/10.2174/1871527311201070926 ] [PMID: 22998137]
[8]
Kim TS, Pae CU, Yoon SJ, et al. Decreased plasma antioxidants in patients with Alzheimer’s disease. Int J Geriatr Psychiatry 2006; 21(4): 344-8.
[http://dx.doi.org/10.1002/gps.1469 ] [PMID: 16534775]
[9]
Ačimovič J, Rozman D. Steroidal triterpenes of cholesterol synthesis. Molecules 2013; 18(4): 4002-17.
[http://dx.doi.org/10.3390/molecules18044002 ] [PMID: 23558541]
[10]
Lütjohann D, Brzezinka A, Barth E, et al. Profile of cholesterol-related sterols in aged amyloid precursor protein transgenic mouse brain. J Lipid Res 2002; 43(7): 1078-85.
[http://dx.doi.org/10.1194/jlr.M200071-JLR200 ] [PMID: 12091492]
[11]
Hannaoui S, Shim SY, Cheng YC, Corda E, Gilch S. Cholesterol balance in prion diseases and Alzheimer’s disease. Viruses 2014; 6(11): 4505-35.
[http://dx.doi.org/10.3390/v6114505 ] [PMID: 25419621]
[12]
Yousuf FA, Iqbal MP. Review: Apolipoprotein E (Apo E) gene polymorphism and coronary heart disease in Asian populations. Pak J Pharm Sci 2015; 28(4): 1439-44.
[PMID: 26142535]
[13]
Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993; 261(5123): 921-3.
[http://dx.doi.org/10.1126/science.8346443 ] [PMID: 8346443]
[14]
Lütjohann D, Björkhem I, Locatelli S, et al. Cholesterol dynamics in the foetal and neonatal brain as reflected by circulatory levels of 24S-hydroxycholesterol. Acta Paediatr 2001; 90(6): 652-7.
[http://dx.doi.org/10.1080/080352501750258720 ] [PMID: 11440099]
[15]
Olkkonen VM, Béaslas O, Nissilä E. Oxysterols and their cellular effectors. Biomolecules 2012; 2(1): 76-103.
[http://dx.doi.org/10.3390/biom2010076 ] [PMID: 24970128]
[16]
Schenck GO, Gollnick K, Neümuller OA. Photosensitized autoxidation of steroids preparation of steroid hydroperoxides by means of phototoxic photosentitizers. Liebigs Ann 1957; 603: 46.
[http://dx.doi.org/10.1002/jlac.19576030108]
[17]
Larsson H, Böttiger Y, Iuliano L, Diczfalusy U. In vivo interconversion of 7beta-hydroxycholesterol and 7-ketocholesterol, potential surrogate markers for oxidative stress. Free Radic Biol Med 2007; 43(5): 695-701.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.04.033 ] [PMID: 17664133]
[18]
Hascalovici JR, Vaya J, Khatib S, et al. Brain sterol dysregulation in sporadic AD and MCI: Relationship to heme oxygenase-1. J Neurochem 2009; 110(4): 1241-53.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06213.x ] [PMID: 19522732]
[19]
Gamba P, Testa G, Gargiulo S, Staurenghi E, Poli G, Leonarduzzi G. Oxidized cholesterol as the driving force behind the development of Alzheimer’s disease. Front Aging Neurosci 2015; 7: 119.
[http://dx.doi.org/10.3389/fnagi.2015.00119 ] [PMID: 26150787]
[20]
Testa G, Staurenghi E, Zerbinati C, et al. Changes in brain oxysterols at different stages of Alzheimer’s disease: Their involvement in neuroinflammation. Redox Biol 2016; 10: 24-33.
[http://dx.doi.org/10.1016/j.redox.2016.09.001 ] [PMID: 27687218]
[21]
Lizard G, Monier S, Cordelet C, et al. Characterization and comparison of the mode of cell death, apoptosis versus necrosis, induced by 7beta-hydroxycholesterol and 7-ketocholesterol in the cells of the vascular wall. Arterioscler Thromb Vasc Biol 1999; 19(5): 1190-200.
[http://dx.doi.org/10.1161/01.ATV.19.5.1190 ] [PMID: 10323769]
[22]
Ragot K, Mackrill JJ, Zarrouk A, et al. Absence of correlation between oxysterol accumulation in lipid raft microdomains, calcium increase, and apoptosis induction on 158N murine oligodendrocytes. Biochem Pharmacol 2013; 86(1): 67-79.
[http://dx.doi.org/10.1016/j.bcp.2013.02.028 ] [PMID: 23473804]
[23]
Nury T, Samadi M, Zarrouk A, Riedinger JM, Lizard G. Improved synthesis and in vitro evaluation of the cytotoxic profile of oxysterols oxidized at C4 (4α- and 4β-hydroxycholesterol) and C7 (7-ketocholesterol, 7α- and 7β-hydroxycholesterol) on cells of the central nervous system. Eur J Med Chem 2013; 70: 558-67.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.028 ] [PMID: 24211631]
[24]
Gargiulo S, Testa G, Gamba P, Staurenghi E, Poli G, Leonarduzzi G. Oxysterols and 4-hydroxy-2-nonenal contribute to atherosclerotic plaque destabilization. Free Radic Biol Med 2017; 111: 140-50.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.12.037 ] [PMID: 28057601]
[25]
Poli G, Biasi F, Leonarduzzi G. Oxysterols in the pathogenesis of major chronic diseases. Redox Biol 2013; 1: 125-30.
[http://dx.doi.org/10.1016/j.redox.2012.12.001 ] [PMID: 24024145]
[26]
Vaya J, Schipper HM. Oxysterols, cholesterol homeostasis, and Alzheimer disease. J Neurochem 2007; 102(6): 1727-37.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04689.x ] [PMID: 17573819]
[27]
Iuliano L, Monticolo R, Straface G, et al. Vitamin E and enzymatic/oxidative stress-driven oxysterols in amnestic mild cognitive impairment subtypes and Alzheimer’s disease. J Alzheimers Dis 2010; 21(4): 1383-92.
[http://dx.doi.org/10.3233/JAD-2010-100780 ] [PMID: 21504117]
[28]
Shafaati M, Marutle A, Pettersson H, et al. Marked accumulation of 27-hydroxycholesterol in the brains of Alzheimer’s patients with the Swedish APP 670/671 mutation. J Lipid Res 2011; 52(5): 1004-10.
[http://dx.doi.org/10.1194/jlr.M014548 ] [PMID: 21335619]
[29]
Yoshioka T, Kawada K, Shimada T, Mori M. Lipid peroxidation in maternal and cord blood and protective mechanism against activated-oxygen toxicity in the blood. Am J Obstet Gynecol 1979; 135(3): 372-6.
[http://dx.doi.org/10.1016/0002-9378(79)90708-7 ] [PMID: 484629]
[30]
Esterbauer H, Striegl G, Puhl H, Rotheneder M. Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic Res Commun 1989; 6(1): 67-75.
[http://dx.doi.org/10.3109/10715768909073429 ] [PMID: 2722022]
[31]
Starke PE, Oliver CN, Stadtman ER. Modification of hepatic proteins in rats exposed to high oxygen concentration. FASEB J 1987; 1(1): 36-9.
[http://dx.doi.org/10.1096/fasebj.1.1.2886388 ] [PMID: 2886388]
[32]
Clairbone A. Catalase activity. CRC Handbook of Methods for Oxygen Radical Research Robert A G Ed. CRC Press: Boca Raton1985; pp. 283-4.
[33]
Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem 1971; 44(1): 276-87.
[http://dx.doi.org/10.1016/0003-2697(71)90370-8 ] [PMID: 4943714]
[34]
Flohé L, Günzler WA. Assays of glutathione peroxidase. Methods Enzymol 1984; 105: 114-21.
[http://dx.doi.org/10.1016/S0076-6879(84)05015-1 ] [PMID: 6727659]
[35]
Davies MH, Birt DF, Schnell RC. Direct enzymatic assay for reduced and oxidized glutathione. J Pharmacol Methods 1984; 12(3): 191-4.
[http://dx.doi.org/10.1016/0160-5402(84)90059-7 ] [PMID: 6536823]
[36]
Torres LL, Quaglio NB, de Souza GT, et al. Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 2011; 26(1): 59-68.
[http://dx.doi.org/10.3233/JAD-2011-110284 ] [PMID: 21593563]
[37]
Solfrizzi V, D’Introno A, Colacicco AM, et al. Circulating biomarkers of cognitive decline and dementia. Clin Chim Acta 2006; 364(1-2): 91-112.
[http://dx.doi.org/10.1016/j.cca.2005.06.015 ] [PMID: 16139826]
[38]
Smith MA, Taneda S, Richey PL, et al. Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc Natl Acad Sci USA 1994; 91(12): 5710-4.
[http://dx.doi.org/10.1073/pnas.91.12.5710 ] [PMID: 8202552]
[39]
Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 2005; 15(4): 316-28.
[http://dx.doi.org/10.1016/j.numecd.2005.05.003 ] [PMID: 16054557]
[40]
Panza F, D’Introno A, Colacicco AM, et al. Lipid metabolism in cognitive decline and dementia. Brain Res Brain Res Rev 2006; 51(2): 275-92.
[http://dx.doi.org/10.1016/j.brainresrev.2005.11.007 ] [PMID: 16410024]
[41]
Solomon A, Kivipelto M, Wolozin B, Zhou J, Whitmer RA. Midlife serum cholesterol and increased risk of Alzheimer’s and vascular dementia three decades later. Dement Geriatr Cogn Disord 2009; 28(1): 75-80.
[http://dx.doi.org/10.1159/000231980 ] [PMID: 19648749]
[42]
Poirier J. Apolipoprotein E in animal models of CNS injury and in Alzheimer’s disease. Trends Neurosci 1994; 17(12): 525-30.
[http://dx.doi.org/10.1016/0166-2236(94)90156-2 ] [PMID: 7532337]
[43]
Holtzman DM, Bales KR, Tenkova T, et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 2000; 97(6): 2892-7.
[http://dx.doi.org/10.1073/pnas.050004797 ] [PMID: 10694577]
[44]
Nelson TJ, Alkon DL. Oxidation of cholesterol by amyloid precursor protein and beta-amyloid peptide. J Biol Chem 2005; 280(8): 7377-87.
[http://dx.doi.org/10.1074/jbc.M409071200 ] [PMID: 15591071]
[45]
Baierle M, Nascimento SN, Moro AM, et al. Relationship between inflammation and oxidative stress and cognitive decline in the institutionalized elderly. Oxid Med Cell Longev 2015; 2015804198
[http://dx.doi.org/10.1155/2015/804198 ] [PMID: 25874023]
[46]
Gil P, Fariñas F, Casado A, López-Fernández E. Malondialdehyde: A possible marker of ageing. Gerontology 2002; 48: 209-14.
[47]
Casado A, Encarnación López-Fernández M, Concepción Casado M, de La Torre R. Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem Res 2008; 33(3): 450-8.
[http://dx.doi.org/10.1007/s11064-007-9453-3 ] [PMID: 17721818]
[48]
François M, Leifert W, Hecker J, et al. Altered cytological parameters in buccal cells from individuals with mild cognitive impairment and Alzheimer’s disease. Cytometry A 2014; 85(8): 698-708.
[http://dx.doi.org/10.1002/cyto.a.22453 ] [PMID: 24616437]
[49]
Aldred S, Bennett S, Mecocci P. Increased low-density lipoprotein oxidation, but not total plasma protein oxidation, in Alzheimer’s disease. Clin Biochem 2010; 43(3): 267-71.
[http://dx.doi.org/10.1016/j.clinbiochem.2009.08.021 ] [PMID: 19733555]
[50]
Bermejo P, Martín-Aragón S, Benedí J, et al. Peripheral levels of glutathione and protein oxidation as markers in the development of Alzheimer’s disease from Mild Cognitive Impairment. Free Radic Res 2008; 42(2): 162-70.
[http://dx.doi.org/10.1080/10715760701861373 ] [PMID: 18297609]
[51]
de la Torre MR, Casado A, López-Fernández ME, et al. Human aging brain disorders: Role of antioxidant enzymes. Neurochem Res 1996; 21(8): 885-8.
[http://dx.doi.org/10.1007/BF02532336 ] [PMID: 8895840]
[52]
Annerén G, Gardner A, Lundin T. Increased glutathione peroxidase activity in erythrocytes in patients with Alzheimer’s disease/senile dementia of Alzheimer’s type. Acta Neurol Scand 1986; 73(6): 586-9.
[http://dx.doi.org/10.1111/j.1600-0404.1986.tb04604.x ] [PMID: 3751499]
[53]
Subash S, Essa MM, Al-Asmi A, et al. Pomegranate from oman alleviates the brain oxidative damage in transgenic mouse model of Alzheimer’s disease. J Tradit Complement Med 2014; 4(4): 232-8.
[http://dx.doi.org/10.4103/2225-4110.139107 ] [PMID: 25379464]
[54]
Ishrat T, Hoda MN, Khan MB, et al. Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer’s type (SDAT). Eur Neuropsychopharmacol 2009; 19(9): 636-47.
[http://dx.doi.org/10.1016/j.euroneuro.2009.02.002 ] [PMID: 19329286]
[55]
Mantzavinos V, Alexiou A. Biomarkers for Alzheimer’s disease diagnosis. Curr Alzheimer Res 2017; 14(11): 1149-54.
[http://dx.doi.org/10.2174/1567205014666170203125942 ] [PMID: 28164766]
[56]
Meister A, Anderson ME. Glutathione. Annu Rev Biochem 1983; 52: 711-60.
[http://dx.doi.org/10.1146/annurev.bi.52.070183.003431 ] [PMID: 6137189]
[57]
Perrin R, Briançon S, Jeandel C, et al. Blood activity of Cu/Zn superoxide dismutase, glutathione peroxidase and catalase in Alzheimer’s disease: A case-control study. Gerontology 1990; 36(5-6): 306-13.
[http://dx.doi.org/10.1159/000213215 ] [PMID: 2076828]
[58]
Trompier D, Vejux A, Zarrouk A, et al. Brain peroxisomes. Biochimie 2014; 98: 102-10.
[http://dx.doi.org/10.1016/j.biochi.2013.09.009]
[59]
Yoshida Y, Yoshikawa A, Kinumi T, et al. Hydroxyoctadecadienoic acid and oxidatively modified peroxiredoxins in the blood of Alzheimer’s disease patients and their potential as biomarkers. Neurobiol Aging 2009; 30(2): 174-85.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.06.012 ] [PMID: 17688973]
[60]
Lütjohann D, Papassotiropoulos A, Björkhem I, et al. Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. J Lipid Res 2000; 41(2): 195-8.
[PMID: 10681402]
[61]
Jessica L. Fleming, Christopher J. Phiel, Amanda Ewart Toland. The role for oxidative Stress in aberrant DNA methylation in Alzheimer’s disease. Curr Alzheimer Res 2012; 9: 1077-96.
[http://dx.doi.org/10.2174/156720512803569000]
[62]
Stevenson A, Lopez D, Khoo P, Kalaria RN, Mukaetova-Ladinska EB, Ladinska M. Exploring erythrocytes as blood biomarkers for alzheimer’s disease. J Alzheimers Dis 2017; 60(3): 845-57.
[http://dx.doi.org/10.3233/JAD-170363 ] [PMID: 28984593]
[63]
Solomon A, Leoni V, Kivipelto M, et al. Plasma levels of 24S-hydroxycholesterol reflect brain volumes in patients without objective cognitive impairment but not in those with Alzheimer’s disease. Neurosci Lett 2009; 462(1): 89-93.
[http://dx.doi.org/10.1016/j.neulet.2009.06.073 ] [PMID: 19560513]
[64]
Kölsch H, Heun R, Jessen F, et al. Alterations of cholesterol precursor levels in Alzheimer’s disease. Biochim Biophys Acta 2010; 1801(8): 945-50.
[http://dx.doi.org/10.1016/j.bbalip.2010.03.001 ] [PMID: 20226877]
[65]
Andreyev AY, Fahy E, Guan Z, et al. Subcellular organelle lipidomics in TLR-4-activated macrophages. J Lipid Res 2010; 51(9): 2785-97.
[http://dx.doi.org/10.1194/jlr.M008748 ] [PMID: 20574076]
[66]
Lim L, Jackson-Lewis V, Wong LC, et al. Lanosterol induces mitochondrial uncoupling and protects dopaminergic neurons from cell death in a model for Parkinson’s disease. Cell Death Differ 2012; 19(3): 416-27.
[http://dx.doi.org/10.1038/cdd.2011.105 ] [PMID: 21818119]
[67]
Upadhyay A, Amanullah A, Mishra R, Kumar A, Mishra A. Lanosterol suppresses the aggregation and cytotoxicity of misfolded proteins linked with neurodegenerative diseases. Mol Neurobiol 2018; 55(2): 1169-82.
[http://dx.doi.org/10.1007/s12035-016-0377-2 ] [PMID: 28102469]
[68]
Heverin M, Bogdanovic N, Lütjohann D, et al. Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer’s disease. J Lipid Res 2004; 45(1): 186-93.
[http://dx.doi.org/10.1194/jlr.M300320-JLR200 ] [PMID: 14523054]
[69]
Leoni V, Caccia C. Relationship between cholesterol metabolism ApoE and brain volumes in Alzheimer’s disease. Future Neurol 2011; 6: 613-26.
[http://dx.doi.org/10.2217/fnl.11.38]
[70]
Schultz BG, Patten DK, Berlau DJ. The role of statins in both cognitive impairment and protection against dementia: A tale of two mechanisms. Transl Neurodegener 2018; 7: 5.
[http://dx.doi.org/10.1186/s40035-018-0110-3 ] [PMID: 29507718]
[71]
Wang J. Megha, London E. Relationship between sterol/steroid structure and participation in ordered lipid domains (lipid rafts): Implications for lipid raft structure and function. Biochemistry 2004; 43(4): 1010-8.
[http://dx.doi.org/10.1021/bi035696y ] [PMID: 14744146]
[72]
Kim DH, Frangos JA. Effects of amyloid beta-peptides on the lysis tension of lipid bilayer vesicles containing oxysterols. Biophys J 2008; 95(2): 620-8.
[http://dx.doi.org/10.1529/biophysj.107.114983 ] [PMID: 18390616]
[73]
Ragot K, Delmas D, Athias A, Nury T, Baarine M, Lizard G. α-Tocopherol impairs 7-ketocholesterol-induced caspase-3-dependent apoptosis involving GSK-3 activation and Mcl-1 degradation on 158N murine oligodendrocytes. Chem Phys Lipids 2011; 164(6): 469-78.
[http://dx.doi.org/10.1016/j.chemphyslip.2011.04.014 ] [PMID: 21575614]
[74]
Gregorio-King CC, Gough T, Van Der Meer GJ, et al. Mechanisms of resistance to the cytotoxic effects of oxysterols in human leukemic cells. J Steroid Biochem Mol Biol 2004; 88(3): 311-20.
[http://dx.doi.org/10.1016/j.jsbmb.2003.12.007 ] [PMID: 15120425]
[75]
Ryan L, O’Callaghan YC, O’Brien NM. Involvement of calcium in 7beta -hydroxycholesterol and cholesterol-5beta, 6beta -epoxide-induced apoptosis. Int J Toxicol 2006; 25(1): 35-9.
[http://dx.doi.org/10.1080/10915810500488387 ] [PMID: 16510355]
[76]
Li W, Johnson H, Yuan X-M, Jonasson L. 7beta-hydroxycholesterol induces natural killer cell death via oxidative lysosomal destabilization. Free Radic Res 2009; 43(11): 1072-9.
[http://dx.doi.org/10.1080/10715760903176919 ] [PMID: 19707922]
[77]
Clarion L, Schindler M, de Weille J, et al. 7β-Hydroxycholesterol-induced energy stress leads to sequential opposing signaling responses and to death of C6 glioblastoma cells. Biochem Pharmacol 2012; 83(1): 37-46.
[http://dx.doi.org/10.1016/j.bcp.2011.09.022 ] [PMID: 21983033]
[78]
Debbabi M, Nury T, Zarrouk A, et al. Protective effects of α-tocopherol, γ-Ttocopherol and oleic acid, three compounds of olive oils, and no effect of trolox, on 7-ketocholesterol-induced mitochondrial and peroxisomal dysfunction in microglial BV-2 Cells. Int J Mol Sci 2016; 17(12): 1973.
[http://dx.doi.org/10.3390/ijms17121973 ] [PMID: 27897980]
[79]
Sottero B, Gamba P, Gargiulo S, Leonarduzzi G, Poli G. Cholesterol oxidation products and disease: An emerging topic of interest in medicinal chemistry. Curr Med Chem 2009; 16(6): 685-705.
[http://dx.doi.org/10.2174/092986709787458353 ] [PMID: 19199932]
[80]
Noguchi N, Urano Y, Takabe W, Saito Y. New aspects of 24(S)-hydroxycholesterol in modulating neuronal cell death. Free Radic Biol Med 2015; 87: 366-72.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.06.036 ] [PMID: 26164631]
[81]
Leoni V, Caccia C. 24S-hydroxycholesterol in plasma: A marker of cholesterol turnover in neurodegenerative diseases. Biochimie 2013; 95(3): 595-612.
[http://dx.doi.org/10.1016/j.biochi.2012.09.025 ] [PMID: 23041502]
[82]
Prasanthi JR, Huls A, Thomasson S, Thompson A, Schommer E, Ghribi O. Differential effects of 24-hydroxycholesterol and 27-hydroxycholesterol on beta-amyloid precursor protein levels and processing in human neuroblastoma SH-SY5Y cells. Mol Neurodegener 2009; 4: 1.
[http://dx.doi.org/10.1186/1750-1326-4-1 ] [PMID: 19126211]
[83]
Merino-Serrais P, Loera-Valencia R, Rodriguez-Rodriguez P, et al. 27-hydroxycholesterol induces aberrant morphology and synaptic dysfunction in hippocampal neurons. Cereb Cortex 2019; 29(1): 429-46.
[http://dx.doi.org/10.1093/cercor/bhy274 ] [PMID: 30395175]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy