Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Pitting Corrosion of Biomedical Titanium and Titanium Alloys: A Brief Review

Author(s): Yu-Wei Cui, Liang-Yu Chen* and Xin-Xin Liu

Volume 17, Issue 2, 2021

Published on: 25 November, 2020

Page: [241 - 256] Pages: 16

DOI: 10.2174/1573413716999201125221211

Price: $65

Abstract

Thanks to their excellent corrosion resistance, superior mechanical properties and good biocompatibility, titanium (Ti) and Ti alloys are extensively applied in biomedical fields. Pitting corrosion is a critical consideration for the reliability of Ti and Ti alloys used in the human body. Therefore, this article focuses on the pitting corrosion of Ti and Ti alloys, which introduces the growth stages of pitting corrosion and its main influencing factors. Three stages, i.e. (1) breakdown of passive film, (2) metastable pitting, and (3) propagation of pitting, are roughly divided to introduce the pitting corrosion. As reviewed, corrosive environment, applied potential, temperature and alloy compositions are the main factors affecting the pitting corrosion of Ti and Ti alloys. Moreover, the pitting corrosion of different types Ti alloys are also reviewed to correlate the types of Ti alloys and the main factors of pitting corrosion. Roughly speaking, β-type Ti alloys have the best pitting corrosion resistance among the three types of Ti alloys.

Keywords: Pitting corrosion, titanium alloys, passive film, metastable pitting, pitting nucleation, β-type Ti alloys.

Graphical Abstract

[1]
Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants- a review. Prog. Mater. Sci., 2009, 54, 397-425.
[http://dx.doi.org/10.1016/j.pmatsci.2008.06.004]
[2]
Chai, L.; Chen, K.; Zhi, Y.; Murty, K.L.; Chen, L.Y.; Yang, Z. Nanotwins induced by pulsed laser and their hardening effect in a Zr alloy. J. Alloys Compd., 2018, 748, 163-170.
[http://dx.doi.org/10.1016/j.jallcom.2018.03.126]
[3]
Zhang, L.C.; Klemm, D.; Eckert, J.; Hao, Y.L.; Sercombe, T.B. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy. Scr. Mater., 2011, 65, 21-24.
[http://dx.doi.org/10.1016/j.scriptamat.2011.03.024]
[4]
Yu, P.; Zhang, L.C.; Zhang, W.Y.; Das, J.; Kim, K.B.; Eckert, J. Interfacial reaction during the fabrication of Ni60Nb40 metallic glass particles-reinforced Al based MMCs. Mater. Sci. Eng. A, 2007, 444, 206-213.
[http://dx.doi.org/10.1016/j.msea.2006.08.077]
[5]
Liu, Y.; Li, S.; Hou, W.; Wang, S.; Hao, Y.; Yang, R.; Sercombe, T.B.; Zhang, L.C. Electron Beam Melted Beta-type Ti-24Nb-4Zr-8Sn Porous Structures With High Strength-to-Modulus Ratio. J. Mater. Sci. Technol., 2016, 32, 505-508.
[http://dx.doi.org/10.1016/j.jmst.2016.03.020]
[6]
Zhang, L.C.; Xu, J. Glass-forming ability of melt-spun multicomponent (Ti, Zr, Hf)–(Cu, Ni, Co)–Al alloys with equiatomic substitution. J. Non-Cryst. Solids, 2004, 347, 166-172.
[http://dx.doi.org/10.1016/j.jnoncrysol.2004.09.007]
[7]
Yang, H-Y.; Wang, Z.; Shu, S-L.; Lu, J-B. Effect of Ta addition on the microstructures and mechanical properties of in situ bi-phase (TiB2-TiCxNy)/(Ni-Ta) cermets. Ceram. Int., 2019, 45, 4408-4417.
[http://dx.doi.org/10.1016/j.ceramint.2018.11.118]
[8]
Zhang, L.C.; Shen, Z.Q.; Xu, J. Glass formation in a (Ti, Zr, Hf)–(Cu, Ni, Ag)–Al high-order alloy system by mechanical alloying. J. Mater. Res., 2003, 18, 2141-2149.
[http://dx.doi.org/10.1557/JMR.2003.0300]
[9]
Calin, M.; Zhang, L.C.; Eckert, J. Tailoring of microstructure and mechanical properties of a Ti-based bulk metallic glass-forming alloy. Scr. Mater., 2007, 57, 1101-1104.
[http://dx.doi.org/10.1016/j.scriptamat.2007.08.018]
[10]
Zhang, L-C.; Kim, K.B.; Yu, P.; Zhang, W.Y.; Kunz, U.; Eckert, J. Amorphization in mechanically alloyed (Ti, Zr, Nb)-(Cu, Ni)-Al equiatomic alloys. J. Alloys Compd., 2007, 428, 157-163.
[http://dx.doi.org/10.1016/j.jallcom.2006.03.092]
[11]
Zhang, L.C.; Shen, Z.Q.; Xu, J. Mechanically milling-induced amorphization in Sn-containing Ti-based multicomponent alloy systems. Mater. Sci. Eng. A, 2005, 394, 204-209.
[http://dx.doi.org/10.1016/j.msea.2004.11.051]
[12]
Zhang, L.C.; Xu, J.; Ma, E. Mechanically Alloyed Amorphous Ti50(Cu0.45Ni0.55)44–xAlxSi4B2 Alloys with Supercooled Liquid Region. J. Mater. Res., 2002, 17, 1743-1749.
[http://dx.doi.org/10.1557/JMR.2002.0258]
[13]
Zhang, L-C.; Xu, J.; Eckert, J. Thermal stability and crystallization kinetics of mechanically alloyed TiC/Ti-based metallic glass matrix composite. J. Appl. Phys., 2006, 100, 033514.
[http://dx.doi.org/10.1063/1.2234535]
[14]
Milosev, I. Metallic materials for biomedical application: Labratory and clinical studies. Pure Appl. Chem., 2011, 83, 309-324.
[http://dx.doi.org/10.1351/PAC-CON-10-07-09]
[15]
Zhang, L.C.; Xu, J.; Ma, E. Consolidation and properties of ball-milled Ti50Cu18Ni22Al4Sn6 glassy alloy by equal channel angular extrusion. Mater. Sci. Eng. A, 2006, 434, 280-288.
[http://dx.doi.org/10.1016/j.msea.2006.06.085]
[16]
Yang, C.; Kang, L.M.; Li, X.X.; Zhang, W.W.; Zhang, D.T.; Fu, Z.Q.; Li, Y.Y.; Zhang, L.C.; Lavernia, E.J. Bimodal titanium alloys with ultrafine lamellar eutectic structure fabricated by semi-solid sintering. Acta Mater., 2017, 132, 491-502.
[http://dx.doi.org/10.1016/j.actamat.2017.04.062]
[17]
Zhang, L.C.; Attar, H. Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review. Adv. Eng. Mater., 2016, 18, 463-475.
[http://dx.doi.org/10.1002/adem.201500419]
[18]
Li, Y.; Yang, C.; Zhao, H.; Qu, S.; Li, X.; Li, Y. New developments of Ti-based alloys for biomedical applications. Materials (Basel), 2014, 7(3), 1709-1800.
[http://dx.doi.org/10.3390/ma7031709] [PMID: 28788539]
[19]
Liu, L.H.; Yang, C.; Wang, F.; Qu, S.G.; Li, X.Q.; Zhang, W.W.; Li, Y.Y.; Zhang, L.C. Ultrafine grained Ti-based composites with ultrahigh strength and ductility achieved by equiaxing microstructure. Mater. Des., 2015, 79, 1-5.
[http://dx.doi.org/10.1016/j.matdes.2015.04.032]
[20]
Zhang, L.C.; Lu, H.B.; Mickel, C.; Eckert, J. Ductile ultrafine-grained Ti-based alloys with high yield strength. Appl. Phys. Lett., 2007, 91, 051906.
[http://dx.doi.org/10.1063/1.2766861]
[21]
Liu, Y.J.; Li, S.J.; Zhang, L.C.; Hao, Y.L.; Sercombe, T.B. Early plastic deformation behaviour and energy absorption in porous β-type biomedical titanium produced by selective laser melting. Scr. Mater., 2018, 153, 99-103.
[http://dx.doi.org/10.1016/j.scriptamat.2018.05.010]
[22]
Zhao, S.; Li, S.J.; Wang, S.G.; Hou, W.T.; Li, Y.; Zhang, L.C.; Hao, Y.L.; Yang, R.; Misra, R.D.K.K.; Murr, L.E. Compressive and fatigue behavior of functionally graded Ti-6Al-4V meshes fabricated by electron beam melting. Acta Mater., 2018, 150, 1-15.
[http://dx.doi.org/10.1016/j.actamat.2018.02.060]
[23]
Ma, T.F.; Zhou, X.; Du, Y.; Li, L.; Zhang, L.C.; Zhang, Y.S.; Zhang, P.X. High temperature deformation and microstructural evolution of core-shell structured titanium alloy. J. Alloys Compd., 2019, 775, 316-321.
[http://dx.doi.org/10.1016/j.jallcom.2018.10.101]
[24]
Abdel-Hady Gepreel, M.; Niinomi, M. Biocompatibility of Ti-alloys for long-term implantation. J. Mech. Behav. Biomed. Mater., 2013, 20, 407-415.
[http://dx.doi.org/10.1016/j.jmbbm.2012.11.014] [PMID: 23507261]
[25]
Rabadia, C.D.; Liu, Y.J.; Wang, L.; Sun, H.; Zhang, L.C. Laves phase precipitation in Ti-Zr-Fe-Cr alloys with high strength and large plasticity. Mater. Des., 2018, 154, 228-238.
[http://dx.doi.org/10.1016/j.matdes.2018.05.035]
[26]
Carman, A.; Zhang, L.C.; Ivasishin, O.M.; Savvakin, D.G.; Matviychuk, M.V.; Pereloma, E.V. Role of alloying elements in microstructure evolution and alloying elements behaviour during sintering of a near-β titanium alloy. Mater. Sci. Eng. A, 2011, 528, 1686-1693.
[http://dx.doi.org/10.1016/j.msea.2010.11.004]
[27]
Lu, H.Z.; Yang, C.; Luo, X.; Ma, H.W.; Song, B.; Li, Y.Y.; Zhang, L.C. Ultrahigh-performance TiNi shape memory alloy by 4D printing. Mater. Sci. Eng. A, 2019, 763, 138166.
[http://dx.doi.org/10.1016/j.msea.2019.138166]
[28]
Liu, S.; Wang, J.L.L.; Ma, R.L.W.; Zhong, Y.; Lu, W.; Zhang, L.C. Superelastic behavior of in-situ eutectic-reaction manufactured high strength 3D porous NiTi-Nb scaffold. Scr. Mater., 2020, 181, 121-126.
[http://dx.doi.org/10.1016/j.scriptamat.2020.02.025]
[29]
Rabadia, C.D.; Liu, Y.J.; Zhao, C.H.; Wang, J.C.; Jawed, S.F.; Wang, L.Q.; Chen, L.Y.; Sun, H.; Zhang, L.C. Improved trade-off between strength and plasticity in titanium based metastable beta type Ti-Zr-Fe-Sn alloys. Mater. Sci. Eng. A, 2019, 766, 138340.
[http://dx.doi.org/10.1016/j.msea.2019.138340]
[30]
Wang, L.; Wang, C.; Zhang, L-C.; Chen, L.; Lu, W.; Zhang, D. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires. Sci. Rep., 2016, 6, 23905.
[http://dx.doi.org/10.1038/srep23905] [PMID: 27049025]
[31]
Zhang, Y.S.; Hu, J.J.; Zhang, W.; Yu, S.; Yu, Z.T.; Zhao, Y.Q.; Zhang, L.C. Discontinuous core-shell structured Ti-25Nb-3Mo-3Zr-2Sn alloy with high strength and good plasticity. Mater. Charact., 2019, 147, 127-130.
[http://dx.doi.org/10.1016/j.matchar.2018.10.021]
[32]
Chen, Y.; Zhang, J.; Dai, N.; Qin, P.; Attar, H.; Zhang, L-C. Corrosion behaviour of selective laser melted Ti-TiB biocomposite in simulated body fluid. Electrochim. Acta, 2017, 232, 89-97.
[http://dx.doi.org/10.1016/j.electacta.2017.02.112]
[33]
Challis, V.J.; Roberts, A.P.; Grotowski, J.F.; Zhang, L.C.; Sercombe, T.B. Prototypes for bone implant scaffolds designed via topology optimization and manufactured by solid freeform fabrication. Adv. Eng. Mater., 2010, 12(11), 1106-1110.
[http://dx.doi.org/10.1002/adem.201000154]
[34]
Attar, H.; Prashanth, K.G.; Zhang, L.C.; Calin, M.; Okulov, I.V.; Scudino, S.; Yang, C.; Eckert, J.r. Effect of powder particle shape on the properties of in situ Ti-TiB composite materials produced by selective laser melting. J. Mater. Sci. Technol., 2015, 31, 1001-1005.
[http://dx.doi.org/10.1016/j.jmst.2015.08.007]
[35]
Liu, Y.J.; Liu, Z.; Jiang, Y.; Wang, G.W.; Yang, Y.; Zhang, L.C. Gradient in microstructure and mechanical property of selective laser melted AlSi10Mg. J. Alloys Compd., 2018, 735, 1414-1421.
[http://dx.doi.org/10.1016/j.jallcom.2017.11.020]
[36]
Attar, H.; Löber, L.; Funk, A.; Calin, M.; Zhang, L.C.; Prashanth, K.G.; Scudino, S.; Zhang, Y.S.; Eckert, J. Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting. Mater. Sci. Eng. A, 2015, 625, 350-356.
[http://dx.doi.org/10.1016/j.msea.2014.12.036]
[37]
Li, X.X.; Yang, C.; Chen, T.; Zhang, L.C.; Hayat, M.D.; Cao, P. Influence of powder shape on atomic diffusivity and resultant densification mechanisms during spark plasma sintering. J. Alloys Compd., 2019, 802, 600-608.
[http://dx.doi.org/10.1016/j.jallcom.2019.06.176]
[38]
Menzies, K.L.; Jones, L. The impact of contact angle on the biocompatibility of biomaterials. Optom. Vis. Sci., 2010, 87(6), 387-399.
[http://dx.doi.org/10.1097/OPX.0b013e3181da863e] [PMID: 20375749]
[39]
Kuroda, D.; Niinomi, M.; Morinaga, M.; Kato, Y.; Yashiro, T. Design and mechanical properties of new β type titanium alloys for implant materials. Mater. Sci. Eng. A, 1998, 243, 244-249.
[http://dx.doi.org/10.1016/S0921-5093(97)00808-3]]
[40]
Yang, H-Y.; Wang, Z.; Yue, X.; Ji, P-J.; Shu, S-L. Simultaneously improved strength and toughness of in situ bi-phased TiB2-Ti(C,N)-Ni cermets by Mo addition. J. Alloys Compd., 2019, 820, 153068.
[http://dx.doi.org/10.1016/j.ceramint.2018.11.118]]
[41]
Li, Q.; Qiu, F.; Dong, B-X.; Gao, X.; Shu, S-L.; Yang, H-Y.; Jiang, Q-C. Processing, multiscale microstructure refinement and mechanical property enhancement of hypoeutectic Al–Si alloys via in situ bimodal-sized TiB2 particles. Mater. Sci. Eng. A, 2020, 777(10), 139081.
[http://dx.doi.org/10.1016/j.msea.2020.139081]
[42]
Niinomi, M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J. Mech. Behav. Biomed. Mater., 2008, 1(1), 30-42.
[http://dx.doi.org/10.1016/j.jmbbm.2007.07.001] [PMID: 19627769]
[43]
Yang, Y.; Zhan, J.B.; Sun, Z.Z.; Wang, H.L.; Lin, J.X.; Liu, Y.J.; Zhang, L.C. Evolution of functional properties realized by increasing laser scanning speed for the selective laser melting fabricated NiTi alloy. J. Alloys Compd., 2019, 804, 220-229.
[http://dx.doi.org/10.1016/j.jallcom.2019.06.340]
[44]
Culleton, P.; Prendergast, P.J.; Taylor, D. Fatigue failure in the cement mantle of an artificial hip joint. Clin. Mater., 1993, 12(2), 95-102.
[http://dx.doi.org/10.1016/0267-6605(93)90056-D] [PMID: 10148336]
[45]
Wang, J.F. Modelling Young’s modulus for porous bones with microstructural variation and anisotropy. J. Mater. Sci. Mater. Med., 2010, 21(2), 463-472.
[http://dx.doi.org/10.1007/s10856-009-3919-6] [PMID: 19882305]
[46]
Sumner, D.R.; Turner, T.M.; Igloria, R.; Urban, R.M.; Galante, J.O. Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. J. Biomech., 1998, 31(10), 909-917.
[http://dx.doi.org/10.1016/S0021-9290(98)00096-7] [PMID: 9840756]
[47]
Zhang, L.C.; Chen, L.Y. A Review on Biomedical Titanium Alloys: Recent Progress and Prospect. Adv. Eng. Mater., 2019, 21(4), 1801215.
[http://dx.doi.org/10.1002/adem.201801215]
[48]
Ren, D.; Zhang, H.; Liu, Y.; Li, S.; Jin, W.; Yang, R.; Zhang, L. Microstructure and properties of equiatomic Ti–Ni alloy fabricated by selective laser melting. Mater. Sci. Eng. A, 2020, 771, 138586.
[http://dx.doi.org/10.1016/j.msea.2019.138586]
[49]
Niinomi, M.; Nakai, M.; Hieda, J. Development of new metallic alloys for biomedical applications. Acta Biomater., 2012, 8(11), 3888-3903.
[http://dx.doi.org/10.1016/j.actbio.2012.06.037] [PMID: 22765961]
[50]
Bauer, S.; Schmuki, P.; von der Mark, K.; Park, J. Engineering biocompatible implant surfaces. Prog. Mater. Sci., 2013, 58(3), 261-326.
[http://dx.doi.org/10.1016/j.pmatsci.2012.09.001]
[51]
Ziemniak, S.; Hanson, M. Corrosion behavior of 304 stainless steel in high temperature, hydrogenated water. Corros. Sci., 2002, 44(10), 2209-2230.
[http://dx.doi.org/10.1016/S0010-938X(02)00004-5]
[52]
Niinomi, M. Recent metallic materials for biomedical applications. Metall. Mater. Trans., A Phys. Metall. Mater. Sci., 2002, 33, 477-486.
[http://dx.doi.org/10.1007/s11661-002-0109-2]
[53]
Wang, L.; Xie, L.; Zhang, L-C.; Chen, L.; Ding, Z.; Lv, Y.; Zhang, W.; Lu, W.; Zhang, D. Microstructure evolution and superelasticity of layer-like NiTiNb porous metal prepared by eutectic reaction. Acta Mater., 2018, 143, 214-226.
[http://dx.doi.org/10.1016/j.actamat.2017.10.021]
[54]
Liu, Y.; Ren, D.; Li, S.; Wang, H.; Zhang, L.; Sercombe, T. Enhanced fatigue characteristics of a topology-optimized porous titanium structure produced by selective laser melting. Addit. Manuf., 2020, 32, 101060.
[http://dx.doi.org/10.1016/j.addma.2020.101060]
[55]
Qin, P.; Chen, Y.; Liu, Y-J.; Zhang, J.; Chen, L-Y.; Li, Y.; Zhang, X.; Cao, C.; Sun, H.; Zhang, L-C. Resemblance in corrosion behavior of selective laser melted and traditional monolithic β Ti-24Nb-4Zr-8Sn alloy. ACS Biomater. Sci. Eng., 2019, 5, 1141-1149.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01341]
[56]
Wang, L.; Qu, J.; Chen, L.; Meng, Q.; Zhang, L.C.; Qin, J.; Zhang, D.; Lu, W. Investigation of deformation mechanisms in β-Type Ti-35Nb-2Ta-3Zr alloy via FSP leading to surface strengthening. Metall. Mater. Trans., A Phys. Metall. Mater. Sci., 2015, 46, 4813-4818.
[http://dx.doi.org/10.1007/s11661-015-3089-8]
[57]
Hafeez, N.; Liu, J.; Wang, L.; Wei, D.; Tang, Y.; Lu, W.; Zhang, L-C. Superelastic response of low-modulus porous beta-type Ti-35Nb-2Ta-3Zr alloy fabricated by laser powder bed fusion Addit. Manuf, 2020, 34, 101264.
[58]
Rabadia, C.; Liu, Y.; Jawed, S.; Wang, L.; Sun, H.; Zhang, L. Deformation and toughness behavior of beta-type titanium alloys comprising C15 type Laves phase. Mater. Today Sustain., 2020, 9, 100034.
[http://dx.doi.org/10.1016/j.mtsust.2020.100034]
[59]
Gonza’lez, J.E.G.; Mirza-Rosca, J.C. Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. J. Electroanal. Chem. (Lausanne Switz.), 1999, 471, 109-115.
[http://dx.doi.org/10.1016/S0022-0728(99)00260-0]
[60]
Chen, L.; Zeng, Q.; Li, J.; Lu, J.; Zhang, Y.; Zhang, L-C.; Qin, X.; Lu, W.; Zhang, L.; Wang, L.; Zhang, D. Effect of microstructure on corrosion behavior of a Zr-Sn-Nb-Fe-Cu-O alloy. Mater. Des., 2016, 92, 888-896.
[http://dx.doi.org/10.1016/j.matdes.2015.12.067]
[61]
Chen, L.; Li, J.; Zhang, Y.; Zhang, L.C.; Lu, W.; Wang, L.; Zhang, L.; Zhang, D. Zr-Sn-Nb-Fe-Si-O alloy for fuel cladding candidate: Processing, microstructure, corrosion resistance and tensile behavior. Corros. Sci., 2015, 100, 332-340.
[http://dx.doi.org/10.1016/j.corsci.2015.08.005]
[62]
Chen, L.Y.; Shen, P.; Zhang, L.; Lu, S.; Chai, L.; Yang, Z.; Zhang, L.C. Corrosion behavior of non-equilibrium Zr-Sn-Nb-Fe-Cu-O alloys in high-temperature 0.01 M LiOH aqueous solution and degradation of the surface oxide films. Corros. Sci., 2018, 136, 221-230.
[http://dx.doi.org/10.1016/j.corsci.2018.03.012]
[63]
Tan, H.; Hu, T.; Wang, Y.; Zhang, F.; Qiu, Y.; Liu, T.; Fan, W.; Zhang, L-C. Solidification effect on the microstructure and mechanism of laser solid forming produced flame-resistant Ti-35V-15Cr alloy. Adv. Eng. Mater., 2020, 22, 20200102.
[http://dx.doi.org/10.1002/adem.202000102]
[64]
Xiang, K.; Chen, L-Y.; Chai, L.; Guo, N.; Wang, H. Microstructural characteristics and properties of CoCrFeNiNbx high-entropy alloy coatings on pure titanium substrate by pulsed laser cladding. Appl. Surf. Sci., 2020, 517, 146214.
[http://dx.doi.org/10.1016/j.apsusc.2020.146214]
[65]
Niinomi, M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A, 1998, 243, 231-236.
[http://dx.doi.org/10.1016/S0921-5093(97)00806-X]
[66]
Macdonald, D.D. Passivity–the key to our metals-based civilization. Pure Appl. Chem., 1999, 71, 951-978.
[http://dx.doi.org/10.1351/pac199971060951]
[67]
Jiang, Z.; Dai, X.; Norby, T.; Middleton, H. Investigation of pitting resistance of titanium based on a modified point defect model. Corros. Sci., 2011, 53(2), 815-821.
[http://dx.doi.org/10.1016/j.corsci.2010.11.015]
[68]
Frankel, G.S. Pitting corrosion of metals a review of the critical factors. J. Electrochem. Soc., 1998, 145(6), 2186-2198.
[http://dx.doi.org/10.1149/1.1838615]
[69]
Zhang, L-C.; Chen, L-Y.; Wang, L. Surface modification of titanium and titanium alloys: technologies, developments and future interests. Adv. Eng. Mater., 2020, 22, 1901258.
[http://dx.doi.org/10.1002/adem.201901258]
[70]
Liu, Y.J.; Zhang, Y.S.; Zhang, L.C. Transformation-induced plasticity and high strength in beta titanium alloy manufactured by selective laser melting. Materialia, 2019, 6, 100299.
[http://dx.doi.org/10.1016/j.mtla.2019.100299]
[71]
Zhang, Y.; Kent, D.; Wang, G.; St John, D.; Dargusch, M. An investigation of the mechanical behaviour of fine tubes fabricated from a Ti–25Nb–3Mo–3Zr–2Sn alloy. Mater. Des., 2015, 85, 256-265.
[http://dx.doi.org/10.1016/j.matdes.2015.06.127]
[72]
Jirarungsatian, C.; Prateepasen, A. Pitting and uniform corrosion source recognition using acoustic emission parameters. Corros. Sci., 2010, 52(1), 187-197.
[http://dx.doi.org/10.1016/j.corsci.2009.09.001]
[73]
Dai, N.; Wu, J.; Zhang, L-C.; Yin, L.; Yang, Y.; Jiang, Y.; Li, J. Pitting and etching behaviors occurring in duplex stainless steel 2205 in the presence of alternating voltage interference. Constr. Build. Mater., 2019, 202, 877-890.
[http://dx.doi.org/10.1016/j.conbuildmat.2019.01.084]
[74]
Dai, N.; Wu, J.; Zhang, L.C.; Sun, Y.; Liu, Y.; Yang, Y.; Jiang, Y.; Li, J. Alternating voltage induced oscillation on electrochemical behavior and pitting corrosion in duplex stainless steel 2205. Mater. Corros., 2019, 70(3), 419-433.
[http://dx.doi.org/10.1002/maco.201810438]
[75]
Dai, N.; Wan, Y.; Liu, Y.; Sun, Y.; Zhang, L.C.; Jiang, Y.; Li, J. Studies on pitting corrosion in austenitic stainless steel interfered by square-wave alternating voltage with different parameters using multi-potential steps method. Mater. Corros., 2018, 69(12), 1741-1757.
[http://dx.doi.org/10.1002/maco.201810199]
[76]
Burstein, G.T.; Liu, C. Nucleation of corrosion pits in Ringer’s solution containing bovine serum. Corros. Sci., 2007, 49(11), 4296-4306.
[http://dx.doi.org/10.1016/j.corsci.2007.05.018]
[77]
Szklarska-Smialowska, Z. Mechanism of pit nucleation by electrical breakdown of the passive film. Corros. Sci., 2002, 44, 1143-1149.
[http://dx.doi.org/10.1016/S0010-938X(01)00113-5]
[78]
Stehblow, H-H. Nucleation and repassivation of corrosion pits for pitting on iron and nickel. Mater. Corros., 1976, 27, 792.
[http://dx.doi.org/10.1002/maco.19760271106]
[79]
Hoar, T.P.; Mears, D.C.; Rothwell, G.P. The relationships between anodic passivity, brightening and pitting. Corros. Sci., 1965, 5, 279-289.
[http://dx.doi.org/10.1016/S0010-938X(65)90614-1]
[80]
Zhang, B.; Wang, J.; Wu, B.; Guo, X.W.; Wang, Y.J.; Chen, D.; Zhang, Y.C.; Du, K.; Oguzie, E.E.; Ma, X.L. Unmasking chloride attack on the passive film of metals. Nat. Commun., 2018, 9(1), 2559.
[http://dx.doi.org/10.1038/s41467-018-04942-x] [PMID: 29967353]
[81]
Soltis, J. Passivity breakdown, pit initiation and propagation of pits in metallic materials- Review. Corros. Sci., 2015, 90, 5-22.
[http://dx.doi.org/10.1016/j.corsci.2014.10.006]
[82]
Sato, N. A theory for breakdown of anodic oxide films on metals. Electrochim. Acta, 1971, 16, 1683-1692.
[http://dx.doi.org/10.1016/0013-4686(71)85079-X]
[83]
Hoar, T.P.; Jacob, W.R. Breakdown of passivity of stainless steel by halide ions. Nature, 1967, 216, 1299-1301.
[http://dx.doi.org/10.1038/2161299a0]
[84]
Jiang, Z.; Norby, T.; Middleton, H. Evaluation of metastable pitting on titanium by charge integration of current transients. Corros. Sci., 2010, 52(10), 3158-3161.
[http://dx.doi.org/10.1016/j.corsci.2010.03.012]
[85]
Burstein, G.T.; Liu, C.; Souto, R.M. The effect of temperature on the nucleation of corrosion pits on titanium in Ringer’s physiological solution. Biomaterials, 2005, 26(3), 245-256.
[http://dx.doi.org/10.1016/j.biomaterials.2004.02.023] [PMID: 15262467]
[86]
Tian, W.; Du, N.; Li, S.; Chen, S.; Wu, Q. Metastable pitting corrosion of 304 stainless steel in 3.5% NaCl solution. Corros. Sci., 2014, 85, 372-379.
[http://dx.doi.org/10.1016/j.corsci.2014.04.033]
[87]
Virtanen, S.; Curty, C. Metastable and stable pitting corrosion of titanium in halide solutions. Corrosion, 2004, 60(7), 643-649.
[http://dx.doi.org/10.5006/1.3287839]
[88]
Lu, H.; Zhang, L.; Gebert, A.; Schultz, L. Pitting corrosion of Cu–Zr metallic glasses in hydrochloric acid solutions. J. Alloys Compd., 2008, 462(1-2), 60-67.
[http://dx.doi.org/10.1016/j.jallcom.2007.08.023]
[89]
Seo, D-I.; Lee, J-B. Corrosion characteristics of additive-manufactured Ti-6Al-4V using microdroplet cell and critical pitting temperature techniques. J. Electrochem. Soc., 2019, 166(13), C428-C433.
[http://dx.doi.org/10.1149/2.0571913jes]
[90]
Laycock, N.J.; White, S.P. Computer Simulation of Single Pit Propagation. J. Electrochem. Soc., 2001, 148, B264-B275.
[http://dx.doi.org/10.1149/1.1376119]
[91]
Jia, Z.; Lyu, F.; Zhang, L.; Zeng, S.; Liang, S.; Li, Y.; Lu, J. Pt nanoparticles decorated heterostructured gC3N4/Bi2MoO6 microplates with highly enhanced photocatalytic activities under visible light. Sci. Rep., 2019, 9(1), 7636.
[http://dx.doi.org/10.1038/s41598-019-42973-6] [PMID: 30626917]
[92]
Liang, S-X.; Zhang, W.; Wang, W.; Jia, G.; Yang, W.; Zhang, L-C. Surface reactivation of FeNiPC metallic glass: A strategy for highly enhanced catalytic behavior. J. Phys. Chem. Solids, 2019, 132, 89-98.
[http://dx.doi.org/10.1016/j.jpcs.2019.04.022]
[93]
Chen, Y.; Zhang, J.; Gu, X.; Dai, N.; Qin, P.; Zhang, L.C. Distinction of corrosion resistance of selective laser melted Al-12Si alloy on different planes. J. Alloys Compd., 2018, 747, 648-658.
[http://dx.doi.org/10.1016/j.jallcom.2018.03.062]
[94]
Qin, P.; Liu, Y.; Sercombe, T.B.; Li, Y.; Zhang, C.; Cao, C.; Sun, H.; Zhang, L-C. Improved corrosion resistance on selective laser melting produced Ti-5Cu alloy after heat treatment. ACS Biomater. Sci. Eng., 2018, 4, 2633-2642.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00319]
[95]
Guan, L.; Li, Y.; Wang, G.; Zhang, Y.; Zhang, L.C. pH dependent passivation behavior of niobium in acid fluoride-containing solutions. Electrochim. Acta, 2018, 285, 172-184.
[http://dx.doi.org/10.1016/j.electacta.2018.07.221]
[96]
Vermilye, D.A. Concerning the critical pitting potential. J. Electrochem. Soc., 1971, 118, 529-531.
[http://dx.doi.org/10.1149/1.2408104]
[97]
Laycock, N.; Moayed, M.H.; Newman, R. Metastable pitting and the critical pitting temperature. J. Electrochem. Soc., 1998, 145(8), 2622.
[http://dx.doi.org/10.1149/1.1838691]
[98]
Man, H.C.; Gabe, D.R. The study of pitting potentials for some austenitic stainless steels using a potentiodynamic technique. Corros. Sci., 1981, 21, 713-721.
[http://dx.doi.org/10.1016/0010-938X(81)90018-4]
[99]
Boucherit, M.N.; Amzert, S.A.; Arbaoui, F.; Hanini, S.; Hammache, A. Pitting corrosion in presence of inhibitors and oxidants. Anti-Corros. Methods Mater., 2008, 55(3), 115-122.
[http://dx.doi.org/10.1108/00035590810870419]
[100]
Beck, T.R. Pitting of titanium I. Titaniuma foil experiments. J. Electrochem. Soc., 1973, 120, 1310-1316.
[http://dx.doi.org/10.1149/1.2403253]
[101]
Beck, T.R. Pitting of titanium II. One-dimensional pit experiments. J. Electrochem. Soc., 1973, 120, 1317-1324.
[http://dx.doi.org/10.1149/1.2403254]
[102]
Basame, S.B.; White, H.S. The relationship between pitting potential and competitive anion adsorption. J. Electrochem. Soc., 2000, 147, 1376-1381.
[http://dx.doi.org/10.1149/1.1393364]
[103]
Fekry, A. The influence of chloride and sulphate ions on the corrosion behavior of Ti and Ti-6Al-4V alloy in oxalic acid. Electrochim. Acta, 2009, 54(12), 3480-3489.
[http://dx.doi.org/10.1016/j.electacta.2008.12.060]
[104]
Atapour, M.; Fathi, M.; Shamanian, M. Corrosion behavior of Ti–6Al–4V alloy weldment in hydrochloric acid. Mater. Corros., 2012, 63(2), 134-139.
[http://dx.doi.org/10.1002/maco.201005821]
[105]
Liu, J.; Alfantazi, A.; Asselin, E. Effects of Temperature and sulfate on the pitting corrosion of titanium in high-temperature chloride solutions. J. Electrochem. Soc., 2015, 162(4), C189-C196.
[http://dx.doi.org/10.1149/2.0541504jes]
[106]
Chen, L.; Li, J.; Zhang, Y.; Zhang, L.C.; Lu, W.; Zhang, L.; Wang, L.; Zhang, D. Effects of alloyed Si on the autoclave corrosion performance and periodic corrosion kinetics in Zr-Sn-Nb-Fe-O alloys. Corros. Sci., 2015, 100, 651-662.
[http://dx.doi.org/10.1016/j.corsci.2015.08.043]
[107]
Sang, P.; Chen, L-Y.; Zhao, C.; Wang, Z-X.; Wang, H.; Lu, S.; Song, D.; Xu, J-H.; Zhang, L-C. Particle size-dependent microstructure, hardness and electrochemical corrosion behavior of atmospheric plasma sprayed NiCrBSi coatings. Metals (Basel), 2019, 9(12), 1342.
[http://dx.doi.org/10.3390/met9121342]
[108]
Fornell, J.; Pellicer, E.; Van Steenberge, N.; González, S.; Gebert, A.; Suriñach, S.; Baró, M.D.; Sort, J. Improved plasticity and corrosion behavior in Ti–Zr–Cu–Pd metallic glass with minor additions of Nb: An alloy composition intended for biomedical applications. Mater. Sci. Eng. A, 2013, 559, 159-164.
[http://dx.doi.org/10.1016/j.msea.2012.08.058]
[109]
Geetha, M.; Kamachi Mudali, U.; Gogia, A.K.; Asokamani, R.; Raj, B. Influence of microstructure and alloying elements on corrosion behavior of Ti–13Nb–13Zr alloy. Corros. Sci., 2004, 46(4), 877-892.
[http://dx.doi.org/10.1016/S0010-938X(03)00186-0]
[110]
Wang, J.; Liang, S.; Jia, Z.; Zhang, W.; Wang, W.; Liu, Y.; Lu, J.; Zhang, L. Chemically dealloyed Fe-based metallic glass with void channels-like architecture for highly enhanced peroxymonosulfate activation in catalysis. J. Alloys Compd., 2019, 785, 642-650.
[http://dx.doi.org/10.1016/j.jallcom.2019.01.130]
[111]
Oliveira, N.T.C.; Ferreira, E.A.; Duarte, L.T.; Biaggio, S.R.; Rocha-Filho, R.C.; Bocchi, N. Corrosion resistance of anodic oxides on the Ti–50Zr and Ti–13Nb–13Zr alloys. Electrochim. Acta, 2006, 51(10), 2068-2075.
[http://dx.doi.org/10.1016/j.electacta.2005.07.015]
[112]
Glass, R.S.; Hong, Y.K. Transpassive behaviour of titanium molybdenum alloys in 1 M H2SO4. Electrochim. Acta, 1984, 29, 1465-1470.
[http://dx.doi.org/10.1016/0013-4686(84)87029-2]
[113]
Barão, V.A.; Mathew, M.T.; Assunção, W.G.; Yuan, J.C.; Wimmer, M.A.; Sukotjo, C. Stability of cp-Ti and Ti-6Al-4V alloy for dental implants as a function of saliva pH - an electrochemical study. Clin. Oral Implants Res., 2012, 23(9), 1055-1062.
[http://dx.doi.org/10.1111/j.1600-0501.2011.02265.x] [PMID: 22092540]
[114]
Zhong, Y.; Yang, Q.; Li, X.; Yao, F.; Xie, L.; Zhao, J.; Chen, F.; Xie, T.; Zeng, G. Electrochemically induced pitting corrosion of Ti anode: Application to the indirect reduction of bromate. Chem. Eng. J., 2016, 289, 114-122.
[http://dx.doi.org/10.1016/j.cej.2015.12.091]
[115]
Sueptitz, R.; Das, J.; Baunack, S.; Gebert, A.; Schultz, L.; Eckert, J. Corrosion and pitting behaviour of ultrafine eutectic Ti–Fe–Sn alloys. J. Alloys Compd., 2010, 503(1), 19-24.
[http://dx.doi.org/10.1016/j.jallcom.2010.05.052]
[116]
Virtanen, S.; Curty, C. Metastable and stable pitting corrosion of titanium in halide solutions. Corrosion, 2003, 60, 643-649.
[http://dx.doi.org/10.5006/1.3287839]
[117]
Souza, M.E.; Lima, L.; Lima, C.R.; Zavaglia, C.A.; Freire, C.M. Effects of pH on the electrochemical behaviour of titanium alloys for implant applications. J. Mater. Sci. Mater. Med., 2009, 20(2), 549-552.
[http://dx.doi.org/10.1007/s10856-008-3623-y] [PMID: 18987951]
[118]
Renvert, S.; Roos-Jansåker, A.M.; Lindahl, C.; Renvert, H.; Rutger Persson, G. Infection at titanium implants with or without a clinical diagnosis of inflammation. Clin. Oral Implants Res., 2007, 18(4), 509-516.
[http://dx.doi.org/10.1111/j.1600-0501.2007.01378.x] [PMID: 17517058]
[119]
Zhang, L-C.; Liu, Y.; Li, S.; Hao, Y. Additive manufacturing of titanium alloys by electron beam melting: A review. Adv. Eng. Mater., 2018, 20, 1700842.
[http://dx.doi.org/10.1002/adem.201700842]
[120]
Chen, P.; Liao, W.B.; Liu, L.H.; Luo, F.; Wu, X.Y.; Li, P.J.; Yang, C.; Yan, M.; Liu, Y.; Zhang, L.C.; Liu, Z.Y. Ultrafast consolidation of bulk nanocrystalline titanium alloy through ultrasonic vibration. Sci. Rep., 2018, 8(1), 801.
[http://dx.doi.org/10.1038/s41598-018-19190-8] [PMID: 29335515]
[121]
Wen, Y.; Xie, L.; Wang, Z.; Wang, L.; Lu, W.; Zhang, L-C. Nanoindentation characterization on local plastic response of Ti-6Al-4V under high-load spherical indentation. J. Mater. Res. Tech., 2019, 8(4), 3434-3442.
[http://dx.doi.org/10.1016/j.jmrt.2019.06.009]
[122]
Zhang, Y.S.; Zhang, W.; Huo, W.T.; Hu, J.J.; Zhang, L.C. Microstructure, mechanical and wear properties of core–shell structural particle reinforced Ti-O alloys. Vacuum, 2017, 139, 44-50.
[http://dx.doi.org/10.1016/j.vacuum.2017.02.006]
[123]
Zhang, Y.S.; Wang, X.; Zhang, W.; Huo, W.T.; Hu, J.J.; Zhang, L.C. Elevated tensile properties of Ti-O alloy with a novel core-shell structure. Mater. Sci. Eng. A, 2017, 696, 360-365.
[http://dx.doi.org/10.1016/j.msea.2017.04.088]
[124]
Wei, Q.; Wang, L.; Fu, Y.; Qin, J.; Lu, W.; Zhang, D. Influence of oxygen content on microstructure and mechanical properties of Ti–Nb–Ta–Zr alloy. Mater. Des., 2011, 32(5), 2934-2939.
[http://dx.doi.org/10.1016/j.matdes.2010.11.049]
[125]
Qin, X.; Guo, X.; Lu, J.; Chen, L.; Qin, J.; Lu, W. Erosion-wear and intergranular corrosion resistance properties of AISI 304L austenitic stainless steel after low-temperature plasma nitriding. J. Alloys Compd., 2017, 698, 1094-1101.
[http://dx.doi.org/10.1016/j.jallcom.2016.12.164]
[126]
Chen, L.Y.; Xu, T.; Lu, S.; Wang, Z.X.; Chen, S.; Zhang, L.C. Improved hardness and wear resistance of plasma sprayed nanostructured NiCrBSi coating via short-time heat treatment. Surf. Coat. Tech., 2018, 350, 436-444.
[http://dx.doi.org/10.1016/j.surfcoat.2018.07.037]
[127]
Chen, L.; Li, J.; Zhang, Y.; Lu, W.; Zhang, L.C.; Wang, L.; Zhang, D. Effect of low-temperature pre-deformation on precipitation behavior and microstructure of a Zr-Sn-Nb-Fe-Cu-O alloy during fabrication. J. Nucl. Sci. Technol., 2016, 53, 496-507.
[http://dx.doi.org/10.1080/00223131.2015.1059776]
[128]
Yang, Z.N.; Wang, X.B.; Liu, F.; Zhang, F.C.; Chai, L.J.; Qiu, R.S.; Chen, L.Y. Effect of intercritical annealing temperature on microstructure and mechanical properties of duplex Zr-2.5Nb alloy. J. Alloys Compd., 2019, 776, 242-249.
[http://dx.doi.org/10.1016/j.jallcom.2018.10.320]
[129]
Zhang, M.; Li, Y.N.; Zhang, F.C.; Wang, X.B.; Chen, L.Y.; Yang, Z.N. Effect of annealing treatment on the microstructure and mechanical properties of a duplex Zr-2.5 Nb alloy. Mater. Sci. Eng. A, 2017, 706, 236-241.
[http://dx.doi.org/10.1016/j.msea.2017.08.107]
[130]
Chen, L.Y.; Sang, P.; Zhang, L.; Song, D.; Chu, Y.Q.; Chai, L.; Zhang, L.C. Homogenization and growth behavior of second-phase particles in a deformed Zr-Sn-Nb-Fe-Cu-Si-O alloy. Metals (Basel), 2018, 8, 759.
[http://dx.doi.org/10.3390/met8100759]
[131]
Zhang, L.; Chen, L-Y.; Zhao, C.; Liu, Y.; Zhang, L-C. Calculation of oxygen diffusion coefficients in oxide films formed on low-temperature annealed Zr alloys and their related corrosion behavior. Metals, 2019, 9, 850.
[http://dx.doi.org/10.3390/met9080850]
[132]
Zhang, Y-M.; Chen, L-Y.; Lu, S.; Zhao, C.; Wang, Y-H. Refined microstructure and enhanced hardness in friction stir-welded AZ31 magnesium alloy induced by heat pipe with different cooling liquid. Metals, 2019, 9(11), 1227.
[http://dx.doi.org/10.3390/met9111227]
[133]
Guo, X.; Qian, C.; Wan, X.; Zhang, W.; Zhu, H.; Zhang, J.; Yang, H.; Lin, S.; Kong, Q.; Fan, T. Facile in situ fabrication of biomorphic Co2P-Co3O4/rGO/C as an efficient electrocatalyst for the oxygen reduction reaction. Nanoscale, 2020, 12(7), 4374-4382.
[http://dx.doi.org/10.1039/C9NR10785A] [PMID: 32049080]
[134]
Neville, A.; Xu, J. An assessment of the instability of Ti and its alloys in acidic environments at elevated temperature. J. Light Met., 2001, 1(2), 119-126.
[http://dx.doi.org/10.1016/S1471-5317(01)00005-0]
[135]
Casillas, N.; Charlebois, S.; Smyrl, W.H.; White, H.S. Pitting corrosion of titanium. J. Electrochem. Soc., 1994, 141(3), 636-642.
[http://dx.doi.org/10.1149/1.2054783]
[136]
Cheng, Y.; Hu, J.; Zhang, C.; Wang, Z.; Hao, Y.; Gao, B. Corrosion behavior of novel Ti-24Nb-4Zr-7.9Sn alloy for dental implant applications in vitro. J. Biomed. Mater. Res. B Appl. Biomater., 2013, 101(2), 287-294.
[http://dx.doi.org/10.1002/jbm.b.32838] [PMID: 23166067]
[137]
Albayrak, Ç.; Alsaran, A. Corrosion behaviour after anodising of pre-nitrided CP-Ti. Corros. Eng. Sci. Technol., 2013, 46(7), 807-811.
[http://dx.doi.org/10.1179/147842211X13094269889371]
[138]
Mccracken, G.M.; Maple, J.H.C. The trapping of hydrogen ions in molybdenum, titanium, tantalum and zirconium. Br. J. Appl. Phys., 1967, 18, 919-930.
[http://dx.doi.org/10.1088/0508-3443/18/7/306]
[139]
Bai, Y.; Gai, X.; Li, S.; Zhang, L-C.; Liu, Y.; Hao, Y.; Zhang, X.; Yang, R.; Gao, Y. Improved corrosion behaviour of electron beam melted Ti-6Al–4V alloy in phosphate buffered saline. Corros. Sci., 2017, 123, 289-296.
[http://dx.doi.org/10.1016/j.corsci.2017.05.003]
[140]
Yang, C.; Zhu, M.D.; Luo, X.; Liu, L.H.; Zhang, W.W.; Long, Y.; Xiao, Z.Y.; Fu, Z.Q.; Zhang, L.C.; Lavernia, E.J. Influence of powder properties on densification mechanism during spark plasma sintering. Scr. Mater., 2017, 139, 96-99.
[http://dx.doi.org/10.1016/j.scriptamat.2017.06.034]
[141]
Ding, Z.; Zhang, C.; Xie, L.; Zhang, L-C.; Wang, L.; Lu, W. Effects of friction stir processing on the phase transformation and microstructure of TiO2-compounded Ti-6Al-4V alloy. Metall. Mater. Trans., A Phys. Metall. Mater. Sci., 2016, 47, 5675-5679.
[http://dx.doi.org/10.1007/s11661-016-3809-8]
[142]
Yuan, W.; Hou, W.; Li, S.; Hao, Y.; Yang, R.; Zhang, L-C.; Zhu, Y. Heat treatment enhancing the compressive fatigue properties of open-cellular Ti-6Al-4V alloy prototypes fabricated by electron beam melting. J. Mater. Sci. Technol., 2018, 34, 1127-1131.
[http://dx.doi.org/10.1016/j.jmst.2017.12.003]
[143]
Zhang, C.; Ding, Z.; Xie, L.; Zhang, L.C.; Wu, L.; Fu, Y.; Wang, L.; Lu, W. Electrochemical and in vitro behavior of the nanosized composites of Ti-6Al-4V and TiO2 fabricated by friction stir process. Appl. Surf. Sci., 2017, 423, 331-339.
[http://dx.doi.org/10.1016/j.apsusc.2017.06.141]
[144]
Zhou, X.; Ma, T.; Zhang, L.; Zhang, Y.; Zhang, P. Mechanical property and microstructure evolution of nitrogen-modified Ti-6Al-4V alloy with core-shell structure by hot compression. Mater. Charact., 2018, 142, 270-275.
[http://dx.doi.org/10.1016/j.matchar.2018.05.051]
[145]
Liang, S-X.; Wang, X.; Zhang, W.; Liu, Y-J.; Wang, W.; Zhang, L-C. Selective laser melting manufactured porous Fe-based metallic glass matrix composite with remarkable catalytic activity and reusability. Appl. Mater. Today, 2020, 19, 100543.
[http://dx.doi.org/10.1016/j.apmt.2019.100543]
[146]
Xie, L.; Liu, C.; Song, Y.; Guo, H.; Wang, Z.; Hua, L.; Wang, L.; Zhang, L-C. Evaluation of microstructure variation of TC11 alloy after electroshocking treatment. J. Mater. Res. Tech, 2020, 9(2), 2455-2466.
[147]
Dai, N.; Zhang, L-C.; Zhang, J.; Zhang, X.; Ni, Q.; Chen, Y.; Wu, M.; Yang, C. Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes. Corros. Sci., 2016, 111, 703-710.
[http://dx.doi.org/10.1016/j.corsci.2016.06.009]
[148]
Dai, N.; Zhang, J.; Chen, Y.; Zhang, L-C. Heat treatment degrading the corrosion resistance of selective laser melted Ti-6Al-4V alloy. J. Electrochem. Soc., 2017, 164, C428-C434.
[http://dx.doi.org/10.1149/2.1481707jes]
[149]
Zhang, L.C.; Jia, Z.; Lyu, F.; Liang, S.X.; Lu, J. A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects. Prog. Mater. Sci., 2019, 105, 100576.
[http://dx.doi.org/10.1016/j.pmatsci.2019.100576]
[150]
Xie, L.; Wang, L.; Wang, K.; Yin, G.; Fu, Y.; Zhang, D.; Lu, W.; Hua, L.; Zhang, L-C. TEM characterization on microstructure of Ti–6Al–4V/Ag nanocomposite formed by friction stir processing. Materialia, 2018, 3, 139-144.
[http://dx.doi.org/10.1016/j.mtla.2018.08.007]
[151]
Zhang, Y.S.; Hu, J.J.; Zhao, Y.Q.; Bai, X.F.; Huo, W.T.; Zhang, W.; Zhang, L.C. Microstructure and mechanical properties of a high-oxygen core-shell network structured Ti6Al4V alloy. Vacuum, 2018, 149, 140-145.
[http://dx.doi.org/10.1016/j.vacuum.2017.12.036]
[152]
Choubey, A.; Balasubramaniam, R.; Basu, B. Effect of replacement of V by Nb and Fe on the electrochemical and corrosion behavior of Ti–6Al–4V in simulated physiological environment. J. Alloys Compd., 2004, 381, 288-294.
[http://dx.doi.org/10.1016/j.jallcom.2004.03.096]
[153]
Barranco, V.; Onofre, E.; Escudero, M.L.; García-Alonso, M.C. Characterization of roughness and pitting corrosion of surfaces modified by blasting and thermal oxidation. Surf. Coat. Tech., 2010, 204(23), 3783-3793.
[http://dx.doi.org/10.1016/j.surfcoat.2010.04.051]
[154]
López, M.F.; Jiménez, J.A.; Gutiérrez, A. Corrosion study of surface-modified vanadium-free titanium alloys. Electrochim. Acta, 2003, 48(10), 1395-1401.
[http://dx.doi.org/10.1016/S0013-4686(03)00006-9]
[155]
López, M.F.; Gutiérrez, A.; Jiménez, J.A. In vitro corrosion behaviour of titanium alloys without vanadium. Electrochim. Acta, 2002, 47, 1359-1364.
[http://dx.doi.org/10.1016/S0013-4686(01)00860-X]
[156]
Simsek, I.; Ozyurek, D. Investigation of the wear and corrosion behaviors of Ti5Al2.5Fe and Ti6Al4V alloys produced by mechanical alloying method in simulated body fluid environment. Mater. Sci. Eng. C, 2019, 94, 357-363.
[http://dx.doi.org/10.1016/j.msec.2018.09.047] [PMID: 30423718]
[157]
Tamilselvi, S.; Raman, V.; Rajendran, N. Corrosion behaviour of Ti–6Al–7Nb and Ti–6Al–4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy. Electrochim. Acta, 2006, 52(3), 839-846.
[http://dx.doi.org/10.1016/j.electacta.2006.06.018]
[158]
Chen, J-R.; Tsai, W-T. In situ corrosion monitoring of Ti–6Al–4V alloy in H2SO4/HCl mixed solution using electrochemical AFM. Electrochim. Acta, 2011, 56(4), 1746-1751.
[http://dx.doi.org/10.1016/j.electacta.2010.10.024]
[159]
Codaro, E.N.; Nakazato, R.Z.; Horovistiz, A.L.; Ribeiro, L.M.F.; Ribeiro, R.B.; Hein, L.R.O. An image analysis study of pit formation on Ti–6Al–4V. Mater. Sci. Eng. A, 2003, 341(1-2), 202-210.
[http://dx.doi.org/10.1016/S0921-5093(02)00218-6]
[160]
Sherif, E-S.; El Danaf, E.; Abdo, H.; Zein El Abedin, S.; Al-Khazraji, H. Effect of annealing temperature on the corrosion protection of hot swaged Ti-54M alloy in 2 M HCl pickling solutions. Metals, 2017, 7(1)
[http://dx.doi.org/10.3390/met7010029]
[161]
Wang, L.; Xie, L.; Lv, Y.; Zhang, L-C.; Chen, L.; Meng, Q.; Qu, J.; Zhang, D.; Lu, W. Microstructure evolution and superelastic behavior in Ti-35Nb-2Ta-3Zr alloy processed by friction stir processing. Acta Mater., 2017, 131, 499-510.
[http://dx.doi.org/10.1016/j.actamat.2017.03.079]
[162]
Rabadia, C.D.; Liu, Y.J.; Chen, L.Y.; Jawed, S.F.; Wang, L.Q.; Sun, H.; Zhang, L.C. Deformation and strength characteristics of Laves phases in titanium alloys. Mater. Des., 2019, 179, 107891.
[http://dx.doi.org/10.1016/j.matdes.2019.107891]
[163]
Chai, L.; Xia, J.; Zhi, Y.; Gou, Y.; Chen, L.; Yang, Z.; Guo, N. Deformation mode-determined misorientation and microstructural characteristics in rolled pure Zr sheet. Sci. China Technol. Sci., 2018, 61, 1346-1352.
[http://dx.doi.org/10.1007/s11431-018-9292-1]
[164]
Liu, Y.J.; Wang, H.L.; Li, S.J.; Wang, S.G.; Wang, W.J.; Hou, W.T.; Hao, Y.L.; Yang, R.; Zhang, L.C. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting. Acta Mater., 2017, 126, 58-66.
[http://dx.doi.org/10.1016/j.actamat.2016.12.052]
[165]
Liu, Y.J.; Li, S.J.; Wang, H.L.; Hou, W.T.; Hao, Y.L.; Yang, R.; Sercombe, T.B.; Zhang, L.C. Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Mater., 2016, 113, 56-67.
[http://dx.doi.org/10.1016/j.actamat.2016.04.029]
[166]
Ehtemam-Haghighi, S.; Liu, Y.; Cao, G.; Zhang, L.C. Phase transition, microstructural evolution and mechanical properties of Ti-Nb-Fe alloys induced by Fe addition. Mater. Des., 2016, 97, 279-286.
[http://dx.doi.org/10.1016/j.matdes.2016.02.094]
[167]
Haghighi, S.E.; Lu, H.B.; Jian, G.Y.; Cao, G.H.; Habibi, D.; Zhang, L.C. Effect of α ″martensite on the microstructure and mechanical properties of beta-type Ti–Fe–Ta alloys. Mater. Des., 2015, 76, 47-54.
[http://dx.doi.org/10.1016/j.matdes.2015.03.028]
[168]
Ehtemam-Haghighi, S.; Prashanth, K.G.; Attar, H.; Chaubey, A.K.; Cao, G.H.; Zhang, L.C. Evaluation of mechanical and wear properties of Ti-xNb-7Fe alloys designed for biomedical applications. Mater. Des., 2016, 111, 592-599.
[http://dx.doi.org/10.1016/j.matdes.2016.09.029]
[169]
Liu, Y.J.; Li, X.P.; Zhang, L.C.; Sercombe, T.B. Processing and properties of topologically optimised biomedical Ti-24Nb-4Zr-8Sn scaffolds manufactured by selective laser melting. Mater. Sci. Eng. A, 2015, 642, 268-278.
[http://dx.doi.org/10.1016/j.msea.2015.06.088]
[170]
Zhang, L.C.; Das, J.; Lu, H.B.; Duhamel, C.; Calin, M.; Eckert, J. High strength Ti-Fe-Sn ultrafine composites with large plasticity. Scr. Mater., 2007, 57, 101-104.
[http://dx.doi.org/10.1016/j.scriptamat.2007.03.031]
[171]
Liang, S.X.; Jia, Z.; Liu, Y.J.; Zhang, W.; Wang, W.; Lu, J.; Zhang, L.C. Compelling rejuvenated catalytic performance in metallic glasses. Adv. Mater., 2018, 30(45), e1802764.
[http://dx.doi.org/10.1002/adma.201802764] [PMID: 30277608]
[172]
Hafeez, N.; Liu, S.; Lu, E.; Wang, L.; Liu, R. lu, W.; Zhang, L. C., Mechanical behavior and phase transformation of β-type Ti-35Nb-2Ta-3Zr alloy fabricated by 3D-Printing. J. Alloys Compd., 2019, 790, 117-126.
[http://dx.doi.org/10.1016/j.jallcom.2019.03.138]
[173]
Chai, L.J.; Wang, S.Y.; Wu, H.; Guo, N.; Pan, H.C.; Chen, L.Y.; Murty, K.L.; Song, B. α→β Transformation characteristics revealed by pulsed laser-induced non-equilibrium microstructures in duplex-phase Zr alloy. Sci. China Technol. Sci., 2017, 60, 1255-1262.
[http://dx.doi.org/10.1007/s11431-016-9038-y]
[174]
Chen, K.; Zeng, L.; Li, Z.; Chai, L.; Wang, Y.; Chen, L-Y.; Yu, H. Effects of laser surface alloying with Cr on microstructure and hardness of commercial purity Zr. J. Alloys Compd., 2019, 784, 1106-1112.
[http://dx.doi.org/10.1016/j.jallcom.2019.01.097]
[175]
Chai, L.; Wang, T.; Ren, Y.; Song, B.; Guo, N.; Chen, L. Microstructural and textural differences induced by water and furnace cooling in commercially pure Zr annealed in the α + β region. Met. Mater. Int., 2018, 24, 673-680.
[http://dx.doi.org/10.1007/s12540-018-0079-6]
[176]
Ehtemam-Haghighi, S.; Liu, Y.; Cao, G.; Zhang, L-C. Influence of Nb on the β→α″ martensitic phase transformation and properties of the newly designed Ti-Fe-Nb alloys. Mater. Sci. Eng. C, 2016, 60, 503-510.
[http://dx.doi.org/10.1016/j.msec.2015.11.072] [PMID: 26706557]
[177]
Rabadia, C.D.; Liu, Y.J.; Jawed, S.F.; Wang, L.; Li, Y.H.; Zhang, X.H.; Sercombe, T.B.; Sun, H.; Zhang, L.C. Improved deformation behavior in Ti-Zr-Fe-Mn alloys comprising the C14 type Laves and β phases. Mater. Des., 2018, 160, 1059-1070.
[http://dx.doi.org/10.1016/j.matdes.2018.10.049]
[178]
Ran, R.; Liu, Y.; Wang, L.; Lu, E.; Xie, L.; Lu, W.; Wang, K.; Zhang, L-C. α ″Martensite and amorphous phase transformation mechanism in TiNbTaZr alloy incorporated with TiO2 particles during friction stir processing. Metall. Mater. Trans., A Phys. Metall. Mater. Sci., 2018, 49(6), 1986-1991.
[http://dx.doi.org/10.1007/s11661-018-4577-4]
[179]
Raghunathan, S.L.; Stapleton, A.M.; Dashwood, R.J.; Jackson, M.; Dye, D. Micromechanics of Ti–10V–2Fe–3Al: In situ synchrotron characterisation and modelling. Acta Mater., 2007, 55(20), 6861-6872.
[http://dx.doi.org/10.1016/j.actamat.2007.08.049]
[180]
Kumar, S.; Sankara Narayanan, T.S.N. Electrochemical characterization of β-Ti alloy in Ringer’s solution for implant application. J. Alloys Compd., 2009, 479(1-2), 699-703.
[http://dx.doi.org/10.1016/j.jallcom.2009.01.036]
[181]
Yang, Y.; Li, G.P.; Wang, H.; Wu, S.Q.; Zhang, L.C.; Li, Y.L.; Yang, K. Formation of zigzag-shaped {112}〈111〉β mechanical twins in Ti-24.5Nb-0.7Ta-2Zr-1.4O alloy. Scr. Mater., 2012, 66, 211-214.
[http://dx.doi.org/10.1016/j.scriptamat.2011.10.031]
[182]
Jawed, S.F.; Rabadia, C.D.; Liu, Y.J.; Wang, L.Q.; Li, Y.H.; Zhang, X.H.; Zhang, L.C. Beta-type Ti-Nb-Zr-Cr alloys with large plasticity and significant strain hardening. Mater. Des., 2019, 181, 108064.
[http://dx.doi.org/10.1016/j.matdes.2019.108064]
[183]
Lu, S.; Ma, F.; Liu, P.; Li, W.; Liu, X.; Chen, X.; Zhang, K.; Han, Q.; Zhang, L-C. Recrystallization behavior and super-elasticity of a metastable β-Type Ti-21Nb-7Mo-4Sn alloy during cold rolling and annealing. J. Mater. Eng. Perform., 2018, 27(8), 4100-4106.
[http://dx.doi.org/10.1007/s11665-018-3476-6]
[184]
Jawed, S.F.; Rabadia, C.D.; Liu, Y.J.; Wang, L.Q.; Qin, P.; Li, Y.H.; Zhang, X.H.; Zhang, L.C. Strengthening mechanism and corrosion resistance of beta-type Ti-Nb-Zr-Mn alloys. Mater. Sci. Eng. C, 2020, 110, 110728.
[http://dx.doi.org/10.1016/j.msec.2020.110728] [PMID: 32204038]
[185]
Xie, L.; Guo, H.; Song, Y.; Liu, C.; Wang, Z.; Hua, L.; Wang, L.; Zhang, L-C. Effects of electroshock treatment on microstructure evolution and texture distribution of near-β titanium alloy manufactured by directed energy deposition. Mater. Charact., 2020, 161, 110137.
[http://dx.doi.org/10.1016/j.matchar.2020.110137]
[186]
Chen, L-Y.; Wang, H.; Zhao, C.; Lu, S.; Wang, Z-X.; Sha, J.; Chen, S.; Zhang, L-C. Automatic remelting and enhanced mechanical performance of a plasma sprayed NiCrBSi coating. Surf. Coat. Tech., 2019, 369, 31-43.
[http://dx.doi.org/10.1016/j.surfcoat.2019.04.052]
[187]
Chen, L-Y.; Xu, T.; Wang, H.; Sang, P.; Lu, S.; Wang, Z-X.; Chen, S.; Zhang, L-C. Phase interaction induced texture in a plasma sprayed-remelted NiCrBSi coating during solidification: An electron backscatter diffraction study. Surf. Coat. Tech., 2019, 358, 467-480.
[http://dx.doi.org/10.1016/j.surfcoat.2018.11.019]
[188]
Rabadia, C.D.; Liu, Y.J.; Cao, G.H.; Li, Y.H.; Zhang, C.W.; Sercombe, T.B.; Sun, H.; Zhang, L.C. High-strength β stabilized Ti-Nb-Fe-Cr alloys with large plasticity. Mater. Sci. Eng. A, 2018, 732, 368-377.
[http://dx.doi.org/10.1016/j.msea.2018.07.031]
[189]
Lei, X.; Dong, L.; Zhang, Z.; Liu, Y.; Hao, Y.; Yang, R.; Zhang, L-C. Microstructure, texture evolution and mechanical properties of VT3-1 titanium alloy processed by multi-pass drawing and subsequent isothermal annealing. Metals, 2017, 7, 131.
[http://dx.doi.org/10.3390/met7040131]
[190]
Jawed, S.F.; Rabadia, C.D.; Liu, Y.J.; Wang, L.Q.; Li, Y.H.; Zhang, X.H.; Zhang, L.C. Mechanical characterization and deformation behavior of β-stabilized Ti-Nb-Sn-Cr alloys. J. Alloys Compd., 2019, 792, 684-693.
[http://dx.doi.org/10.1016/j.jallcom.2019.04.079]
[191]
Wang, J.; Liu, Y.; Qin, P.; Liang, S.; Sercombe, T.; Zhang, L. Selective laser melting of Ti–35Nb composite from elemental powder mixture: Microstructure, mechanical behavior and corrosion behavior. Mater. Sci. Eng. A, 2019, 760, 214-224.
[http://dx.doi.org/10.1016/j.msea.2019.06.001]
[192]
Chen, J.; Ma, F.; Liu, P.; Liu, X.; Li, W.; Chen, X.; Zhang, K.; Zhang, L-C. Effects of different processing conditions on super-elasticity and low modulus properties of metastable β-type Ti-35Nb-2Ta-3Zr alloy. Vacuum, 2017, 146, 164-169.
[http://dx.doi.org/10.1016/j.vacuum.2017.09.047]
[193]
Oliveira, N.T.; Guastaldi, A.C. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications. Acta Biomater., 2009, 5(1), 399-405.
[http://dx.doi.org/10.1016/j.actbio.2008.07.010] [PMID: 18707926]
[194]
Meisterjahn, P.; Hoppe, H.W.; Schultze, J.W. Electrochemical and XPS measurements on thin oxide films on zirconium. J. Electroanal. Chem. Int. Electronchem., 1987, 217, 159-185.
[http://dx.doi.org/10.1016/0022-0728(87)85072-6]
[195]
Hsu, R.W-W.; Yang, C-C.; Huang, C-A.; Chen, Y-S. Investigation on the corrosion behavior of Ti–6Al–4V implant alloy by electrochemical techniques. Mater. Chem. Phys., 2004, 86(2-3), 269-278.
[http://dx.doi.org/10.1016/j.matchemphys.2004.02.025]
[196]
Chen, L-Y.; Cui, Y-W.; Zhang, L-C. Recent development in beta titanium alloys for biomedical applications. Metals, 2020, 10(9), 1139.
[http://dx.doi.org/10.3390/met10091139]
[197]
He, X.; Noël, J.J.; Shoesmith, D.W. Effects of iron content on microstructure and crevice corrosion of grade-2 titanium. Corrosion, 2004, 60(4), 378-386.
[http://dx.doi.org/10.5006/1.3287747]
[198]
Garfias-Mesias, L.; Smyrl, W.H. In situ high-resolution photoelectrochemical imaging of precursor sites for pitting in polycrystalline titanium. J. Electrochem. Soc., 1999, 146(7), 2495-2501.
[http://dx.doi.org/10.1149/1.1391961]
[199]
Dai, N.; Zhang, L-C.; Zhang, J.; Chen, Q.; Wu, M. Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution. Corros. Sci., 2016, 102, 484-489.
[http://dx.doi.org/10.1016/j.corsci.2015.10.041]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy