Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Biomimetic Design of 3D Printed Tissue-Engineered Bone Constructs

Author(s): Wei Liu, Shifeng Liu*, Yunzhe Li, Peng Zhou* and Qian Ma

Volume 17, Issue 2, 2021

Published on: 22 October, 2020

Page: [223 - 240] Pages: 18

DOI: 10.2174/1573413716999201022191909

open access plus

Abstract

Surgery to repair damaged tissue, which is caused by disease or trauma, is being carried out all the time, and a desirable treatment is compelling need to regenerate damaged tissues to further improve the quality of human health. Therefore, more and more research focus on exploring the most suitable bionic design to enrich available treatment methods. 3D-printing, as an advanced material processing approach, holds the promising potential to create prototypes with complex constructs that could reproduce primitive tissues and organs as much as possible or provide appropriate cell-material interfaces. In a sense, 3D printing is a promising bridge between tissue engineering and bionic design, which can provide an unprecedented personalized recapitulation with biomimetic function under the precise control of the composition and spatial distribution of cells and biomaterials. This article describes recent progress in 3D bionic design and the potential application prospect of 3D printing regenerative medicine, including 3D printing biomimetic scaffolds and 3D cell printing in tissue engineering.

Keywords: Tissue engineering, biomimetic design, 3D bioprinting, biomaterials, human health, additive manufacturing.

Graphical Abstract

[1]
Campana, V.; Milano, G.; Pagano, E.; Barba, M.; Cicione, C.; Salonna, G.; Lattanzi, W.; Logroscino, G. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J. Mater. Sci. Mater. Med., 2014, 25(10), 2445-2461.
[http://dx.doi.org/10.1007/s10856-014-5240-2] [PMID: 24865980]
[2]
Keating, J.F.; Simpson, A.H.R.W.; Robinson, C.M. The management of fractures with bone loss. J. Bone Joint Surg. Br., 2005, 87(2), 142-150.
[http://dx.doi.org/10.1302/0301-620X.87B2.15874] [PMID: 15736731]
[3]
Dimitriou, R.; Jones, E.; McGonagle, D.; Giannoudis, P.V. Bone regeneration: current concepts and future directions. BMC Med., 2011, 9, 66.
[http://dx.doi.org/10.1186/1741-7015-9-66] [PMID: 21627784]
[4]
García-Gareta, E.; Coathup, M.J.; Blunn, G.W. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone, 2015, 81, 112-121.
[http://dx.doi.org/10.1016/j.bone.2015.07.007] [PMID: 26163110]
[5]
Wang, W.; Yeung, K.W.K. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater., 2017, 2(4), 224-247.
[http://dx.doi.org/10.1016/j.bioactmat.2017.05.007] [PMID: 29744432]
[6]
Loi, F.; Córdova, L.A.; Pajarinen, J.; Lin, T.H.; Yao, Z.; Goodman, S.B. Inflammation, fracture and bone repair. Bone, 2016, 86, 119-130.
[http://dx.doi.org/10.1016/j.bone.2016.02.020] [PMID: 26946132]
[7]
Li, Y.; Chen, S.K.; Li, L.; Qin, L.; Wang, X.L.; Lai, Y.X. Bone defect animal models for testing efficacy of bone substitute biomaterials. J. Orthop. Translat., 2015, 3(3), 95-104.
[http://dx.doi.org/10.1016/j.jot.2015.05.002] [PMID: 30035046]
[8]
Cicciù, M.; Cervino, G.; Herford, A.S.; Famà, F.; Bramanti, E.; Fiorillo, L.; Lauritano, F.; Sambataro, S.; Troiano, G.; Laino, L. Facial bone reconstruction using both marine or non-marine bone substitutes: Evaluation of current outcomes in a systematic literature review. Mar. Drugs, 2018, 16(1), 27.
[http://dx.doi.org/10.3390/md16010027] [PMID: 29342834]
[9]
Bose, S.; Roy, M.; Bandyopadhyay, A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol., 2012, 30(10), 546-554.
[http://dx.doi.org/10.1016/j.tibtech.2012.07.005] [PMID: 22939815]
[10]
Discher, D.E.; Mooney, D.J.; Zandstra, P.W. Growth factors, matrices, and forces combine and control stem cells. Science, 2009, 324(5935), 1673-1677.
[http://dx.doi.org/10.1126/science.1171643] [PMID: 19556500]
[11]
Rodriguez, B.L.; Larkin, L.M. Functional three-dimensional scaffolds for skeletal muscle tissue engineering. Kuiper, J. Functional 3D Tissue Engineering Scaffolds; Deng, Y., Ed.; Woodhead Publishing, 2018, pp. 279-304.
[http://dx.doi.org/10.1016/B978-0-08-100979-6.00012-4]
[12]
Bose, S.; Ke, D.; Sahasrabudhe, H.; Bandyopadhyay, A. Additive manufacturing of biomaterials. Prog. Mater. Sci., 2018, 93, 45-111.
[http://dx.doi.org/10.1016/j.pmatsci.2017.08.003] [PMID: 31406390]
[13]
Chia, H.N.; Wu, B.M. Recent advances in 3D printing of biomaterials. J. Biol. Eng., 2015, 9, 4.
[http://dx.doi.org/10.1186/s13036-015-0001-4] [PMID: 25866560]
[14]
Do, A.V.; Khorsand, B.; Geary, S.M.; Salem, A.K., III Printing of scaffolds for tissue regeneration applications. Adv. Healthc. Mater., 2015, 4(12), 1742-1762.
[http://dx.doi.org/10.1002/adhm.201500168] [PMID: 26097108]
[15]
Nguyen, A.K.; Narayan, R.J.; Shafiee, A. Encyclopedia of Biomedical Engineering; Narayan, R., Ed.; Elsevier, 2019, pp. 275-280.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.99875-1]
[16]
Gao, C.; Peng, S.; Feng, P.; Shuai, C. Bone biomaterials and interactions with stem cells. Bone Res., 2017, 5, 17059.
[http://dx.doi.org/10.1038/boneres.2017.59] [PMID: 29285402]
[17]
Yan, Q.; Dong, H.; Su, J.; Han, J.; Song, B.; Wei, Q.; Shi, Y. A review of 3D printing technology for medical applications. Engineering, 2018, 4, 729-742.
[http://dx.doi.org/10.1016/j.eng.2018.07.021]
[18]
Wang, K.; Ho, C-C.; Zhang, C.; Wang, B. A review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications. Engineering, 2017, 3, 653-662.
[http://dx.doi.org/10.1016/J.ENG.2017.05.013]
[19]
Zhang, L.; Yang, G.; Johnson, B.N.; Jia, X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater., 2019, 84, 16-33.
[http://dx.doi.org/10.1016/j.actbio.2018.11.039] [PMID: 30481607]
[20]
Zhang, B.; Pei, X.; Zhou, C.; Fan, Y.; Jiang, Q.; Ronca, A.; D’Amora, U.; Chen, Y.; Li, H.; Sun, Y.; Zhang, X. The biomimetic design and 3D printing of customized mechanical properties porous Ti6Al4V scaffold for load-bearing bone reconstruction. Mater. Des., 2018, 152, 30-39.
[http://dx.doi.org/10.1016/j.matdes.2018.04.065]
[21]
Zhang, H.; Zhou, Y.; Yu, N.; Ma, H.; Wang, K.; Liu, J.; Zhang, W.; Cai, Z.; He, Y. Construction of vascularized tissue-engineered bone with polylysine-modified coral hydroxyapatite and a double cell-sheet complex to repair a large radius bone defect in rabbits. Acta Biomater., 2019, 91, 82-98.
[http://dx.doi.org/10.1016/j.actbio.2019.04.024] [PMID: 30986527]
[22]
Oladapo, B.I.; Zahedi, S.A.; Adeoye, A.O.M. 3D printing of bone scaffolds with hybrid biomaterials. Compos. B Eng., 2019, 158, 428-436.
[23]
Zadpoor, A.A.; Malda, J. Additive manufacturing of biomaterials, tissues, and organs. Ann. Biomed. Eng., 2017, 45(1), 1-11.
[http://dx.doi.org/10.1007/s10439-016-1719-y] [PMID: 27632024]
[24]
Park, J.; Lee, S.J.; Jo, H.H.; Lee, J.H.; Kim, W.D.; Lee, J.Y.; Park, S.A. Fabrication and characterization of 3D-printed bone-like β-tricalcium phosphate/polycaprolactone scaffolds for dental tissue engineering. J. Ind. Eng. Chem., 2017, 46, 175-181.
[http://dx.doi.org/10.1016/j.jiec.2016.10.028]
[25]
Esposito Corcione, C.; Gervaso, F.; Scalera, F.; Padmanabhan, S.K.; Madaghiele, M.; Montagna, F.; Sannino, A.; Licciulli, A.; Maffezzoli, A. Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling. Ceram. Int., 2019, 45, 2803-2810.
[http://dx.doi.org/10.1016/j.ceramint.2018.07.297]
[26]
Bobbert, F.S.L.; Lietaert, K.; Eftekhari, A.A.; Pouran, B.; Ahmadi, S.M.; Weinans, H.; Zadpoor, A.A. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties. Acta Biomater., 2017, 53, 572-584.
[http://dx.doi.org/10.1016/j.actbio.2017.02.024] [PMID: 28213101]
[27]
Pérez, R.A.; Won, J.E.; Knowles, J.C.; Kim, H.W. Naturally and synthetic smart composite biomaterials for tissue regeneration. Adv. Drug Deliv. Rev., 2013, 65(4), 471-496.
[http://dx.doi.org/10.1016/j.addr.2012.03.009] [PMID: 22465488]
[28]
Whyte, D.J.; Rajkhowa, R.; Allardyce, B.; Kouzani, A.Z. A review on the challenges of 3D printing of organic powders. Bioprinting, 2019, 16, e00057.
[http://dx.doi.org/10.1016/j.bprint.2019.e00057]
[29]
Wang, L.; Lu, W.; Qin, J.; Zhang, F.; Zhang, D. Microstructure and mechanical properties of cold-rolled TiNbTaZr biomedical β titanium alloy. Mater. Sci. Eng. A, 2008, 490, 421-426.
[http://dx.doi.org/10.1016/j.msea.2008.03.003]
[30]
Huang, G.; Han, Y.; Guo, X.; Qiu, D.; Wang, L.; Lu, W.; Zhang, D. Effects of extrusion ratio on microstructural evolution and mechanical behavior of in situ synthesized Ti-6Al-4V composites. Mater. Sci. Eng. A, 2017, 688, 155-163.
[http://dx.doi.org/10.1016/j.msea.2017.02.002]
[31]
O’Brien, F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today, 2011, 14, 88-95.
[http://dx.doi.org/10.1016/S1369-7021(11)70058-X]
[32]
Li, L.; Lu, H.; Zhao, Y.; Luo, J.; Yang, L.; Liu, W.; He, Q. Functionalized cell-free scaffolds for bone defect repair inspired by self-healing of bone fractures: A review and new perspectives. Mater. Sci. Eng. C, 2019, 98, 1241-1251.
[http://dx.doi.org/10.1016/j.msec.2019.01.075] [PMID: 30813005]
[33]
Guo, Y.; Chen, D.; Cheng, M.; Lu, W.; Wang, L.; Zhang, X. The bone tissue compatibility of a new Ti35Nb2Ta3Zr alloy with a low Young’s modulus. Int. J. Mol. Med., 2013, 31(3), 689-697.
[http://dx.doi.org/10.3892/ijmm.2013.1249] [PMID: 23338484]
[34]
Vaithilingam, J.; Kilsby, S.; Goodridge, R.D.; Christie, S.D.; Edmondson, S.; Hague, R.J. Functionalisation of Ti6Al4V components fabricated using selective laser melting with a bioactive compound. Mater. Sci. Eng. C, 2015, 46, 52-61.
[http://dx.doi.org/10.1016/j.msec.2014.10.015] [PMID: 25491959]
[35]
Wang, L.; Lu, W.; Qin, J.; Zhang, F.; Zhang, D. Microstructure and superelasticity of in situ synthesized (TiB+La2O3)/Ti-alloy composites with different mass fraction of LaB6. Mater. Sci. Eng. A, 2010, 527, 1058-1062.
[http://dx.doi.org/10.1016/j.msea.2009.09.022]
[36]
Vaithilingam, J.; Prina, E.; Goodridge, R.D.; Hague, R.J.M.; Edmondson, S.; Rose, F.R.A.J.; Christie, S.D.R. Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications. Mater. Sci. Eng. C, 2016, 67, 294-303.
[http://dx.doi.org/10.1016/j.msec.2016.05.054] [PMID: 27287125]
[37]
Liu, W.; Liu, S.; Wang, L. Surface modification of biomedical titanium alloy: micromorphology, microstructure evolution and biomedical applications. Coatings, 2019, 9(4), 249.
[http://dx.doi.org/10.3390/coatings9040249]
[38]
Wang, L.; Xie, L.; Lv, Y.; Zhang, L.C.; Chen, L.; Meng, Q.; Qu, J.; Zhang, D.; Lu, W. Microstructure evolution and superelastic behavior in Ti-35Nb-2Ta-3Zr alloy processed by friction stir processing. Acta Mater., 2017, 131, 499-510.
[http://dx.doi.org/10.1016/j.actamat.2017.03.079]
[39]
Jawed, S.F.; Rabadia, C.D.; Liu, Y.J.; Wang, L.Q.; Li, Y.H.; Zhang, X.H.; Zhang, L.C. Mechanical characterization and deformation behavior of β-stabilized Ti-Nb-Sn-Cr alloys. J. Alloys Compd., 2019, 792, 684-693.
[http://dx.doi.org/10.1016/j.jallcom.2019.04.079]
[40]
Zhang, L-C.; Chen, L-Y.; Wang, L. Surface modification of titanium and titanium alloys: Technologies, developments, and future interests. Adv. Eng. Mater., 2019, 22(5), 1901258.
[http://dx.doi.org/10.1002/adem.201901258]
[41]
Bordbar-Khiabani, A.; Yarmand, B.; Mozafari, M. Emerging magnesium-based biomaterials for orthopedic implantation. Emerg. Mater. Res., 2019, 8, 305-319.
[http://dx.doi.org/10.1680/jemmr.18.00048]
[42]
Wang, L.; Lu, W.; Qin, J.; Zhang, F.; Zhang, D. The characterization of shape memory effect for low elastic modulus biomedical β-type titanium alloy. Mater. Charact., 2010, 61, 535-541.
[http://dx.doi.org/10.1016/j.matchar.2010.02.009]
[43]
Chou, D.T.; Wells, D.; Hong, D.; Lee, B.; Kuhn, H.; Kumta, P.N. Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing. Acta Biomater., 2013, 9(10), 8593-8603.
[http://dx.doi.org/10.1016/j.actbio.2013.04.016] [PMID: 23624222]
[44]
Ghasali, E.; Bordbar-Khiabani, A.; Alizadeh, M.; Mozafari, M.; Niazmand, M.; Kazemzadeh, H.; Ebadzadeh, T. Corrosion behavior and in-vitro bioactivity of porous Mg/Al2O3 and Mg/Si3N4 metal matrix composites fabricated using microwave sintering process. Mater. Chem. Phys., 2019, 225, 331-339.
[http://dx.doi.org/10.1016/j.matchemphys.2019.01.007]
[45]
Bordbar-Khiabani, A.; Yarmand, B.; Sharifi-Asl, S.; Mozafari, M. Improved corrosion performance of biodegradable magnesium in simulated inflammatory condition via drug-loaded plasma electrolytic oxidation coatings. Mater. Chem. Phys., 2020, 239, 122003.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122003]
[46]
Bordbar-Khiabani, A.; Yarmand, B.; Mozafari, M. Enhanced corrosion resistance and in-vitro biodegradation of plasma electrolytic oxidation coatings prepared on AZ91 Mg alloy using ZnO nanoparticles-incorporated electrolyte. Surf. Coat. Tech., 2019, 360, 153-171.
[http://dx.doi.org/10.1016/j.surfcoat.2019.01.002]
[47]
Roopavath, U.K.; Malferrari, S.; Van Haver, A.; Verstreken, F.; Rath, S.N.; Kalaskar, D.M. Optimization of extrusion based ceramic 3D printing process for complex bony designs. Mater. Des., 2019, 162, 263-270.
[http://dx.doi.org/10.1016/j.matdes.2018.11.054]
[48]
Ke, D.; Tarafder, S.; Vahabzadeh, S.; Bose, S. Effects of MgO, ZnO, SrO, and SiO2 in tricalcium phosphate scaffolds on in vitro gene expression and in vivo osteogenesis. Mater. Sci. Eng. C, 2019, 96, 10-19.
[http://dx.doi.org/10.1016/j.msec.2018.10.073] [PMID: 30606515]
[49]
Fielding, G.; Bose, S. SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo. Acta Biomater., 2013, 9(11), 9137-9148.
[http://dx.doi.org/10.1016/j.actbio.2013.07.009] [PMID: 23871941]
[50]
Huang, Y.; Wu, C.; Zhang, X.; Chang, J.; Dai, K. Regulation of immune response by bioactive ions released from silicate bioceramics for bone regeneration. Acta Biomater., 2018, 66, 81-92.
[http://dx.doi.org/10.1016/j.actbio.2017.08.044] [PMID: 28864248]
[51]
Ma, H.; Feng, C.; Chang, J.; Wu, C. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomater., 2018, 79, 37-59.
[http://dx.doi.org/10.1016/j.actbio.2018.08.026] [PMID: 30165201]
[52]
Zhou, Z.; Buchanan, F.; Mitchell, C.; Dunne, N. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Mater. Sci. Eng. C, 2014, 38, 1-10.
[http://dx.doi.org/10.1016/j.msec.2014.01.027] [PMID: 24656346]
[53]
Lozano, D.; Manzano, M.; Doadrio, J.C.; Salinas, A.J.; Vallet-Regí, M.; Gómez-Barrena, E.; Esbrit, P. Osteostatin-loaded bioceramics stimulate osteoblastic growth and differentiation. Acta Biomater., 2010, 6(3), 797-803.
[http://dx.doi.org/10.1016/j.actbio.2009.08.033] [PMID: 19716446]
[54]
Bunpetch, V.; Zhang, X.; Li, T.; Lin, J.; Maswikiti, E.P.; Wu, Y.; Cai, D.; Li, J.; Zhang, S.; Wu, C.; Ouyang, H. Silicate-based bioceramic scaffolds for dual-lineage regeneration of osteochondral defect. Biomaterials, 2019, 192, 323-333.
[http://dx.doi.org/10.1016/j.biomaterials.2018.11.025] [PMID: 30468999]
[55]
Guo, J.; Ning, C.; Liu, X. Bioactive calcium phosphate silicate ceramic surface-modified PLGA for tendon-to-bone healing. Colloids Surf. B Biointerfaces, 2018, 164, 388-395.
[http://dx.doi.org/10.1016/j.colsurfb.2018.02.001] [PMID: 29427945]
[56]
Bracaglia, L.G.; Smith, B.T.; Watson, E.; Arumugasaamy, N.; Mikos, A.G.; Fisher, J.P. 3D printing for the design and fabrication of polymer-based gradient scaffolds. Acta Biomater., 2017, 56, 3-13.
[http://dx.doi.org/10.1016/j.actbio.2017.03.030] [PMID: 28342878]
[57]
Nair, L.S.; Laurencin, C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci., 2007, 32, 762-798.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.017]
[58]
Herzberger, J.; Sirrine, J.M.; Williams, C.B.; Long, T.E. Polymer design for 3D printing elastomers: Recent advances in structure, properties, and printing. Prog. Polym. Sci., 2019, 97, 101144.
[http://dx.doi.org/10.1016/j.progpolymsci.2019.101144]
[59]
Neufurth, M.; Wang, X.; Wang, S.; Steffen, R.; Ackermann, M.; Haep, N.D.; Schröder, H.C.; Müller, W.E.G. 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone. Acta Biomater., 2017, 64, 377-388.
[http://dx.doi.org/10.1016/j.actbio.2017.09.031] [PMID: 28966095]
[60]
Buyuksungur, S.; Endogan Tanir, T.; Buyuksungur, A.; Bektas, E.I.; Torun Kose, G.; Yucel, D.; Beyzadeoglu, T.; Cetinkaya, E.; Yenigun, C.; Tönük, E.; Hasirci, V.; Hasirci, N. 3D printed poly(ε-caprolactone) scaffolds modified with hydroxyapatite and poly(propylene fumarate) and their effects on the healing of rabbit femur defects. Biomater. Sci., 2017, 5(10), 2144-2158.
[http://dx.doi.org/10.1039/C7BM00514H] [PMID: 28880313]
[61]
Ho, L.; Hsu, S.H. Cell reprogramming by 3D bioprinting of human fibroblasts in polyurethane hydrogel for fabrication of neural-like constructs. Acta Biomater., 2018, 70, 57-70.
[http://dx.doi.org/10.1016/j.actbio.2018.01.044] [PMID: 29425719]
[62]
Syuhada, G.; Ramahdita, G.; Rahyussalim, A.J.; Whulanza, Y. Multi-material poly(lactic acid) scaffold fabricated via fused deposition modeling and direct hydroxyapatite injection as spacers in laminoplasty. AIP Conf. Proc., 2018, 1933(1), 020008.
[http://dx.doi.org/10.1063/1.5023942]
[63]
Wang, Y.; Zhang, S.; Haque, E.; Zhang, B.Y.; Ou, J.Z.; Liu, J.; Liu, Z.; Li, Y.; Gao, W.; Haque, F.; Xu, K.; Wang, H.; Cahill, D.; Kong, L.X.; Yang, W. Immobilisation of microperoxidase-11 into layered MoO3 for applications of enzymatic conversion. Appl. Mater. Today, 2019, 16, 185-192.
[http://dx.doi.org/10.1016/j.apmt.2019.05.008]
[64]
Liu, Z.; Zhang, X.; Wang, B.; Xia, M.; Gao, S.; Liu, X.; Zavabeti, A.; Ou, J.Z.; Kalantar-Zadeh, K.; Wang, Y. Amorphous MoSx-coated TiO2 nanotube arrays for enhanced electrocatalytic hydrogen evolution reaction. J. Phys. Chem. C, 2018, 122, 12589-12597.
[http://dx.doi.org/10.1021/acs.jpcc.8b01678]
[65]
Stevens, M.M. Biomaterials for bone tissue engineering. Mater. Today, 2008, 11, 18-25.
[http://dx.doi.org/10.1016/S1369-7021(08)70086-5]
[66]
Moreno, M.A.P.; Vrech, S.M.; Sanchez, M.A.; Rodriguez, A.P. Advances in additive manufacturing for bone tissue engineering scaffolds. Mater. Sci. Eng. C, 2019, 100, 631-644.
[http://dx.doi.org/10.1016/j.msec.2019.03.037] [PMID: 30948100]
[67]
Koffler, J.; Zhu, W.; Qu, X.; Platoshyn, O.; Dulin, J.N.; Brock, J.; Graham, L.; Lu, P.; Sakamoto, J.; Marsala, M.; Chen, S.; Tuszynski, M.H. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat. Med., 2019, 25(2), 263-269.
[http://dx.doi.org/10.1038/s41591-018-0296-z] [PMID: 30643285]
[68]
de Azevedo Gonçalves Mota, R.C.; da Silva, E.O.; de Lima, F.F.; de Menezes, L.R.; Thiele, A.C.S. 3D printed scaffolds as a new perspective for bone tissue regeneration: literature review. Mater. Sci. Appl., 2016, 07, 430-452.
[http://dx.doi.org/10.4236/msa.2016.78039]
[69]
Martin, V.; Ribeiro, I.A.; Alves, M.M.; Gonçalves, L.; Claudio, R.A.; Grenho, L.; Fernandes, M.H.; Gomes, P.; Santos, C.F.; Bettencourt, A.F. Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Mater. Sci. Eng. C, 2019, 101, 15-26.
[http://dx.doi.org/10.1016/j.msec.2019.03.056] [PMID: 31029308]
[70]
Inzana, J.A.; Olvera, D.; Fuller, S.M.; Kelly, J.P.; Graeve, O.A.; Schwarz, E.M.; Kates, S.L.; Awad, H.A. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials, 2014, 35(13), 4026-4034.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.064] [PMID: 24529628]
[71]
Peng, M.; Wen, Z.; Xie, L.; Cheng, J.; Jia, Z.; Shi, D.; Zeng, H.; Zhao, B.; Liang, Z.; Li, T.; Jiang, L. 3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience. Adv. Mater., 2019, 31(35), e1902930.
[http://dx.doi.org/10.1002/adma.201902930] [PMID: 31267581]
[72]
Bittner, S.M.; Smith, B.T.; Diaz-Gomez, L.; Hudgins, C.D.; Melchiorri, A.J.; Scott, D.W.; Fisher, J.P.; Mikos, A.G. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomater., 2019, 90, 37-48.
[http://dx.doi.org/10.1016/j.actbio.2019.03.041] [PMID: 30905862]
[73]
Hassan, M.N.; Yassin, M.A.; Suliman, S.; Lie, S.A.; Gjengedal, H.; Mustafa, K. The bone regeneration capacity of 3D-printed templates in calvarial defect models: A systematic review and meta-analysis. Acta Biomater., 2019, 91, 1-23.
[http://dx.doi.org/10.1016/j.actbio.2019.04.017] [PMID: 30980937]
[74]
Zhou, X.; Esworthy, T.; Lee, S.J.; Miao, S.; Cui, H.; Plesiniak, M.; Fenniri, H.; Webster, T.; Rao, R.D.; Zhang, L.G. III 3D Printed scaffolds with hierarchical biomimetic structure for osteochondral regeneration. Nanomedicine (Lond.), 2019, 19, 58-70.
[http://dx.doi.org/10.1016/j.nano.2019.04.002] [PMID: 31004813]
[75]
Jang, J.; Park, J.Y.; Gao, G.; Cho, D.W. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials, 2018, 156, 88-106.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.030] [PMID: 29190501]
[76]
Wolf, M.T.; Daly, K.A.; Reing, J.E.; Badylak, S.F. Biologic scaffold composed of skeletal muscle extracellular matrix. Biomaterials, 2012, 33(10), 2916-2925.
[http://dx.doi.org/10.1016/j.biomaterials.2011.12.055] [PMID: 22264525]
[77]
Zhang, J.; Hu, Z.Q.; Turner, N.J.; Teng, S.F.; Cheng, W.Y.; Zhou, H.Y.; Zhang, L.; Hu, H.W.; Wang, Q.; Badylak, S.F. Perfusion-decellularized skeletal muscle as a three-dimensional scaffold with a vascular network template. Biomaterials, 2016, 89, 114-126.
[http://dx.doi.org/10.1016/j.biomaterials.2016.02.040] [PMID: 26963901]
[78]
Cui, X.; Breitenkamp, K.; Finn, M.G.; Lotz, M.; D’Lima, D.D. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng. Part A, 2012, 18(11-12), 1304-1312.
[http://dx.doi.org/10.1089/ten.tea.2011.0543] [PMID: 22394017]
[79]
Lee, V.; Singh, G.; Trasatti, J.P.; Bjornsson, C.; Xu, X.; Tran, T.N.; Yoo, S.S.; Dai, G.; Karande, P. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng. Part C Methods, 2014, 20(6), 473-484.
[http://dx.doi.org/10.1089/ten.tec.2013.0335] [PMID: 24188635]
[80]
Lee, J.S.; Kim, B.S.; Seo, D.; Park, J.H.; Cho, D.W. Three-dimensional cell printing of large-volume tissues: Application to ear regeneration. Tissue Eng. Part C Methods, 2017, 23(3), 136-145.
[http://dx.doi.org/10.1089/ten.tec.2016.0362] [PMID: 28093047]
[81]
Leberfinger, A.N.; Dinda, S.; Wu, Y.; Koduru, S.V.; Ozbolat, V.; Ravnic, D.J.; Ozbolat, I.T. Bioprinting functional tissues. Acta Biomater., 2019, 95, 32-49.
[http://dx.doi.org/10.1016/j.actbio.2019.01.009] [PMID: 30639351]
[82]
Ong, C.S.; Yesantharao, P.; Huang, C.Y.; Mattson, G.; Boktor, J.; Fukunishi, T.; Zhang, H.; Hibino, N. 3D bioprinting using stem cells. Pediatr. Res., 2018, 83(1-2), 223-231.
[http://dx.doi.org/10.1038/pr.2017.252] [PMID: 28985202]
[83]
Kesti, M.; Müller, M.; Becher, J.; Schnabelrauch, M.; D’Este, M.; Eglin, D.; Zenobi-Wong, M. A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Acta Biomater., 2015, 11, 162-172.
[http://dx.doi.org/10.1016/j.actbio.2014.09.033] [PMID: 25260606]
[84]
Xu, T.; Zhao, W.; Zhu, J.M.; Albanna, M.Z.; Yoo, J.J.; Atala, A. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials, 2013, 34(1), 130-139.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.035] [PMID: 23063369]
[85]
Derakhshanfar, S.; Mbeleck, R.; Xu, K.; Zhang, X.; Zhong, W.; Xing, M. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact. Mater., 2018, 3(2), 144-156.
[http://dx.doi.org/10.1016/j.bioactmat.2017.11.008] [PMID: 29744452]
[86]
Hölzl, K.; Lin, S.; Tytgat, L.; Van Vlierberghe, S.; Gu, L.; Ovsianikov, A. Bioink properties before, during and after 3D bioprinting. Biofabrication, 2016, 8(3), 032002.
[http://dx.doi.org/10.1088/1758-5090/8/3/032002] [PMID: 27658612]
[87]
Saunders, R.E.; Derby, B. Inkjet printing biomaterials for tissue engineering: bioprinting. Int. Mater. Rev., 2014, 59, 430-448.
[http://dx.doi.org/10.1179/1743280414Y.0000000040]
[88]
Cui, X.; Boland, T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials, 2009, 30(31), 6221-6227.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.056] [PMID: 19695697]
[89]
Hung, K.C.; Tseng, C.S.; Hsu, S.H. 3D Printing of Polyurethane Biomaterials. Advances in Polyurethane Biomaterials; Cooper, S.L.; Guan, J., Eds.; Woodhead Publishing, 2016, pp. 149-170.
[http://dx.doi.org/10.1016/B978-0-08-100614-6.00005-6]
[90]
Hsieh, F.Y.; Lin, H.H.; Hsu, S.H. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials, 2015, 71, 48-57.
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.028] [PMID: 26318816]
[91]
Ozbolat, I.T.; Hospodiuk, M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 2016, 76, 321-343.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.076] [PMID: 26561931]
[92]
Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol., 2014, 32(8), 773-785.
[http://dx.doi.org/10.1038/nbt.2958] [PMID: 25093879]
[93]
Cidonio, G.; Glinka, M.; Dawson, J.I.; Oreffo, R.O.C. The cell in the ink: Improving biofabrication by printing stem cells for skeletal regenerative medicine. Biomaterials, 2019, 209, 10-24.
[http://dx.doi.org/10.1016/j.biomaterials.2019.04.009] [PMID: 31022557]
[94]
Zhu, W.; Ma, X.; Gou, M.; Mei, D.; Zhang, K.; Chen, S. 3D printing of functional biomaterials for tissue engineering. Curr. Opin. Biotechnol., 2016, 40, 103-112.
[http://dx.doi.org/10.1016/j.copbio.2016.03.014] [PMID: 27043763]
[95]
Derby, B. Printing and prototyping of tissues and scaffolds. Science, 2012, 338(6109), 921-926.
[http://dx.doi.org/10.1126/science.1226340] [PMID: 23161993]
[96]
Catros, S.; Guillotin, B.; Bačáková, M.; Fricain, J-C.; Guillemot, F. Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by Laser-Assisted Bioprinting. Appl. Surf. Sci., 2011, 257, 5142-5147.
[http://dx.doi.org/10.1016/j.apsusc.2010.11.049]
[97]
Vinson, B.T.; Sklare, S.C.; Chrisey, D.B. Laser-based cell printing techniques for additive biomanufacturing. Curr. Opin. Biomed. Eng., 2017, 2, 14-21.
[http://dx.doi.org/10.1016/j.cobme.2017.05.005]
[98]
Gruene, M.; Pflaum, M.; Hess, C.; Diamantouros, S.; Schlie, S.; Deiwick, A.; Koch, L.; Wilhelmi, M.; Jockenhoevel, S.; Haverich, A.; Chichkov, B. Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions. Tissue Eng. Part C Methods, 2011, 17(10), 973-982.
[http://dx.doi.org/10.1089/ten.tec.2011.0185] [PMID: 21585313]
[99]
Mandrycky, C.; Wang, Z.; Kim, K.; Kim, D.H. 3D bioprinting for engineering complex tissues. Biotechnol. Adv., 2016, 34(4), 422-434.
[http://dx.doi.org/10.1016/j.biotechadv.2015.12.011] [PMID: 26724184]
[100]
Guillotin, B.; Souquet, A.; Catros, S.; Duocastella, M.; Pippenger, B.; Bellance, S.; Bareille, R.; Rémy, M.; Bordenave, L.; Amédée, J.; Guillemot, F. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials, 2010, 31(28), 7250-7256.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.055] [PMID: 20580082]
[101]
Bishop, E.S.; Mostafa, S.; Pakvasa, M.; Luu, H.H.; Lee, M.J.; Wolf, J.M.; Ameer, G.A.; He, T.C.; Reid, R.R. 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends. Genes Dis., 2017, 4(4), 185-195.
[http://dx.doi.org/10.1016/j.gendis.2017.10.002] [PMID: 29911158]
[102]
Zhou, D.; Chen, J.; Liu, B.; Zhang, X.; Li, X.; Xu, T. Bioinks for jet-based bioprinting. Bioprinting, 2019, 16, e00060.
[http://dx.doi.org/10.1016/j.bprint.2019.e00060]
[103]
Lee, S.J.; Nowicki, M.; Harris, B.; Zhang, L.G. Fabrication of a highly aligned neural scaffold via a table top stereolithography 3D Printing and Electrospinning. Tissue Eng. Part A, 2017, 23(11-12), 491-502.
[http://dx.doi.org/10.1089/ten.tea.2016.0353] [PMID: 27998214]
[104]
Wang, Z.; Abdulla, R.; Parker, B.; Samanipour, R.; Ghosh, S.; Kim, K. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication, 2015, 7(4), 045009.
[http://dx.doi.org/10.1088/1758-5090/7/4/045009] [PMID: 26696527]
[105]
Matai, I.; Kaur, G.; Seyedsalehi, A.; McClinton, A.; Laurencin, C.T. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 2020, 226, 119536.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119536] [PMID: 31648135]
[106]
Ng, W.L.; Chua, C.K.; Shen, Y-F. Print me an organ! Why we are not there yet. Prog. Polym. Sci., 2019, 97, 101145.
[http://dx.doi.org/10.1016/j.progpolymsci.2019.101145]
[107]
Okubo, N.; Qureshi, A.J.; Dalgarno, K.; Goh, K.L.; Derebail, S. Cost-effective microvalve-assisted bioprinter for tissue engineering. Bioprinting, 2019, 13, e00043.
[http://dx.doi.org/10.1016/j.bprint.2019.e00043]
[108]
Ng, W.L.; Lee, J.M.; Yeong, W.Y.; Win Naing, M. Microvalve-based bioprinting - process, bio-inks and applications. Biomater. Sci., 2017, 5(4), 632-647.
[http://dx.doi.org/10.1039/C6BM00861E] [PMID: 28198902]
[109]
Lee, W.; Debasitis, J.C.; Lee, V.K.; Lee, J.H.; Fischer, K.; Edminster, K.; Park, J.K.; Yoo, S.S. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials, 2009, 30(8), 1587-1595.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.009] [PMID: 19108884]
[110]
Datta, P.; Ayan, B.; Ozbolat, I.T. Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater., 2017, 51, 1-20.
[http://dx.doi.org/10.1016/j.actbio.2017.01.035] [PMID: 28087487]
[111]
Kolesky, D.B.; Homan, K.A.; Skylar-Scott, M.A.; Lewis, J.A. Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl. Acad. Sci. USA, 2016, 113(12), 3179-3184.
[http://dx.doi.org/10.1073/pnas.1521342113] [PMID: 26951646]
[112]
Jia, P.; Chen, H.; Kang, H.; Qi, J.; Zhao, P.; Jiang, M.; Guo, L.; Zhou, Q.; Qian, N.D.; Zhou, H.B.; Xu, Y.J.; Fan, Y.; Deng, L.F. Deferoxamine released from poly(lactic-co-glycolic acid) promotes healing of osteoporotic bone defect via enhanced angiogenesis and osteogenesis. J. Biomed. Mater. Res. A, 2016, 104(10), 2515-2527.
[http://dx.doi.org/10.1002/jbm.a.35793] [PMID: 27227768]
[113]
Athirasala, A.; Lins, F.; Tahayeri, A.; Hinds, M.; Smith, A.J.; Sedgley, C.; Ferracane, J.; Bertassoni, L.E. A novel strategy to engineer pre-vascularized full-length dental pulp-like tissue constructs. Sci. Rep., 2017, 7(1), 3323.
[http://dx.doi.org/10.1038/s41598-017-02532-3] [PMID: 28607361]
[114]
Cui, H.; Zhu, W.; Holmes, B.; Zhang, L.G. Biologically Inspired Smart Release System Based on 3D bioprinted perfused scaffold for vascularized tissue regeneration. Adv. Sci. (Weinh.), 2016, 3(8), 1600058.
[http://dx.doi.org/10.1002/advs.201600058] [PMID: 27818910]
[115]
Lei, D.; Yang, Y.; Liu, Z.; Yang, B.; Gong, W.; Chen, S.; Wang, S.; Sun, L.; Song, B.; Xuan, H.; Mo, X.; Sun, B.; Li, S.; Yang, Q.; Huang, S.; Chen, S.; Ma, Y.; Liu, W.; He, C.; Zhu, B.; Jeffries, E.M.; Qing, F-L.; Ye, X.; Zhao, Q.; You, Z. 3D printing of biomimetic vasculature for tissue regeneration. Mater. Horiz., 2019, 6, 1197-1206.
[http://dx.doi.org/10.1039/C9MH00174C]
[116]
Miri, A.K.; Khalilpour, A.; Cecen, B.; Maharjan, S.; Shin, S.R.; Khademhosseini, A. Multiscale bioprinting of vascularized models. Biomaterials, 2019, 198, 204-216.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.006] [PMID: 30244825]
[117]
Ozbolat, I.T. Scaffold-Based or scaffold-free bioprinting: Competing or complementing approaches? J. Nanotechnol. Eng. Med., 2015, 6(2), 024701.
[http://dx.doi.org/10.1115/1.4030414]
[118]
Koo, Y.; Choi, E-J.; Lee, J.; Kim, H-J.; Kim, G.; Do, S.H. 3D printed cell-laden collagen and hybrid scaffolds for in vivo articular cartilage tissue regeneration. J. Ind. Eng. Chem., 2018, 66, 343-355.
[http://dx.doi.org/10.1016/j.jiec.2018.05.049]
[119]
Lee, B.; Shafiq, M.; Jung, Y.; Park, J-C.; Kim, S.H. Characterization and preparation of bio-tubular scaffolds for fabricating artificial vascular grafts by combining electrospinning and a co-culture system. Macromol. Res., 2016, 24, 131-142.
[http://dx.doi.org/10.1007/s13233-016-4017-5]
[120]
Ji, S.; Almeida, E.; Guvendiren, M. 3D bioprinting of complex channels within cell-laden hydrogels. Acta Biomater., 2019, 95, 214-224.
[http://dx.doi.org/10.1016/j.actbio.2019.02.038] [PMID: 30831327]
[121]
Choi, Y.J.; Jun, Y.J.; Kim, D.Y.; Yi, H.G.; Chae, S.H.; Kang, J.; Lee, J.; Gao, G.; Kong, J.S.; Jang, J.; Chung, W.K.; Rhie, J.W.; Cho, D.W. A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss. Biomaterials, 2019, 206, 160-169.
[http://dx.doi.org/10.1016/j.biomaterials.2019.03.036] [PMID: 30939408]
[122]
Ashammakhi, N.; Ahadian, S.; Xu, C.; Montazerian, H.; Ko, H.; Nasiri, R.; Barros, N.; Khademhosseini, A. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater. Today Bio, 2019, 1, 100008.
[http://dx.doi.org/10.1016/j.mtbio.2019.100008] [PMID: 32159140]
[123]
Lozano, R.; Stevens, L.; Thompson, B.C.; Gilmore, K.J.; Gorkin, R., III; Stewart, E.M. in het Panhuis, M.; Romero-Ortega, M.; Wallace, G.G. 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials, 2015, 67, 264-273.
[http://dx.doi.org/10.1016/j.biomaterials.2015.07.022] [PMID: 26231917]
[124]
Kim, B.S.; Kwon, Y.W.; Kong, J.S.; Park, G.T.; Gao, G.; Han, W.; Kim, M.B.; Lee, H.; Kim, J.H.; Cho, D.W. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering. Biomaterials, 2018, 168, 38-53.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.040] [PMID: 29614431]
[125]
Jang, J.; Park, H.J.; Kim, S.W.; Kim, H.; Park, J.Y.; Na, S.J.; Kim, H.J.; Park, M.N.; Choi, S.H.; Park, S.H.; Kim, S.W.; Kwon, S.M.; Kim, P.J.; Cho, D.W. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials, 2017, 112, 264-274.
[http://dx.doi.org/10.1016/j.biomaterials.2016.10.026] [PMID: 27770630]
[126]
Govindharaj, M.; Roopavath, U.K.; Rath, S.N. Valorization of discarded Marine Eel fish skin for collagen extraction as a 3D printable blue biomaterial for tissue engineering. J. Clean. Prod., 2019, 230, 412-419.
[http://dx.doi.org/10.1016/j.jclepro.2019.05.082]
[127]
Langer, R.; Vacanti, J. Advances in tissue engineering. J. Pediatr. Surg., 2016, 51(1), 8-12.
[http://dx.doi.org/10.1016/j.jpedsurg.2015.10.022] [PMID: 26711689]
[128]
Yasui, Y.; Ando, W.; Shimomura, K.; Koizumi, K.; Ryota, C.; Hamamoto, S.; Kobayashi, M.; Yoshikawa, H.; Nakamura, N. Scaffold-free, stem cell-based cartilage repair. J. Clin. Orthop. Trauma, 2016, 7(3), 157-163.
[http://dx.doi.org/10.1016/j.jcot.2016.06.002] [PMID: 27489410]
[129]
Villar, G.; Graham, A.D.; Bayley, H. A tissue-like printed material. Science, 2013, 340(6128), 48-52.
[http://dx.doi.org/10.1126/science.1229495] [PMID: 23559243]
[130]
Moldovan, N.I.; Hibino, N.; Nakayama, K. Principles of the Kenzan method for robotic cell spheroid-based three-dimensional bioprinting. Tissue Eng. Part B Rev., 2017, 23(3), 237-244.
[http://dx.doi.org/10.1089/ten.teb.2016.0322] [PMID: 27917703]
[131]
Ong, C.S.; Fukunishi, T.; Nashed, A.; Blazeski, A.; Zhang, H.; Hardy, S.; DiSilvestre, D.; Vricella, L.; Conte, J.; Tung, L.; Tomaselli, G.; Hibino, N. Creation of cardiac tissue exhibiting mechanical integration of spheroids using 3D bioprinting. J. Vis. Exp., 2017, (125), 55438.
[http://dx.doi.org/10.3791/55438] [PMID: 28715377]
[132]
Arai, K.; Murata, D.; Verissimo, A.R.; Mukae, Y.; Itoh, M.; Nakamura, A.; Morita, S.; Nakayama, K. Fabrication of scaffold-free tubular cardiac constructs using a Bio-3D printer. PLoS One, 2018, 13(12), e0209162.
[http://dx.doi.org/10.1371/journal.pone.0209162] [PMID: 30557409]
[133]
Pourchet, L.J.; Thepot, A.; Albouy, M.; Courtial, E.J.; Boher, A.; Blum, L.J.; Marquette, C.A. Human skin 3D bioprinting using scaffold-free approach. Adv. Healthc. Mater., 2017, 6(4), 1601101.
[http://dx.doi.org/10.1002/adhm.201601101] [PMID: 27976537]

© 2024 Bentham Science Publishers | Privacy Policy