Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Developments on Synthesis of Indole Derivatives Through Green Approaches and Their Pharmaceutical Applications

Author(s): Dipayan Mondal, Pankaj Lal Kalar, Shivam Kori, Shovanlal Gayen* and Kalpataru Das*

Volume 24, Issue 22, 2020

Page: [2665 - 2693] Pages: 29

DOI: 10.2174/1385272824999201111203812

Price: $65

Abstract

Indole moiety is often found in different classes of pharmaceutically active molecules having various biological activities including anticancer, anti-viral, anti-psychotic, antihypertensive, anti-migraine, anti-arthritis and analgesic activities. Due to enormous applications of indole derivatives in pharmaceutical chemistry, a number of conventional synthetic methods as well as green methodology have been developed for their synthesis. Green methodology has many advantages including high yields, short reaction time, and inexpensive reagents, highly efficient and environmentally benign over conventional methods. Currently, the researchers in academia as well as in pharmaceutical industries have been developing various methods for the chemical synthesis of indole based compounds via green approaches to overcome the drawbacks of conventional methods. This review reflects the last ten years developments of the various greener methods for the synthesis of indole derivatives by using microwave, ionic liquids, water, ultrasound, nanocatalyst, green catalyst, multicomponent reaction and solvent-free reactions etc. (please see the scheme below). Furthermore, the applications of green chemistry towards developments of indole containing pharmaceuticals and their biological studies have been represented in this review.

Keywords: Indole derivatives, synthesis, methodology, green approaches, microwave synthesis, ultrasonic reactions, ball milling, ionic liquids, multi component reaction, water, solvent-free synthesis, catalysis, pharmacological activity.

« Previous
Graphical Abstract

[1]
Anastas, P.; Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[2]
Sheldon, R.A. Fundamentals of green chemistry: efficiency in reaction design. Chem. Soc. Rev., 2012, 41(4), 1437-1451.
[http://dx.doi.org/10.1039/C1CS15219J] [PMID: 22033698]
[3]
Li, C.J.; Trost, B.M. Green chemistry for chemical synthesis. Proc. Natl. Acad. Sci. USA, 2008, 105(36), 13197-13202.
[http://dx.doi.org/10.1073/pnas.0804348105] [PMID: 18768813]
[4]
Rogers, L.; Jensen, K.F. Continuous manufacturing–the green chemistry promise? Green Chem., 2019, 21, 3481-3498.
[http://dx.doi.org/10.1039/C9GC00773C]
[5]
Ciriminna, R.; Pagliaro, M. Green chemistry in the fine chemicals and pharmaceutical industries. Org. Process Res. Dev., 2013, 17, 1479-1484.
[http://dx.doi.org/10.1021/op400258a]
[6]
Cue, B.W.; Zhang, J. Green process chemistry in the pharmaceutical industry. Green Chem. Lett. Rev., 2009, 2, 193-211.
[http://dx.doi.org/10.1080/17518250903258150]
[7]
Anastas, P.T.; Lankey, R.L. Life cycle assessment and green chemistry: the yin and yang of industrial ecology. Green Chem., 2000, 2, 289-295.
[http://dx.doi.org/10.1039/b005650m]
[8]
Erythropel, H.C.; Zimmerman, J.B.; de Winter, T.M.; Petitjean, L.; Melnikov, F.; Lam, C.H.; Lounsbury, A.W.; Mellor, K.E.; Janković, N.Z.; Tu, Q.; Pincus, L.N. The green chemis TREE: 20 years after taking root with the 12 principles. Green Chem., 2018, 20, 1929-1961.
[http://dx.doi.org/10.1039/C8GC00482J]
[9]
Trost, B.M. The atom economy--a search for synthetic efficiency. Science, 1991, 254(5037), 1471-1477.
[http://dx.doi.org/10.1126/science.1962206] [PMID: 1962206]
[10]
Shanab, K.; Neudorfer, C.; Schirmer, E.; Spreitzer, H. Green solvents in organic synthesis: an overview. Curr. Org. Chem., 2013, 17, 1179-1187.
[http://dx.doi.org/10.2174/1385272811317110005]
[11]
Nadagouda, M.N.; Speth, T.F.; Varma, R.S. Microwave-assisted green synthesis of silver nanostructures. Acc. Chem. Res., 2011, 44(7), 469-478.
[http://dx.doi.org/10.1021/ar1001457] [PMID: 21526846]
[12]
Sheldon, R.A. Green solvents for sustainable organic synthesis: state of the art. Green Chem., 2005, 7, 267-278.
[http://dx.doi.org/10.1039/b418069k]
[13]
Puri, S.; Kaur, B.; Parmar, A.; Kumar, H. Applications of ultrasound in organic synthesis-a green approach. Curr. Org. Chem., 2013, 17, 1790-1828.
[http://dx.doi.org/10.2174/13852728113179990018]
[14]
Centi, G.; Perathoner, S. Catalysis and sustainable (green) chemistry. Catal. Today, 2003, 77, 287-297.
[http://dx.doi.org/10.1016/S0920-5861(02)00374-7]
[15]
Gawande, M.B.; Bonifácio, V.D.; Luque, R.; Branco, P.S.; Varma, R.S. Solvent-free and catalysts-free chemistry: a benign pathway to sustainability. ChemSusChem, 2014, 7(1), 24-44.
[http://dx.doi.org/10.1002/cssc.201300485] [PMID: 24357535]
[16]
Polshettiwar, V.; Varma, R.S. Green chemistry by nano-catalysis. Green Chem., 2010, 12, 743-754.
[http://dx.doi.org/10.1039/b921171c]
[17]
Cioc, R.C.; Ruijter, E.; Orru, R.V. Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem., 2014, 16, 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[18]
Simon, M.O.; Li, C.J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev., 2012, 41(4), 1415-1427.
[http://dx.doi.org/10.1039/C1CS15222J] [PMID: 22048162]
[19]
Tucker, J.L. Green chemistry, a pharmaceutical perspective. Org. Process Res. Dev., 2006, 10, 315-319.
[http://dx.doi.org/10.1021/op050227k]
[20]
Mohamed, H.M. Green, environment-friendly, analytical tools give insights in pharmaceuticals and cosmetics analysis. Trends Analyt. Chem., 2015, 66, 176-192.
[http://dx.doi.org/10.1016/j.trac.2014.11.010]
[21]
Bhattacharya, A.; Bandichhor, R. Green Technologies in the Generic Pharmaceutical Industry. In:Green Chemistry in the Pharmaceutical Industry; Wiley & Sons: New York, 2010, pp. 304-306.
[http://dx.doi.org/10.1002/9783527629688.ch14]
[22]
Jahangirian, H.; Lemraski, E.G.; Webster, T.J.; Rafiee-Moghaddam, R.; Abdollahi, Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int. J. Nanomedicine, 2017, 12, 2957-2978.
[http://dx.doi.org/10.2147/IJN.S127683] [PMID: 28442906]
[23]
Kaushik, N.K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.H.; Verma, A.K.; Choi, E.H. Biomedical importance of indoles. Molecules, 2013, 18(6), 6620-6662.
[http://dx.doi.org/10.3390/molecules18066620] [PMID: 23743888]
[24]
Sravanthi, T.V.; Manju, S.L. Indoles - A promising scaffold for drug development. Eur. J. Pharm. Sci., 2016, 91, 1-10.
[http://dx.doi.org/10.1016/j.ejps.2016.05.025] [PMID: 27237590]
[25]
Amin, S.A.; Adhikari, N.; Jha, T.; Gayen, S. Exploring structural requirements of unconventional Knoevenagel-type indole derivatives as anticancer agents through comparative QSAR modeling approaches. Can. J. Chem., 2016, 94, 637-644.
[http://dx.doi.org/10.1139/cjc-2016-0050]
[26]
Amin, S.A.; Adhikari, N.; Jha, T.; Gayen, S. An integrated multi-QSAR modeling approach for designing Knoevenagel-type indoles with enhancing cytotoxic profiles. Curr Comput Aided Drug Des, 2017, 13(4), 336-345.
[http://dx.doi.org/10.2174/1573409913666170309150014] [PMID: 28294050]
[27]
Gaikwad, R.; Amin, S.A.; Adhikari, N.; Ghorai, S.; Jha, T.; Gayen, S. Identification of molecular fingerprints of phenylindole derivatives as cytotoxic agents: a multi-QSAR approach. J. Struct. Chem., 2018, 29, 1095-1107.
[http://dx.doi.org/10.1007/s11224-018-1094-4]
[28]
Biradar, J.S.; Sasidhar, B.S. Solvent-free, microwave assisted Knoevenagel condensation of novel 2,5-disubstituted indole analogues and their biological evaluation. Eur. J. Med. Chem., 2011, 46(12), 6112-6118.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.004] [PMID: 22014995]
[29]
Ashok, D.; Srinivas, G.; Kumar, A.V.; Gandhi, D.M. Microwave-assisted synthesis and evaluation of indole based benzofuran scaffolds as antimicrobial and antioxidant agents. Russ. J. Bioorganic Chem., 2016, 42, 560-566.
[http://dx.doi.org/10.1134/S1068162016050034]
[30]
Arya, K.; Rawat, D.S.; Dandia, A.; Sasai, H. Brønsted acidic ionic liquids: Green, efficient and reusable catalyst for synthesisof fluorinated spiro [indole-thiazinones/thiazolidinones] as antihistamic agents. J. Fluor. Chem., 2012, 137, 117-122.
[http://dx.doi.org/10.1016/j.jfluchem.2012.03.003]
[31]
Gaikwad, R.; Bobde, Y.; Ganesh, R.; Patel, T.; Rathore, A.; Ghosh, B.; Das, K.; Gayen, S. 2-Phenylindole derivatives as anticancer agents: synthesis and screening against murine melanoma, human lung and breast cancer cell lines. Synth. Commun., 2019, 49, 2258-2269.
[http://dx.doi.org/10.1080/00397911.2019.1620282]
[32]
Patel, T.; Gaikwad, R.; Jain, K.; Ganesh, R.; Bobde, Y.; Ghosh, B.; Das, K.; Gayen, S. First report on 3-(3-oxoaryl) indole derivatives as anticancer agents: Microwave assisted synthesis, in vitro screening and molecular docking studies. ChemistrySelect, 2019, 4, 4478-4482.
[http://dx.doi.org/10.1002/slct.201900088]
[33]
Daştan, A.; Kulkarni, A.; Török, B. Environmentally benign synthesis of heterocyclic compounds by combined microwave-assisted heterogeneous catalytic approaches. Curr. Green Chem., 2012, 14, 17-37.
[http://dx.doi.org/10.1039/C1GC15837F]
[34]
Paul, S.; Nanda, P.; Gupta, R.; Loupy, A. Ac2O–Py/basic alumina as a versatile reagent for acetylations in solvent-free conditions under microwave irradiation. Tetrahedron Lett., 2002, 43, 4261-4265.
[http://dx.doi.org/10.1016/S0040-4039(02)00732-3]
[35]
Mavandadi, F.; Lidström, P. Microwave - assisted chemistry in drug discovery. Curr. Top. Med. Chem., 2004, 4(7), 773-792.
[http://dx.doi.org/10.2174/1568026043451078] [PMID: 15032686]
[36]
Lew, A.; Krutzik, P.O.; Hart, M.E.; Chamberlin, A.R. Increasing rates of reaction: microwave-assisted organic synthesis for combinatorial chemistry. J. Comb. Chem., 2002, 4(2), 95-105.
[http://dx.doi.org/10.1021/cc010048o] [PMID: 11886281]
[37]
Creencia, E.C.; Tsukamoto, M.; Horaguchi, T. One-pot-one-step, microwave-assisted Fischer-indole synthesis. J. Heterocycl. Chem., 2011, 48, 1095-1102.
[http://dx.doi.org/10.1002/jhet.689]
[38]
Liu, K.G.; Robichaud, A.J.; Lo, J.R.; Mattes, J.F.; Cai, Y. Rearrangement of 3,3-disubstituted indolenines and synthesis of 2,3-substituted indoles. Org. Lett., 2006, 8(25), 5769-5771.
[http://dx.doi.org/10.1021/ol0623567] [PMID: 17134268]
[39]
Xu, D.Q.; Yang, W.L.; Luo, S.P.; Wang, B.T.; Wu, J.; Xu, Z.Y. Fischer-indole synthesis in Brønsted acidic ionic liquids: a green, mild, and regiospecific reaction system. Eur. J. Org. Chem., 2007, 2007, 1007-1012.
[http://dx.doi.org/10.1002/ejoc.200600886]
[40]
Kelly, T.R.; Kim, M.H.; Curtis, A.D. Structure correction and synthesis of the naturally occurring benzothiazinone BMY 40662. J. Org. Chem., 1993, 58, 5855-5857.
[http://dx.doi.org/10.1021/jo00073a057]
[41]
Murthy, Y.L.; Govindh, B.; Diwakar, B.S.; Nagalakshmi, K.; Venu, R. Microwave-assisted neat reaction technology for regioselective thiocyanation of substituted anilines and indoles in solid media. J. Iran. Chem. Soc., 2011, 8, 292-297.
[http://dx.doi.org/10.1007/BF03246227]
[42]
Ko, S.; Lin, C.; Tu, Z.; Wang, Y.F.; Wang, C.C.; Yao, C.F. CAN and iodine-catalyzed reaction of indole or 1-methylindole with α, β-unsaturated ketone or aldehyde. Tetrahedron Lett., 2006, 47, 487-492.
[http://dx.doi.org/10.1016/j.tetlet.2005.11.058]
[43]
Wang, S.Y.; Ji, S.J.; Loh, T.P. The Michael addition of indole to α, β-unsaturated ketones catalyzed by iodine at room temperature. Synlett, 2003, 2003, 2377-2379.
[http://dx.doi.org/10.1055/s-2003-42105]
[44]
Xu, R.; Ding, J.C.; Chen, X.A.; Liu, M.C.; Wu, H.Y. Gallium trichloride-catalyzed conjugate addition of indole and pyrrole to α, β-unsaturated ketones in aqueous media. Chin. Chem. Lett., 2009, 20, 676-679.
[http://dx.doi.org/10.1016/j.cclet.2009.01.028]
[45]
Parmar, S.S.; Pandey, B.R.; Dwivedi, C.; Harbison, R.D. Anticonvulsant activity and monoamine oxidase inhibitory properties of 1,3,5-trisubstituted pyrazolines. J. Pharm. Sci., 1974, 63(7), 1152-1155.
[http://dx.doi.org/10.1002/jps.2600630730] [PMID: 4850598]
[46]
Rajendra Prasad, Y.; Lakshmana Rao, A.; Prasoona, L.; Murali, K.; Ravi Kumar, P. Synthesis and antidepressant activity of some 1,3,5-triphenyl-2-pyrazolines and 3-(2′'-hydroxy naphthalen-1′'-yl)-1,5-diphenyl-2-pyrazolines. Bioorg. Med. Chem. Lett., 2005, 15(22), 5030-5034.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.040] [PMID: 16168645]
[47]
Patil, P.O.; Bari, S.B. Synthesis, characterization and screening for antidepressant and anticonvulsant activity of 4, 5-dihydropyrazole bearing indole derivatives. Arab. J. Chem., 2016, 9, 588-595.
[http://dx.doi.org/10.1016/j.arabjc.2013.08.027]
[48]
Azeredo, J.B.; Godoi, M.; Martins, G.M.; Silveira, C.C.; Braga, A.L. A solvent- and metal-free synthesis of 3-chacogenyl-indoles employing DMSO/I2 as an eco-friendly catalytic oxidation system. J. Org. Chem., 2014, 79(9), 4125-4130.
[http://dx.doi.org/10.1021/jo5000779] [PMID: 24712301]
[49]
Wen, Z.; Xu, J.; Wang, Z.; Qi, H.; Xu, Q.; Bai, Z.; Zhang, Q.; Bao, K.; Wu, Y.; Zhang, W. 3-(3,4,5-Trimethoxyphenylselenyl)-1H-indoles and their selenoxides as combretastatin A-4 analogs: microwave-assisted synthesis and biological evaluation. Eur. J. Med. Chem., 2015, 90, 184-194.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.024] [PMID: 25461319]
[50]
Ranke, J.; Stolte, S.; Störmann, R.; Arning, J.; Jastorff, B. Design of sustainable chemical products--the example of ionic liquids. Chem. Rev., 2007, 107(6), 2183-2206.
[http://dx.doi.org/10.1021/cr050942s] [PMID: 17564479]
[51]
Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 2008, 37(1), 123-150.
[http://dx.doi.org/10.1039/B006677J] [PMID: 18197338]
[52]
Greaves, T.L.; Drummond, C.J. Protic ionic liquids: properties and applications. Chem. Rev., 2008, 108(1), 206-237.
[http://dx.doi.org/10.1021/cr068040u] [PMID: 18095716]
[53]
Earle, M.J.; McCormac, P.B.; Seddon, K.R. Regioselective alkylation in ionic liquids. Chem. Commun., 1998, 20, 2245-2246.
[http://dx.doi.org/10.1039/a806328a]
[54]
Cai, Q.; Li, Z.; Wei, J.; Ha, C.; Pei, D.; Ding, K. Assembly of indole-2-carboxylic acid esters through a ligand-free copper-catalysed cascade process. Chem. Commun. (Camb.), 2009, 48(48), 7581-7583.
[http://dx.doi.org/10.1039/b918345k] [PMID: 20024286]
[55]
Gu, L.; Li, X. Microwave-assisted synthesis of indole-2-carboxylic acid esters in ionic liquid. J. Braz. Chem. Soc., 2011, 22, 2036-2039.
[http://dx.doi.org/10.1590/S0103-50532011001100003]
[56]
Arya, K.; Dandia, A. Synthesis of biologically important novel fluorinated spiro heterocycles under microwaves catalyzed by montmorillonite KSF. J. Fluor. Chem., 2007, 128, 224-231.
[http://dx.doi.org/10.1016/j.jfluchem.2006.12.003]
[57]
Rajesh, U.C.; Kholiya, R.; Thakur, A.; Rawat, D.S. [TBA][Gly] ionic liquid promoted multi-component synthesis of 3-substituted indoles and indolyl-4H-chromenes. Tetrahedron Lett., 2015, 56, 1790-1793.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.058]
[58]
Klier, L.; Bresser, T.; Nigst, T.A.; Karaghiosoff, K.; Knochel, P. Lewis acid-triggered selective zincation of chromones, quinolones, and thiochromones: application to the preparation of natural flavones and isoflavones. J. Am. Chem. Soc., 2012, 134(33), 13584-13587.
[http://dx.doi.org/10.1021/ja306178q] [PMID: 22860983]
[59]
Hoettecke, N.; Rotzoll, S.; Albrecht, U.; Lalk, M.; Fischer, C.; Langer, P. Synthesis and antimicrobial activity of 2-alkenylchroman-4-ones, 2-alkenylthiochroman-4-ones and 2-alkenylquinol-4-ones. Bioorg. Med. Chem., 2008, 16(24), 10319-10325.
[http://dx.doi.org/10.1016/j.bmc.2008.10.043] [PMID: 18977661]
[60]
Song, Y.L.; Wu, F.; Zhang, C.C.; Liang, G.C.; Zhou, G.; Yu, J.J. Ionic liquid catalyzed synthesis of 2-(indole-3-yl)-thiochroman-4-ones and their novel antifungal activities. Bioorg. Med. Chem. Lett., 2015, 25(2), 259-261.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.056] [PMID: 25499881]
[61]
Rahaman, R.; Devi, N.; Sarma, K.; Barman, P. Microwave-assisted synthesis of 3-sulfenylindoles by sulfonyl hydrazides using organic ionic base-Brønsted acid. RSC Advances, 2016, 6, 10873-10879.
[http://dx.doi.org/10.1039/C5RA24851E]
[62]
Mehrabi, H. Synthesis of α-oximinoketones under ultrasound irradiation. Ultrason. Sonochem., 2008, 15(4), 279-282.
[http://dx.doi.org/10.1016/j.ultsonch.2007.09.006] [PMID: 17959410]
[63]
Pizzuti, L.; Piovesan, L.A.; Flores, A.F.; Quina, F.H.; Pereira, C.M. Environmentally friendly sonocatalysis promoted preparation of 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-1H-pyrazoles. Ultrason. Sonochem., 2009, 16(6), 728-731.
[http://dx.doi.org/10.1016/j.ultsonch.2009.02.005] [PMID: 19324584]
[64]
Mamaghani, M.; Dastmard, S. An efficient ultrasound-promoted synthesis of the Baylis-Hillman adducts catalyzed by imidazole and L-proline. Ultrason. Sonochem., 2009, 16(4), 445-447.
[http://dx.doi.org/10.1016/j.ultsonch.2008.12.013] [PMID: 19181559]
[65]
Mosslemin, M.H.; Nateghi, M.R. Rapid and efficient synthesis of fused heterocyclic pyrimidines under ultrasonic irradiation. Ultrason. Sonochem., 2010, 17(1), 162-167.
[http://dx.doi.org/10.1016/j.ultsonch.2009.07.002] [PMID: 19679502]
[66]
Oikawa, Y.; Hirasawa, H.; Yonemitsu, O. Meldrum’s acid in organic synthesis. 1. A convenient one-pot synthesis of ethyl indolepropionates. Tetrahedron Lett., 1978, 19, 1759-1762.
[http://dx.doi.org/10.1016/0040-4039(78)80037-9]
[67]
Appendino, G.; Cicione, L.; Minassi, A. A multicomponent synthesis of gem-(β-dicarbonyl) arylmethanes. Tetrahedron Lett., 2009, 50, 5559-5561.
[http://dx.doi.org/10.1016/j.tetlet.2009.05.033]
[68]
Renzetti, A.; Dardennes, E.; Fontana, A.; De Maria, P.; Sapi, J.; Gérard, S. TiCl4/Et3N-promoted three-component condensation between aromatic heterocycles, aldehydes, and active methylene compounds. J. Org. Chem., 2008, 73(17), 6824-6827.
[http://dx.doi.org/10.1021/jo800529q] [PMID: 18690741]
[69]
Gerard, S.; Renzetti, A.; Lefevre, B.; Fontana, A.; de Maria, P.; Sapi, J. Multicomponent reactions studies: Yonemitsu-type trimolecular condensations promoted by Ti (IV) derivatives. Tetrahedron, 2010, 66, 3065-3069.
[http://dx.doi.org/10.1016/j.tet.2010.02.025]
[70]
Epifano, F.; Genovese, S.; Rosati, O.; Tagliapietra, S.; Pelucchini, C.; Curini, M. Ytterbium triflate catalyzed synthesis of β-functionalized indole derivatives. Tetrahedron Lett., 2011, 52, 568-571.
[http://dx.doi.org/10.1016/j.tetlet.2010.11.128]
[71]
Nikpassand, M.; Fekri, L.Z.; Nabatzadeh, M. Efficient and green synthesis of novel derivatives of 3,3′-((aryl-1-phenyl-1H-pyrazol-4-yl)methylene)bis(1H-indole) under ultrasound irradiation. Synth. Commun., 2017, 47, 29-36.
[http://dx.doi.org/10.1080/00397911.2016.1249286]
[72]
Shaikh, T.; Sharma, A.; Kaur, H. Ultrasonication-assisted synthesis of 3-substituted indoles in water using polymer grafted ZnO, nanoparticles as eco-friendly catalyst. ChemistrySelect, 2019, 4, 245-249.
[http://dx.doi.org/10.1002/slct.201802702]
[73]
Rahimi, S.; Amrollahi, M.A.; Kheilkordi, Z. An efficient ultrasound-promoted method for the synthesis of bis (indole) derivatives. C. R. Chim., 2015, 18, 558-563.
[http://dx.doi.org/10.1016/j.crci.2014.10.005]
[74]
Vieira, B.M.; Thurow, S.; Brito, J.S.; Perin, G.; Alves, D.; Jacob, R.G.; Santi, C.; Lenardão, E.J. Sonochemistry: an efficient alternative to the synthesis of 3-selanylindoles using CuI as catalyst. Ultrason. Sonochem., 2015, 27, 192-199.
[http://dx.doi.org/10.1016/j.ultsonch.2015.05.012] [PMID: 26186837]
[75]
Anastas, P.T.; Warner, J.C. Principles of green chemistry. In:Green Chemistry; Theory and Practice; Oxford University Press, 1994, pp. 29-56.
[76]
Tanaka, K.; Toda, F. Solvent-free Organic Synthesis; Wiley & Sons: New York, 2003.
[http://dx.doi.org/10.1002/3527601821]
[77]
Ooi, T.; Maruoka, K. Asymmetric organocatalysis of structurally well-defined chiral quaternary ammonium fluorides. Acc. Chem. Res., 2004, 37(8), 526-533.
[http://dx.doi.org/10.1021/ar030060k] [PMID: 15311951]
[78]
Zhang, J.L.; Gong, Y.F. Cross-coupling reactions of two different activated alkenes through tetrabutylammonium fluoride (TBAF) promoted deprotonation/activation strategy: a regioselective construction of quaternary carbon centers. Org. Lett., 2011, 13(2), 176-179.
[http://dx.doi.org/10.1021/ol1028332] [PMID: 21142041]
[79]
Bhalla, V.; Singh, H.; Kumar, M. Facile cyclization of terphenyl to triphenylene: a new chemodosimeter for fluoride ions. Org. Lett., 2010, 12(3), 628-631.
[http://dx.doi.org/10.1021/ol902861b] [PMID: 20043641]
[80]
Qu, Y.; Ke, F.; Zhou, L.; Li, Z.; Xiang, H.; Wu, D.; Zhou, X. Synthesis of 3-indole derivatives by copper sulfonato Salen catalyzed three-component reactions in water. Chem. Commun. (Camb.), 2011, 47(13), 3912-3914.
[http://dx.doi.org/10.1039/c0cc05695b] [PMID: 21340052]
[81]
Anselmo, D.; Escudero-Adán, E.C.; Martínez Belmonte, M.; Kleij, A.W. Zn-Mediated synthesis of 3-substituted indoles using a three-component reaction approach. Eur. J. Inorg. Chem., 2012, 2012, 4694-4700.
[http://dx.doi.org/10.1002/ejic.201200150]
[82]
Singh, N.; Allam, B.K.; Raghuvanshi, D.S.; Singh, K.N. An efficient tetrabutylammonium fluoride (TBAF)-catayzed three-component synthesis of 3-substituted indole derivatives under solvent-free conditions. Adv. Synth. Catal., 2013, 355, 1840-1848.
[http://dx.doi.org/10.1002/adsc.201300162]
[83]
Ryabukhin, S.V.; Plaskon, A.S.; Volochnyuk, D.M.; Pipko, S.E.; Shivanyuk, A.N.; Tolmachev, A.A. Combinatorial Knoevenagel reactions. J. Comb. Chem., 2007, 9(6), 1073-1078.
[http://dx.doi.org/10.1021/cc070073f] [PMID: 17900167]
[84]
Tanaka, K.; Toda, F. Solvent-free organic synthesis. Chem. Rev., 2000, 100(3), 1025-1074.
[http://dx.doi.org/10.1021/cr940089p] [PMID: 11749257]
[85]
Loupy, A. Solvent-free reactions. Modern Solvents in Organic Synthesis; Springer-Verlag: Berlin, 1999, pp. 153-207.
[http://dx.doi.org/10.1007/3-540-48664-X_7]
[86]
Gawande, M.B.; Branco, P.S.; Varma, R.S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev., 2013, 42(8), 3371-3393.
[http://dx.doi.org/10.1039/c3cs35480f] [PMID: 23420127]
[87]
Mohsenimehr, M.; Mamaghani, M.; Shirini, F.; Sheykhan, M.; Moghaddam, F.A. One-pot synthesis of novel pyrido [2, 3-d] pyrimidines using HAp-encapsulated-γ-Fe2O3 supported sulfonic acid nanocatalyst under solvent-free conditions. Chin. Chem. Lett., 2014, 25, 1387-1391.
[http://dx.doi.org/10.1016/j.cclet.2014.04.025]
[88]
Mamaghani, M.; Shirini, F.; Sheykhan, M.; Mohsenimehr, M. Synthesis of a copper (II) complex covalently anchoring a (2-iminomethyl) phenol moiety supported on HAp-encapsulated-α-Fe2O3 as an inorganic–organic hybrid magnetic nanocatalyst for the synthesis of primary and secondary amides. RSC Advances, 2015, 5, 44524-44529.
[http://dx.doi.org/10.1039/C5RA03977K]
[89]
Mamaghani, M.; Sheykhan, M.; Sadeghpour, M.; Tavakoli, F. An expeditious one-pot synthesis of novel bioactive indole-substituted pyrido [2, 3-d] pyrimidines using Fe3O4@ SiO2-supported ionic liquid nanocatalyst. Monatsh. Chem., 2018, 149, 1437-1446.
[http://dx.doi.org/10.1007/s00706-018-2166-2]
[90]
Jammi, S.; Sakthivel, S.; Rout, L.; Mukherjee, T.; Mandal, S.; Mitra, R.; Saha, P.; Punniyamurthy, T. CuO nanoparticles catalyzed C-N, C-O, and C-S cross-coupling reactions: scope and mechanism. J. Org. Chem., 2009, 74(5), 1971-1976.
[http://dx.doi.org/10.1021/jo8024253] [PMID: 19173559]
[91]
Rout, L.; Jammi, S.; Punniyamurthy, T. Novel CuO nanoparticle catalyzed C-N cross coupling of amines with iodobenzene. Org. Lett., 2007, 9(17), 3397-3399.
[http://dx.doi.org/10.1021/ol0713887] [PMID: 17637032]
[92]
Kidwai, M.; Bhardwaj, S.; Poddar, R. C-Arylation reactions catalyzed by CuO-nanoparticles under ligand free conditions. Beilstein J. Org. Chem., 2010, 6, 35.
[http://dx.doi.org/10.3762/bjoc.6.35] [PMID: 20502607]
[93]
Suramwar, N.V.; Thakare, S.R.; Karade, N.N.; Khaty, N.T. Green synthesis of predominant (1 1 1) facet CuO nanoparticles: Heterogeneous and recyclable catalyst for N-arylation of indoles. J. Mol. Catal. Chem., 2012, 359, 28-34.
[http://dx.doi.org/10.1016/j.molcata.2012.03.017]
[94]
Bahuguna, A.; Kumar, S.; Sharma, V.; Reddy, K.L.; Bhattacharyya, K.; Ravikumar, P.C.; Krishnan, V. Nanocomposite of MoS2-RGO as facile, heterogeneous, recyclable, and highly efficient green catalyst for one-pot synthesis of indole alkaloids. ACS Sustain. Chem.& Eng., 2017, 5, 8551-8567.
[http://dx.doi.org/10.1021/acssuschemeng.7b00648]
[95]
Haghighi, M.; Nikoofar, K. Nano TiO2/SiO2: an efficient and reusable catalyst for the synthesis of oxindole derivatives. J. Saudi Chem. Soc., 2016, 20, 101-106.
[http://dx.doi.org/10.1016/j.jscs.2014.09.002]
[96]
Ghorbani Vaghei, R.; Hemmati, S.; Hamelian, M.; Veisi, H. An efficient, mild and selective Ullmann-type N-arylation of indoles catalysed by Pd immobilized on amidoxime-functionalized mesoporous SBA-15 as heterogeneous and recyclable nanocatalyst. Appl. Organomet. Chem., 2015, 29, 195-199.
[http://dx.doi.org/10.1002/aoc.3264]
[97]
Sayyed-Alangi, S.Z.; Hossaini, Z. ZnO nanorods as an efficient catalyst for the green synthesis of indole derivatives using isatoic anhydride. Chem. Heterocycl. Compd., 2015, 51, 541-544.
[http://dx.doi.org/10.1007/s10593-015-1734-1]
[98]
Hassan, S.; Mueller, T.J. Multicomponent syntheses based upon copper-catalyzed alkyne-azide cycloaddition. Adv. Synth. Catal., 2015, 357, 617-666.
[http://dx.doi.org/10.1002/adsc.201400904]
[99]
Kumar, D.; Kommi, D.N.; Bollineni, N.; Patel, A.R.; Chakraborti, A.K. Catalytic procedures for multicomponent synthesis of imidazoles: selectivity control during the competitive formation of tri-and tetrasubstituted imidazoles. Green Chem., 2012, 14, 2038-2049.
[http://dx.doi.org/10.1039/c2gc35277j]
[100]
Kumar, D.; Sonawane, M.; Pujala, B.; Jain, V.K.; Bhagat, S.; Chakraborti, A.K. Supported protic acid-catalyzed synthesis of 2, 3-disubstituted thiazolidin-4-ones: enhancement of the catalytic potential of protic acid by adsorption on solid supports. Green Chem., 2013, 15, 2872-2884.
[http://dx.doi.org/10.1039/c3gc41218k]
[101]
Parikh, N.; Roy, S.R.; Seth, K.; Kumar, A.; Chakraborti, A.K. On-water multicomponent reaction for the diastereoselective synthesis of functionalized tetrahydropyridines and mechanistic insight. Synthesis, 2016, 48, 547-556.
[http://dx.doi.org/10.1055/s-0035-1561296]
[102]
Shanthi, G.; Perumal, P.T. An eco-friendly synthesis of 2-aminochromenes and indolyl chromenes catalyzed by InCl3 in aqueous media. Tetrahedron Lett., 2007, 48, 6785-6789.
[http://dx.doi.org/10.1016/j.tetlet.2007.07.102]
[103]
Srihari, P.; Singh, V.K.; Bhunia, D.C.; Yadav, J.S. One-pot three-component coupling reaction: solvent-free synthesis of novel 3-substituted indoles catalyzed by PMA–SiO2. Tetrahedron Lett., 2009, 50, 3763-3766.
[http://dx.doi.org/10.1016/j.tetlet.2009.02.176]
[104]
Wang, L.; Huang, M.; Zhu, X.; Wan, Y. Polyethylene glycol (PEG-200)-promoted sustainable one-pot three-component synthesis of 3-indole derivatives in water. Appl. Catal. A Gen., 2013, 454, 160-163.
[http://dx.doi.org/10.1016/j.apcata.2012.12.008]
[105]
Shiri, M.; Zolfigol, M.A.; Kruger, H.G.; Tanbakouchian, Z. Bis- and trisindolylmethanes (BIMs and TIMs). Chem. Rev., 2010, 110(4), 2250-2293.
[http://dx.doi.org/10.1021/cr900195a] [PMID: 20041637]
[106]
Meyer, H.; Ag, B. Antianginal and anti-ischemic agents. In:Annual Reports in Medicinal Chemistry; Academic Press, 1982, Vol. 17, pp. 71-77.
[107]
Baruah, B.; Seetham Naidu, P.; Borah, P.; Bhuyan, P.J. Synthesis of 5-alkylated barbituric acids and 3-alkylated indoles via microwave-assisted three-component reactions in solvent-free conditions using Hantzsch 1,4-dihydropyridines as reducing agents. Mol. Divers., 2012, 16(2), 291-298.
[http://dx.doi.org/10.1007/s11030-012-9359-0] [PMID: 22297663]
[108]
Pan, J.; Zhao, R.; Guo, J.; Ma, D.; Xia, Y.; Gao, Y.; Xu, P.; Zhao, Y. Three-component 3-(phosphoryl) methylindole synthesis from indoles, H-phosphine oxides and carbonyl compounds under metal-free conditions. Green Chem., 2019, 21, 792-797.
[http://dx.doi.org/10.1039/C8GC03530J]
[109]
Anastas, P.T.; Tundo, P. Green Chemistry: Challenging Perspectives; Oxford University Press: Oxford, 2001.
[110]
Lamblin, M.; Nassar-Hardy, L.; Hierso, J.C.; Fouquet, E.; Felpin, F.X. Recyclable heterogeneous palladium catalysts in pure water: sustainable developments in Suzuki, Heck, Sonogashira and Tsuji–Trost reactions. Adv. Synth. Catal., 2010, 352, 33-79.
[http://dx.doi.org/10.1002/adsc.200900765]
[111]
Manabe, K.; Iimura, S.; Sun, X.M.; Kobayashi, S. Dehydration reactions in water. Brønsted acid-surfactant-combined catalyst for ester, ether, thioether, and dithioacetal formation in water. J. Am. Chem. Soc., 2002, 124(40), 11971-11978.
[http://dx.doi.org/10.1021/ja026241j] [PMID: 12358542]
[112]
Dixneuf, P.; Cadierno, V. Metal-Catalyzed Reactions in Water; John Wiley & Sons, 2013.
[http://dx.doi.org/10.1002/9783527656790]
[113]
Li, B.; Dixneuf, P.H. sp2 C-H bond activation in water and catalytic cross-coupling reactions. Chem. Soc. Rev., 2013, 42(13), 5744-5767.
[http://dx.doi.org/10.1039/c3cs60020c] [PMID: 23525331]
[114]
Khalafi-Nezhad, A.; Parhami, A.; Zare, A.; Zare, A.M.; Hasaninejad, A.; Panahi, F. Trityl chloride as a novel and efficient organic catalyst for room temperature preparation of bis (indolyl) methanes under solvent-free conditions in neutral media. Synthesis, 2008, 2008, 617-621.
[http://dx.doi.org/10.1055/s-2008-1032159]
[115]
Heravi, M.M.; Nahavandi, F.; Sadjadi, S.; Oskooie, H.A.; Tajbakhsh, M. Convenient synthesis of bis (indol) alkanes by niobium (V) chloride. Synth. Commun., 2009, 39, 3285-3292.
[http://dx.doi.org/10.1080/00397910902752246]
[116]
Azizi, N.; Gholibeghlo, E.; Manocheri, Z. Green procedure for the synthesis of bis (indolyl) methanes in water. Sci. Iran., 2012, 19, 574-578.
[http://dx.doi.org/10.1016/j.scient.2011.11.043]
[117]
Prasad, P.; Shobhashana, P.G.; Patel, M.P. An efficient synthesis of 4H-pyrano quinolinone derivatives catalysed by a versatile organocatalyst tetra-n-butylammonium fluoride and their pharmacological screening. R. Soc. Open Sci., 2017, 4(11)170764
[http://dx.doi.org/10.1098/rsos.170764] [PMID: 29291069]
[118]
Aldoshin, A.S.; Tabolin, A.A.; Ioffe, S.L.; Nenajdenko, V.G. Green, catalyst-free reaction of indoles with β-fluoro-β-nitrostyrenes in water. Eur. J. Org. Chem., 2018, 2018, 3816-3825.
[http://dx.doi.org/10.1002/ejoc.201800385]
[119]
Gupta, N.; Goyal, D. Synthesis of indole and its derivatives in water. Chem. Heterocycl. Compd., 2015, 51, 4-16.
[http://dx.doi.org/10.1007/s10593-015-1651-3]
[120]
Rowley, M.; Hallett, D.J.; Goodacre, S.; Moyes, C.; Crawforth, J.; Sparey, T.J.; Patel, S.; Marwood, R.; Patel, S.; Thomas, S.; Hitzel, L.; O’Connor, D.; Szeto, N.; Castro, J.L.; Hutson, P.H.; MacLeod, A.M. 3-(4-Fluoropiperidin-3-yl)-2-phenylindoles as high affinity, selective, and orally bioavailable h5-HT2A receptor antagonists. J. Med. Chem., 2001, 44(10), 1603-1614.
[http://dx.doi.org/10.1021/jm0004998] [PMID: 11334570]
[121]
Chen, M.; Luo, Y.; Zhang, C.; Guo, L.; Wang, Q.; Wu, Y. Graphene oxide mediated thiolation of indoles in water: a green and sustainable approach to 3-sulfenylindoles. Org. Chem. Front., 2019, 6, 116-120.
[http://dx.doi.org/10.1039/C8QO00726H]
[122]
Hazarika, S.; Barman, P. Ultrasound assisted solvent/Metal free synthesis of 3-sulfenylindoles employing TBATB-grafted MCM-48 as a suitable heterogeneous catalyst. ChemistrySelect, 2019, 4, 7082-7089.
[http://dx.doi.org/10.1002/slct.201901455]
[123]
O’Hagan, D. Fluorine in health care: organofluorine containing blockbuster drugs. J. Fluor. Chem., 2010, 131, 1071-1081.
[http://dx.doi.org/10.1016/j.jfluchem.2010.03.003]
[124]
Jiang, H.X.; Zhuang, D.M.; Huang, Y.; Cao, X.X.; Yao, J.H.; Li, J.Y.; Wang, J.Y.; Zhang, C.; Jiang, B. Design, synthesis, and biological evaluation of novel trifluoromethyl indoles as potent HIV-1 NNRTIs with an improved drug resistance profile. Org. Biomol. Chem., 2014, 12(21), 3446-3458.
[http://dx.doi.org/10.1039/C3OB42186D] [PMID: 24752610]
[125]
Pillaiyar, T.; Sedaghati, M.; Schnakenburg, G. Reaction of indoles with aromatic fluoromethyl ketones: an efficient synthesis of trifluoromethyl-indolyl-phenylethanols using K2CO3/nBu4PBr in water. Beilstein Archives, 2020, 2020(1), 17.
[http://dx.doi.org/10.3762/bxiv.2020.17.v1]
[126]
Srivastava, A.; Yadav, A.; Samanta, S. Biopolymeric alginic acid: an efficient recyclable green catalyst for the Friedel–Crafts reaction of indoles with isoquinoline-1, 3, 4-triones in water. Tetrahedron Lett., 2015, 56, 6003-6007.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.041]
[127]
Zhang, F.; Li, C.; Wang, C.; Qi, C. Facile synthesis of benzoindoles and naphthofurans through carbonaceous material-catalyzed cyclization of naphthylamines/naphthols with nitroolefins in water. Org. Biomol. Chem., 2015, 13(17), 5022-5029.
[http://dx.doi.org/10.1039/C5OB00129C] [PMID: 25823420]
[128]
Ahad, A.; Farooqui, M. Glycine catalyzed synthesis of 3-indole derivatives mediated by PEG-400 in water. Chem. Sci. (Camb.), 2016, 5, 202-206.
[http://dx.doi.org/10.7598/cst2016.1182]
[129]
Schneider, F.; Stolle, A.; Ondruschka, B.; Hopf, H. The Suzuki− Miyaura reaction under mechanochemical conditions. Org. Process Res. Dev., 2009, 13, 44-48.
[http://dx.doi.org/10.1021/op800148y]
[130]
James, S.L.; Adams, C.J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K.D.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A.G.; Parkin, I.P.; Shearouse, W.C.; Steed, J.W.; Waddell, D.C. Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev., 2012, 41(1), 413-447.
[http://dx.doi.org/10.1039/C1CS15171A] [PMID: 21892512]
[131]
Stolle, A.; Szuppa, T.; Leonhardt, S.E.; Ondruschka, B. Ball milling in organic synthesis: solutions and challenges. Chem. Soc. Rev., 2011, 40(5), 2317-2329.
[http://dx.doi.org/10.1039/c0cs00195c] [PMID: 21387034]
[132]
Tan, D.; Friščić, T. Mechanochemistry for organic chemists: an update. Eur. J. Org. Chem., 2018, 2018, 18-33.
[http://dx.doi.org/10.1002/ejoc.201700961]
[133]
Hestericova, M.; Sebesta, R. Higher enantioselectivities in thiourea-catalyzed Michael additions under solvent-free conditions. Tetrahedron, 2014, 70, 901-905.
[http://dx.doi.org/10.1016/j.tet.2013.12.029]
[134]
Zille, M.; Stolle, A.; Wild, A.; Schubert, U.S. ZnBr2-mediated synthesis of indoles in a ball mill by intramolecular hydroamination of 2-alkynylanilines. RSC Advances, 2014, 4, 13126-13133.
[http://dx.doi.org/10.1039/c4ra00715h]
[135]
Hermann, G.N.; Jung, C.L.; Bolm, C. Mechanochemical indole synthesis by rhodium-catalysed oxidative coupling of acetanilides and alkynes under solventless conditions in a ball mill. Green Chem., 2017, 19, 2520-2523.
[http://dx.doi.org/10.1039/C7GC00499K]
[136]
La Regina, G.; Gatti, V.; Famiglini, V.; Piscitelli, F.; Silvestri, R. Venting-while-heating microwave-assisted synthesis of 3-arylthioindoles. ACS Comb. Sci., 2012, 14(4), 258-262.
[http://dx.doi.org/10.1021/co200165j] [PMID: 22432410]
[137]
Colombo, E.; Ratel, P.; Mounier, L.; Guillier, F. Reissert indole synthesis using continuous-flow hydrogenation. J. Flow Chem., 2011, 1, 68-73.
[http://dx.doi.org/10.1556/jfchem.2011.00009]
[138]
Nikalje, A.G.; Gawhane, P.A.; Tiwari, S.V.; Sangshetti, J.N.; Damale, M.G. Ultrasound promoted green synthesis, docking study of indole spliced thiadiazole, α-amino phosphonates as anticancer agents and anti-tyrosinase agents. Anticancer. Agents Med. Chem., 2018, 18(9), 1267-1280.
[http://dx.doi.org/10.2174/1871520618666180417163226] [PMID: 29667556]
[139]
Ashok, D.; Gandhi, D.M.; Srinivas, G.; Kumar, A.V. Microwave-assisted synthesis of novel 1, 2, 3-triazole derivatives and their antimicrobial activity. Med. Chem. Res., 2014, 23, 3005-3018.
[http://dx.doi.org/10.1007/s00044-013-0880-1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy