Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Extremal (n,m)-Graphs w.r.t General Multiplicative Zagreb Indices

Author(s): Aisha Javed, Muhammad Kamran Jamil, Jia-Bao Liu and Akbar Ali

Volume 25, Issue 3, 2022

Published on: 03 November, 2020

Page: [476 - 482] Pages: 7

DOI: 10.2174/1386207323999201103222640

Price: $65

Abstract

Background: A topological index of a molecular graph is the numeric quantity which can predict certain physical and chemical properties of the corresponding molecule. Xu et al. introduced some graph transformations which increase or decrease the first and second multiplicative Zagreb indices and proposed a unified approach to characterize extremal (n, m)- graphs.

Method: Graph transformations are used to find the extremal graphs, these transformations either increase or decrease the general multiplicative Zagreb indices. By applying the transformations which increase the general multiplicative Zagreb indices we find the graphs with maximal general multiplicative Zagreb indices and for minimal general Zagreb indices we use the transformations which decrease the index.

Result: In this paper, we extend the Xu’s results and show that the same graph transformations increase or decrease the first and second general multiplicative Zagreb indices for . As an application, the extremal acyclic, unicyclic and bicyclic graphs are presented for general multiplicative Zagreb indices.

Conclusion: By applying the transformation we investigated that in the class of acyclic, unicyclic and bicyclic graphs, which graph gives the minimum and the maximum general multiplicative Zagreb indices.

Keywords: Graph transformations, extremal graphs, general multiplicative Zagreb indices.

Graphical Abstract

[1]
Bondy, J.A.; Murty, U.S.R. Graph theory with applications; Macmillan: New York, 1976.
[2]
Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc., 1947, 69(1), 17-20.
[http://dx.doi.org/10.1021/ja01193a005] [PMID: 20291038]
[3]
Gutman, I.; Trinajsti’c, N. Graph theory and molecular orbitals. Total π- electron energy of alternant hydrocarbons. Chem. Phys. Lett., 1972, 17, 535-538.
[http://dx.doi.org/10.1016/0009-2614(72)85099-1]
[4]
Deng, H. A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs. MATCH Commun. Math. Comput. Chem., 2007, 57, 597-616.
[5]
Gutman, I.; Das, K.C. The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem., 2004, 50, 83-92.
[6]
Liu, B. Gutman, I. Upper bounds for Zagreb indices of connected graphs. MATCH Commun. Math. Comput. Chem., 2006, 55, 439-446.
[7]
Zhou, B.; Gutman, I. Further properties of Zagreb indices. MATCH Commun. Math. Comput. Chem., 2005, 54, 233-239.
[8]
Todeschini, R.; Ballabio, D.; Consonni, V. Novel molecular descriptors based on functions of new vertex degrees., 2010.
[9]
Todeschini, R.; Ballabio, D.; Consonni, V. Novel molecular descriptors based on functions of new vertex degrees. Novel molecular structure descriptors Theory and applications I; Gutman, I; Furtula, B., Ed.; Univ.: Kragujevac, 2010, pp. 73-100.
[10]
Gutman, I. Multiplicative Zagreb indices of trees. Bull. Int. Math. Virt. Inst., 2011, 1, 13-19.
[11]
Gutman, I. Multiplicative Zagreb indices of trees. Bull. Soc. Math. Banja Lika, 2011, 18, 17-23.
[12]
Xu, K.; Hua, H. A unified approach to extremal multiplicative Zagreb indices for trees, unicyclic and bicyclic graphs. MATCH Coomun. Comput. Chem., 2012, 68, 241-256.
[13]
Basavanagoud, B.; Patil, S. Multiplicative Zagreb indices and coindices of some derived graphs. Opuscula Math., 2016, 36(3), 287-299.
[http://dx.doi.org/10.7494/OpMath.2016.36.3.287]
[14]
Das, K.C.; Yurttas, A.; Togan, M.; Cevik, A.S.; Cangul, I.N. The multi- plicative Zagreb indices of graph operations. J. Inequal. Appl., 2013, 90, 1-14.
[15]
Kazemi, R. Note on the multiplicative Zagreb indices. Discrete Appl. Math., 2016, 198, 147-154.
[http://dx.doi.org/10.1016/j.dam.2015.06.028]
[16]
Wang, C.; Liu, J.B.; Wang, S. Sharp upper bounds for multiplicative Zagreb indices of bipartite graphs with given diameter. Discrete Appl. Math., 2017, 227, 156-165.
[http://dx.doi.org/10.1016/j.dam.2017.04.037]
[17]
Vert´ık, T.; Balachandran, S. General multiplicative Zagreb indices of trees., 2019.
[18]
Vetr’ık, T.; Balachandran, S. General multiplicative Zagreb indices of graphs with given clique number. Opuscula Math., 2019, 39(3), 433-446.
[http://dx.doi.org/10.7494/OpMath.2019.39.3.433]
[19]
Alfuraidan, M.R.; Vetrik, T.; Balachandran, S. General multiplicative Zagreb indices of graphs with a small number of cycles. Symmetry (Basel), 2020, 12(4), 514.
[http://dx.doi.org/10.3390/sym12040514]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy