Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

On Certain Topological Indices of Three-Layered Single-Walled Titania Nanosheets

Author(s): Micheal Arockiaraj, Jia-Bao Liu, M. Arulperumjothi* and S. Prabhu

Volume 25, Issue 3, 2022

Published on: 12 October, 2020

Page: [483 - 495] Pages: 13

DOI: 10.2174/1386207323666201012143430

Price: $65

Abstract

Aim and Objective: Nanostructures are objects whose sizes vary between microscopic and molecular. The most significant of these new elements are carbon nanotubes. These elements have extraordinary microelectronic properties and many other exclusive physiognomies. Recently, researchers have given attention to the mathematical properties of these materials. The aim and objective of this research article is to investigate the most important molecular descriptors namely Wiener, edge-Wiener, vertex-edge-Wiener, vertex-Szeged, edge-Szeged, edge-vertex-Szeged, total-Szeged, PI, Schultz, Gutman, Mostar, edge-Mostar, and total-Mostar indices of three-layered single-walled titania nanosheets. By computing these topological indices, material science researchers can have a better understanding of structural and physical properties of titania nanosheets, thereby synthesizing more easily new variants of titania nanosheets with more amenable physicochemical properties.

Methods: The cut method turned out to be extremely handy when dealing with distance-based graph invariants which are in turn among the central concepts of chemical graph theory. In this method, we use the Djokovi-Winkler relation to find the suitable edge cuts to leave the graph into exactly two components. Based on the graph theoretical measures of the components, we obtain the desired topological indices by mathematical computations.

Results: In this paper, distance-based indices for three-layered single-walled titania nanosheets were investigated and given the exact expressions for various dimensions of three-layered singlewalled titania nanosheets. These indices may be useful in synthesizing new variants of titania nanosheets and the computed topological indices play an important role in studies of Quantitative structure-activity relationship (QSAR) and Quantitative structure-property relationship (QSPR).

Conclusion: In this paper, we have obtained the closed expressions of several distance-based topological indices of three-layered single-walled titania nanosheet TNS3 [m, n] molecular graph for the cases m > n and m < n. The graphical validations for the computed indices are done and we observe that the Wiener types, Schultz and Gutman indices perform in a similar way whereas PI and Mostar type indices perform in the same way.

Keywords: Topological indices, molecular graph, convex cuts, titania nanosheet, QSPR, QSAR.

Graphical Abstract

[1]
Agrawal, V.K.; Khadikar, P.V. QSAR prediction of toxicity of nitrobenzenes. Bioorg. Med. Chem., 2001, 9(11), 3035-3040.
[http://dx.doi.org/10.1016/S0968-0896(01)00211-5] [PMID: 11597486]
[2]
Gozalbes, R.; Doucet, J.P.; Derouin, F. Application of topological descriptors in QSAR and drug design: history and new trends. Curr. Drug Targets Infect. Disord., 2002, 2(1), 93-102.
[http://dx.doi.org/10.2174/1568005024605909] [PMID: 12462157]
[3]
Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc., 1947, 69(1), 17-20.
[http://dx.doi.org/10.1021/ja01193a005] [PMID: 20291038]
[4]
Schultz, H.P. Topological Organic Chemistry 1. Graph theory and topological indices of Alkanes. J. Chem. Inf. Comput. Sci., 1989, 29(3), 227-228.
[http://dx.doi.org/10.1021/ci00063a012]
[5]
Arockiaraj, M.; Clement, J.; Tratnik, N. Mostar indices of carbon nanostructures and circumscribed donut benzenoid systems. Int. J. Quantum Chem., 2019, 119(24)e26043
[http://dx.doi.org/10.1002/qua.26043]
[6]
Arockiaraj, M. Klavz ̌ar, S.; Mushtaq, Balasubramanian, K. Topological characterization of the full k-subdivision of a family of partial cubes and their applications to α -types of novel graphyne and graphdiyne materials. Polycycl. Aromat. Comp. 41(9), 1902-1924.
[http://dx.doi.org/10.1080/10406638.2019.1703766]
[7]
Arockiaraj, M.; Klavžar, S.; Clement, J.; Mushtaq, S.; Balasubramanian, K. Edge distance-based topological indices of strength-weighted graphs and their application to coronoid systems, carbon nanocones and SiO2 nanostructures. Mol. Inform., 2019, 38(11-12)e1900039
[http://dx.doi.org/10.1002/minf.201900039] [PMID: 31529609]
[8]
Arockiaraj, M.; Clement, J.; Balasubramanian, K. Topological indices and their applications to circumcised donut benzenoid systems, kekulenes and drugs. Polycycl. Aromat. Compd., 2020, 40(2), 280-303.
[http://dx.doi.org/10.1080/10406638.2017.1411958]
[9]
Zhao, J.; Wang, X.; Sun, T.; Li, L. In situ templated synthesis of anatase single-crystal nanotube arrays. Nanotechnology, 2005, 16(10), 2450-2454.
[http://dx.doi.org/10.1088/0957-4484/16/10/077] [PMID: 20818034]
[10]
Sopha, H.; Macak, J.M. Chapter Six - Recent Advancements in the Synthesis, Properties, and Applications of Anodic Self-organized TiO2 Nanotube Layers.Micro and Nano Technologies, Nanostructured Anodic Metal Oxides; Sulka, G.D., Ed.; Elsevier, 2020, pp. 173-209.
[http://dx.doi.org/10.1016/B978-0-12-816706-9.00006-6]
[11]
Wang, Q.; Huang, J.Y.; Li, H.Q.; Zhao, A.Z.; Wang, Y.; Zhang, K.Q.; Sun, H.T.; Lai, Y.K. Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications. Int. J. Nanomedicine, 2016, 12, 151-165.
[http://dx.doi.org/10.2147/IJN.S117498] [PMID: 28053530]
[12]
Gulati, K.; Kogawa, M.; Maher, S.; Atkins, G.; Findlay, D.; Losic, D. Titania nanotubes for local drug delivery from implant surfaces. Electrochemically Engineered Nanoporous Materials, Springer Series in Materials Science; Losic, D; Santos, A., Ed.; Springer: Cham, 2015, Vol. 220, .
[http://dx.doi.org/10.1007/978-3-319-20346-1_10]
[13]
Jing, Z.; Song, Y.; Lu, F.; Fei, W.; Mengqiong, Y.; Genxiang, L.; Qian, X.; Xiang, W.; Can, L. Photocatalytic Degradation of Rhodamine B on Anatase, Rutile, and Brookite TiO2. Chin. J. Catal., 2011, 32(6-8), 983-991.
[http://dx.doi.org/10.1016/S1872-2067(10)60222-7]
[14]
Ohwada, M.; Kimoto, K.; Mizoguchi, T.; Ebina, Y.; Sasaki, T. Atomic structure of titania nanosheet with vacancies. Sci. Rep., 2013, 3(1), 2801.
[http://dx.doi.org/10.1038/srep02801] [PMID: 24077611]
[15]
Diudea, M.V.A. Ilic ́, Omega Polynomial in TiO2 Crystal Lattices, MATCH Commun. Math. Comput. Chem., 2011, 65(1), 153-162.
[16]
Munir, M.; Nazeer, W.; Nizami, A.R.; Rafique, S.; Kang, S.M. M-Polynomials and topological indices of titania nanotubes. Symmetry (Basel), 2016, 8(11), 117.
[http://dx.doi.org/10.3390/sym8110117]
[17]
Evarestov, R.A.; Zhukovskii, Y.F.; Bandura, A.V.; Piskunov, S. Symmetry and models of single-walled TiO2 nanotubes with rectangular morphology. Cent. Eur. J. Phys., 2011, 9(2), 492-501.
[18]
Hussain, Z.; Sabar, S. On multiplicative degree-based topological indices of single-walled titania nanotubes. J. Math. Nanosci., 2018, 8(1), 39-55.
[19]
Rashid, M.A.; Ahmad, S.; Siddiqui, M.K.; Muhammad, M.H. Topological Aspects of Single-Walled Titania Nanotubes; Polycycl. Aromat. Comp, 2020.
[http://dx.doi.org/10.1080/10406638.2020.1743330]
[20]
Yan, L.; Li, Y.; Hayat, S.; Siddiqui, H.M.A.; Imran, M.; Ahmad, S.; Farahani, M.R. On degree-based and frustration related topological indices of single-walled titania nanotubes. J. Comput. Theor. Nanosci., 2016, 13(11), 9027-9032.
[http://dx.doi.org/10.1166/jctn.2016.6080]
[21]
S. Klavz ̌ar, I. Gutman, B. Mohar, labeling of benzenoid systems which reflects the vertex distance-relations. J. Chem. Inf. Comput. Sci., 1995, 35(3), 590-593.
[http://dx.doi.org/10.1021/ci00025a030]
[22]
S. Klavz ̌ar, On the canonical metric representation, average distance, and partial hamming graphs. Eur. J. Combin., 2006, 27(1), 68-73.
[http://dx.doi.org/10.1016/j.ejc.2004.07.008]
[23]
S. Klavz ̌ar, M. J. Nadjafi-Arani, Cut method: update on recent developments and equivalence of independent approaches. Curr. Org. Chem., 2015, 19(4), 348-358.
[http://dx.doi.org/10.2174/1385272819666141216232659]
[24]
Wang, W.; Varghese, O.K.; Paulsose, M.; Grimes, C.A. A study on the growth and structure of titania nonotubes. J. Mater. Res., 2004, 19(2), 417-422.
[http://dx.doi.org/10.1557/jmr.2004.19.2.417]
[25]
Evarestov, R.A.; Bandura, A.V.; Losev, M.V.; Piskunov, S.; Zhukovskii, Y.F. Titania Nanotubes Modelled from 3-layered and 6-layered(101) Anatase Sheets: Line Group Symmetry and Comparative ab Initio LCAO Calculations. Physica E, 2010, 43(1), 266-278.
[http://dx.doi.org/10.1016/j.physe.2010.07.068]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy