Review Article

细胞内钙稳态与肾脏疾病

卷 28, 期 18, 2021

发表于: 02 November, 2020

页: [3647 - 3665] 页: 19

弟呕挨: 10.2174/0929867327666201102114257

价格: $65

摘要

肾脏疾病是一个严重的健康问题,给我们的医疗保健系统带来负担。找到各类肾脏疾病的准确发病机制,为这些疾病患者的精准治疗提供指导至关重要。然而,这些疾病的确切分子机制尚未完全了解。肾细胞内钙稳态紊乱通过促进细胞增殖,刺激细胞外基质积累,在各种肾小球疾病,如原发性肾小球疾病、糖尿病肾病、急性肾损伤和多囊肾病的发生发展中起着基础性作用。加重足细胞损伤,扰乱细胞能量学以及失调细胞存活和死亡动力学。因此,防止特定肾脏细胞(如小管细胞、足细胞和系膜细胞)的钙稳态紊乱成为肾脏疾病治疗中最有前途的治疗策略之一。内质网和线粒体是这一过程中两个重要的细胞器。钙离子在内质网和线粒体结合处循环,这两个细胞器称为线粒体相关内质网膜,维持钙稳态。细胞钙稳态的药理学调节可视为肾脏疾病的一种新的治疗方法。在这里,我们将介绍生理条件下的钙稳态和肾脏疾病中钙稳态的紊乱。我们将重点讨论肾脏细胞(包括小管细胞、足细胞和系膜细胞)的钙稳态调节,特别是这些肾脏细胞的线粒体相关内质网膜。

关键词: 钙稳态,细胞,肾脏,内质网,线粒体,线粒体相关内质网膜

[1]
Foster, R.R.; Welsh, G.I.; Satchell, S.C.; Marlow, R.D.; Wherlock, M.D.; Pons, D.; Mathieson, P.W.; Bates, D.O.; Saleem, M.A. Functional distinctions in cytosolic calcium regulation between cells of the glomerular filtration barrier. Cell Calcium, 2010, 48(1), 44-53.
[http://dx.doi.org/10.1016/j.ceca.2010.06.005] [PMID: 20674014]
[2]
Mai, X.; Shang, J.; Liang, S.; Yu, B.; Yuan, J.; Lin, Y.; Luo, R.; Zhang, F.; Liu, Y.; Lv, X.; Li, C.; Liang, X.; Wang, W.; Zhou, J. Blockade of orai1 store-operated calcium entry protects against renal fibrosis. J. Am. Soc. Nephrol., 2016, 27(10), 3063-3078.
[http://dx.doi.org/10.1681/ASN.2015080889] [PMID: 26940090]
[3]
Arruda, A.P.; Hotamisligil, G.S. Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab., 2015, 22(3), 381-397.
[http://dx.doi.org/10.1016/j.cmet.2015.06.010] [PMID: 26190652]
[4]
Singh, A.V. Multiple sclerosis takes venous route: CCSVI and liberation therapy. Indian J. Med. Sci., 2010, 64(7), 337-340.
[http://dx.doi.org/10.4103/0019-5359.99879] [PMID: 22918077]
[5]
Singh, A.V.; Raymond, M.; Pace, F.; Certo, A.; Zuidema, J.M.; McKay, C.A.; Gilbert, R.J.; Lu, X.L.; Wan, L.Q. Astrocytes increase ATP exocytosis mediated calcium signaling in response to microgroove structures. Sci. Rep., 2015, 5, 7847.
[http://dx.doi.org/10.1038/srep07847] [PMID: 25597401]
[6]
Demaurex, N.; Distelhorst, C. Cell biology. Apoptosis--the calcium connection. Science, 2003, 300(5616), 65-67.
[http://dx.doi.org/10.1126/science.1083628] [PMID: 12677047]
[7]
Somlyo, A.P. Excitation-contraction coupling and the ultrastructure of smooth muscle. Circ. Res., 1985, 57(4), 497-507.
[http://dx.doi.org/10.1161/01.RES.57.4.497] [PMID: 3899402]
[8]
Singh, A.V.; Kishore, V.; Santomauro, G.; Yasa, O.; Bill, J.; Sitti, M. Mechanical coupling of puller and pusher active microswimmers influences motility. Langmuir, 2020, 36(19), 5435-5443.
[http://dx.doi.org/10.1021/acs.langmuir.9b03665] [PMID: 32343587]
[9]
Singh, A.V.; Ansari, M.H.D.; Mahajan, M.; Srivastava, S.; Kashyap, S.; Dwivedi, P.; Pandit, V.; Katha, U. Sperm cell driven microrobots-emerging opportunities and challenges for biologically inspired robotic design. Micromachines (Basel), 2020, 11(4), E448.
[http://dx.doi.org/10.3390/mi11040448] [PMID: 32340402]
[10]
Singh, A.V.; Jungnickel, H.; Leibrock, L.; Tentschert, J.; Reichardt, P.; Katz, A.; Laux, P.; Luch, A. ToF-SIMS 3D imaging unveils important insights on the cellular microenvironment during biomineralization of gold nanostructures. Sci. Rep., 2020, 10(1), 261.
[http://dx.doi.org/10.1038/s41598-019-57136-w] [PMID: 31937806]
[11]
Raymond, M.J., Jr; Ray, P.; Kaur, G.; Fredericks, M.; Singh, A.V.; Wan, L.Q. Multiaxial polarity determines individual cellular and nuclear chirality. Cell. Mol. Bioeng., 2017, 10(1), 63-74.
[http://dx.doi.org/10.1007/s12195-016-0467-2] [PMID: 28360944]
[12]
Raymond, M.J., Jr; Ray, P.; Kaur, G.; Singh, A.V.; Wan, L.Q. Cellular and nuclear alignment analysis for determining epithelial cell chirality. Ann. Biomed. Eng., 2016, 44(5), 1475-1486.
[http://dx.doi.org/10.1007/s10439-015-1431-3] [PMID: 26294010]
[13]
Singh, A.V.; Mehta, K.K.; Worley, K.; Dordick, J.S.; Kane, R.S.; Wan, L.Q. Carbon nanotube-induced loss of multicellular chirality on micropatterned substrate is mediated by oxidative stress. ACS Nano, 2014, 8(3), 2196-2205.
[http://dx.doi.org/10.1021/nn405253d] [PMID: 24559311]
[14]
Clapham, D.E. Calcium signaling. Cell, 2007, 131(6), 1047-1058.
[http://dx.doi.org/10.1016/j.cell.2007.11.028] [PMID: 18083096]
[15]
Bernardi, P.; Rasola, A. Calcium and cell death: The mitochondrial connection. Subcell. Biochem., 2007, 45, 481-506.
[http://dx.doi.org/10.1007/978-1-4020-6191-2_18] [PMID: 18193649]
[16]
Xu, H.; Guan, N.; Ren, Y.L.; Wei, Q.J.; Tao, Y.H.; Yang, G.S.; Liu, X.Y.; Bu, D.F.; Zhang, Y.; Zhu, S.N. IP3R-Grp75-VDAC1-MCU calcium regulation axis antagonists protect podocytes from apoptosis and decrease proteinuria in an Adriamycin nephropathy rat model. BMC Nephrol., 2018, 19(1), 140.
[http://dx.doi.org/10.1186/s12882-018-0940-3] [PMID: 29907098]
[17]
Lisak, D.A.; Schacht, T.; Enders, V.; Habicht, J.; Kiviluoto, S.; Schneider, J.; Henke, N.; Bultynck, G.; Methner, A. The transmembrane Bax inhibitor motif (TMBIM) containing protein family: Tissue expression, intracellular localization and effects on the ER CA2+-filling state. Biochim. Biophys. Acta, 2015, 1853(9), 2104-2114.
[http://dx.doi.org/10.1016/j.bbamcr.2015.03.002] [PMID: 25764978]
[18]
Gutiérrez, T.; Simmen, T. Endoplasmic reticulum chaperones tweak the mitochondrial calcium rheostat to control metabolism and cell death. Cell Calcium, 2018, 70, 64-75.
[http://dx.doi.org/10.1016/j.ceca.2017.05.015] [PMID: 28619231]
[19]
Arduino, D.M.; Perocchi, F. Pharmacological modulation of mitochondrial calcium homeostasis. J. Physiol., 2018, 596(14), 2717-2733.
[http://dx.doi.org/10.1113/JP274959] [PMID: 29319185]
[20]
Csordás, G.; Várnai, P.; Golenár, T.; Roy, S.; Purkins, G.; Schneider, T.G.; Balla, T.; Hajnóczky, G. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol. Cell, 2010, 39(1), 121-132.
[http://dx.doi.org/10.1016/j.molcel.2010.06.029] [PMID: 20603080]
[21]
Bartok, A.; Weaver, D.; Golenár, T.; Nichtova, Z.; Katona, M.; Bánsághi, S.; Alzayady, K.J.; Thomas, V.K.; Ando, H.; Mikoshiba, K.; Joseph, S.K.; Yule, D.I.; Csordás, G.; Hajnóczky, G. IP3 receptor isoforms differently regulate ER-mitochondrial contacts and local calcium transfer. Nat. Commun., 2019, 10(1), 3726.
[http://dx.doi.org/10.1038/s41467-019-11646-3] [PMID: 31427578]
[22]
Rizzuto, R.; Pinton, P.; Carrington, W.; Fay, F.S.; Fogarty, K.E.; Lifshitz, L.M.; Tuft, R.A.; Pozzan, T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science, 1998, 280(5370), 1763-1766.
[http://dx.doi.org/10.1126/science.280.5370.1763] [PMID: 9624056]
[23]
Csordás, G.; Renken, C.; Várnai, P.; Walter, L.; Weaver, D.; Buttle, K.F.; Balla, T.; Mannella, C.A.; Hajnóczky, G. Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol., 2006, 174(7), 915-921.
[http://dx.doi.org/10.1083/jcb.200604016] [PMID: 16982799]
[24]
Qi, H.; Li, L.; Shuai, J. Optimal microdomain crosstalk between endoplasmic reticulum and mitochondria for Ca2+ oscillations. Sci. Rep., 2015, 5, 7984.
[http://dx.doi.org/10.1038/srep07984] [PMID: 25614067]
[25]
Lam, A.K.; Galione, A. The endoplasmic reticulum and junctional membrane communication during calcium signaling. Biochim. Biophys. Acta, 2013, 1833(11), 2542-2559.
[http://dx.doi.org/10.1016/j.bbamcr.2013.06.004] [PMID: 23770047]
[26]
Naon, D.; Zaninello, M.; Giacomello, M.; Varanita, T.; Grespi, F.; Lakshminaranayan, S.; Serafini, A.; Semenzato, M.; Herkenne, S.; Hernández-Alvarez, M.I.; Zorzano, A.; De Stefani, D.; Dorn, G.W., II; Scorrano, L. Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proc. Natl. Acad. Sci. USA, 2016, 113(40), 11249-11254.
[http://dx.doi.org/10.1073/pnas.1606786113] [PMID: 27647893]
[27]
Szabadkai, G.; Bianchi, K.; Várnai, P.; De Stefani, D.; Wieckowski, M.R.; Cavagna, D.; Nagy, A.I.; Balla, T.; Rizzuto, R. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol., 2006, 175(6), 901-911.
[http://dx.doi.org/10.1083/jcb.200608073] [PMID: 17178908]
[28]
Smets, I.; Caplanusi, A.; Despa, S.; Molnar, Z.; Radu, M.; VandeVen, M.; Ameloot, M.; Steels, P. Ca2+ uptake in mitochondria occurs via the reverse action of the Na+/Ca2+ exchanger in metabolically inhibited MDCK cells. Am. J. Physiol. Renal Physiol., 2004, 286(4), F784-F794.
[http://dx.doi.org/10.1152/ajprenal.00284.2003] [PMID: 14665432]
[29]
Petrungaro, C.; Zimmermann, K.M.; Küttner, V.; Fischer, M.; Dengjel, J.; Bogeski, I.; Riemer, J. The Ca(2+)-dependent release of the Mia40-induced MICU1-MICU2 dimer from MCU regulates mitochondrial Ca(2+) uptake. Cell Metab., 2015, 22(4), 721-733.
[http://dx.doi.org/10.1016/j.cmet.2015.08.019] [PMID: 26387864]
[30]
Xing, Y.; Wang, M.; Wang, J.; Nie, Z.; Wu, G.; Yang, X.; Shen, Y. Dimerization of MICU proteins controls Ca2+ influx through the mitochondrial Ca2+ uniporter. Cell Rep., 2019, 26(5), 1203-1212.e4.
[http://dx.doi.org/10.1016/j.celrep.2019.01.022] [PMID: 30699349]
[31]
Penna, E.; Espino, J.; De Stefani, D.; Rizzuto, R. The MCU complex in cell death. Cell Calcium, 2018, 69, 73-80.
[http://dx.doi.org/10.1016/j.ceca.2017.08.008] [PMID: 28867646]
[32]
Wang, H.J.; Guay, G.; Pogan, L.; Sauvé, R.; Nabi, I.R. Calcium regulates the association between mitochondria and a smooth subdomain of the endoplasmic reticulum. J. Cell Biol., 2000, 150(6), 1489-1498.
[http://dx.doi.org/10.1083/jcb.150.6.1489] [PMID: 10995452]
[33]
Kowaltowski, A.J.; Menezes-Filho, S.L.; Assali, E.A.; Gonçalves, I.G.; Cabral-Costa, J.V.; Abreu, P.; Miller, N.; Nolasco, P.; Laurindo, F.R.M.; Bruni-Cardoso, A.; Shirihai, O.S. Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis. FASEB J., 2019, 33(12), 13176-13188.
[http://dx.doi.org/10.1096/fj.201901136R] [PMID: 31480917]
[34]
Gallego-Sandín, S.; Alonso, M.T.; García-Sancho, J. Calcium homoeostasis modulator 1 (CALHM1) reduces the calcium content of the endoplasmic reticulum (ER) and triggers ER stress. Biochem. J., 2011, 437(3), 469-475.
[http://dx.doi.org/10.1042/BJ20110479] [PMID: 21574960]
[35]
Chhabra, R.; Dubey, R.; Saini, N. Gene expression profiling indicate role of ER stress in miR-23a~27a~24-2 cluster induced apoptosis in HEK293T cells. RNA Biol., 2011, 8(4), 648-664.
[http://dx.doi.org/10.4161/rna.8.4.15583] [PMID: 21593605]
[36]
Zhang, Y.; Sun, R.; Geng, S.; Shan, Y.; Li, X.; Fang, W. Porcine circovirus type 2 induces ORF3-independent mitochondrial apoptosis via PERK activation and elevation of cytosolic calcium. J. Virol., 2019, 93(7), e01784-e18.
[http://dx.doi.org/10.1128/JVI.01784-18] [PMID: 30651358]
[37]
Görlach, A.; Bertram, K.; Hudecova, S.; Krizanova, O. Calcium and ROS: A mutual interplay. Redox Biol., 2015, 6, 260-271.
[http://dx.doi.org/10.1016/j.redox.2015.08.010] [PMID: 26296072]
[38]
van Vliet, A.R.; Agostinis, P. Mitochondria-associated membranes and ER stress. Curr. Top. Microbiol. Immunol., 2018, 414, 73-102.
[http://dx.doi.org/10.1007/82_2017_2] [PMID: 28349285]
[39]
Verfaillie, T.; Rubio, N.; Garg, A.D.; Bultynck, G.; Rizzuto, R.; Decuypere, J.P.; Piette, J.; Linehan, C.; Gupta, S.; Samali, A.; Agostinis, P. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ., 2012, 19(11), 1880-1891.
[http://dx.doi.org/10.1038/cdd.2012.74] [PMID: 22705852]
[40]
Lan, B.; He, Y.; Sun, H.; Zheng, X.; Gao, Y.; Li, N. The roles of mitochondria-associated membranes in mitochondrial quality control under endoplasmic reticulum stress. Life Sci., 2019, 231, 116587.
[http://dx.doi.org/10.1016/j.lfs.2019.116587] [PMID: 31220526]
[41]
Kerkhofs, M.; Bultynck, G.; Vervliet, T.; Monaco, G. Therapeutic implications of novel peptides targeting ER-mitochondria Ca2+-flux systems. Drug Discov. Today, 2019, 24(5), 1092-1103.
[http://dx.doi.org/10.1016/j.drudis.2019.03.020] [PMID: 30910738]
[42]
Wang, X.; Pluznick, J.L.; Wei, P.; Padanilam, B.J.; Sansom, S.C. TRPC4 forms store-operated Ca2+ channels in mouse mesangial cells. Am. J. Physiol. Cell Physiol., 2004, 287(2), C357-C364.
[http://dx.doi.org/10.1152/ajpcell.00068.2004] [PMID: 15044151]
[43]
Raffaello, A.; Mammucari, C.; Gherardi, G.; Rizzuto, R. Calcium at the center of cell signaling: Interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem. Sci., 2016, 41(12), 1035-1049.
[http://dx.doi.org/10.1016/j.tibs.2016.09.001] [PMID: 27692849]
[44]
Malli, R.; Graier, W.F. The role of mitochondria in the activation/maintenance of SOCE: The contribution of mitochondrial Ca2+ uptake, mitochondrial motility, and location to store-operated Ca2+ entry. Adv. Exp. Med. Biol., 2017, 993, 297-319.
[http://dx.doi.org/10.1007/978-3-319-57732-6_16] [PMID: 28900921]
[45]
Sours-Brothers, S.; Ding, M.; Graham, S.; Ma, R. Interaction between TRPC1/TRPC4 assembly and STIM1 contributes to store-operated Ca2+ entry in mesangial cells. Exp. Biol. Med. (Maywood), 2009, 234(6), 673-682.
[http://dx.doi.org/10.3181/0809-RM-279] [PMID: 19307462]
[46]
Meng, K.; Xu, J.; Zhang, C.; Zhang, R.; Yang, H.; Liao, C.; Jiao, J. Calcium sensing receptor modulates extracellular calcium entry and proliferation via TRPC3/6 channels in cultured human mesangial cells. PLoS One, 2014, 9(6), e98777.
[http://dx.doi.org/10.1371/journal.pone.0098777] [PMID: 24905090]
[47]
Piwkowska, A.; Rogacka, D.; Audzeyenka, I.; Kasztan, M.; Angielski, S.; Jankowski, M. Intracellular calcium signaling regulates glomerular filtration barrier permeability: The role of the PKGIα-dependent pathway. FEBS Lett., 2016, 590(12), 1739-1748.
[http://dx.doi.org/10.1002/1873-3468.12228] [PMID: 27230807]
[48]
Li, W.; Ding, Y.; Smedley, C.; Wang, Y.; Chaudhari, S.; Birnbaumer, L.; Ma, R. Increased glomerular filtration rate and impaired contractile function of mesangial cells in TRPC6 knockout mice. Sci. Rep., 2017, 7(1), 4145.
[http://dx.doi.org/10.1038/s41598-017-04067-z] [PMID: 28646178]
[49]
Harita, Y.; Kurihara, H.; Kosako, H.; Tezuka, T.; Sekine, T.; Igarashi, T.; Ohsawa, I.; Ohta, S.; Hattori, S. Phosphorylation of nephrin triggers Ca2+ signaling by recruitment and activation of phospholipase C-gamma1. J. Biol. Chem., 2009, 284(13), 8951-8962.
[http://dx.doi.org/10.1074/jbc.M806851200] [PMID: 19179337]
[50]
van der Wijst, J.; van Goor, M.K.; Schreuder, M.F.; Hoenderop, J.G. TRPV5 in renal tubular calcium handling and its potential relevance for nephrolithiasis. Kidney Int., 2019, 96(6), 1283-1291.
[http://dx.doi.org/10.1016/j.kint.2019.05.029] [PMID: 31471161]
[51]
Wu, D.; Chen, X.; Guo, D.; Hong, Q.; Fu, B.; Ding, R.; Yu, L.; Hou, K.; Feng, Z.; Zhang, X.; Wang, J. Knockdown of fibronectin induces mitochondria-dependent apoptosis in rat mesangial cells. J. Am. Soc. Nephrol., 2005, 16(3), 646-657.
[http://dx.doi.org/10.1681/ASN.2004060445] [PMID: 15677310]
[52]
Foster, R.R.; Zadeh, M.A.; Welsh, G.I.; Satchell, S.C.; Ye, Y.; Mathieson, P.W.; Bates, D.O.; Saleem, M.A. Flufenamic acid is a tool for investigating TRPC6-mediated calcium signalling in human conditionally immortalised podocytes and HEK293 cells. Cell Calcium, 2009, 45(4), 384-390.
[http://dx.doi.org/10.1016/j.ceca.2009.01.003] [PMID: 19232718]
[53]
Park, S.J.; Kim, Y.; Yang, S.M.; Henderson, M.J.; Yang, W.; Lindahl, M.; Urano, F.; Chen, Y.M. Discovery of endoplasmic reticulum calcium stabilizers to rescue ER-stressed podocytes in nephrotic syndrome. Proc. Natl. Acad. Sci. USA, 2019, 116(28), 14154-14163.
[http://dx.doi.org/10.1073/pnas.1813580116] [PMID: 31235574]
[54]
Sonneveld, R.; van der Vlag, J.; Baltissen, M.P.; Verkaart, S.A.; Wetzels, J.F.; Berden, J.H.; Hoenderop, J.G.; Nijenhuis, T. Glucose specifically regulates TRPC6 expression in the podocyte in an AngII-dependent manner. Am. J. Pathol., 2014, 184(6), 1715-1726.
[http://dx.doi.org/10.1016/j.ajpath.2014.02.008] [PMID: 24731445]
[55]
Graham, S.; Ding, M.; Sours-Brothers, S.; Yorio, T.; Ma, J.X.; Ma, R. Downregulation of TRPC6 protein expression by high glucose, a possible mechanism for the impaired Ca2+ signaling in glomerular mesangial cells in diabetes. Am. J. Physiol. Renal Physiol., 2007, 293(4), F1381-F1390.
[http://dx.doi.org/10.1152/ajprenal.00185.2007] [PMID: 17699555]
[56]
McGowan, T.A.; Madesh, M.; Zhu, Y.; Wang, L.; Russo, M.; Deelman, L.; Henning, R.; Joseph, S.; Hajnoczky, G.; Sharma, K. TGF-beta-induced Ca(2+) influx involves the type III IP(3) receptor and regulates actin cytoskeleton. Am. J. Physiol. Renal Physiol., 2002, 282(5), F910-F920.
[http://dx.doi.org/10.1152/ajprenal.00252.2001] [PMID: 11934702]
[57]
Ziyadeh, F.N. Mediators of diabetic renal disease: The case for tgf-Beta as the major mediator. J. Am. Soc. Nephrol., 2004, 15(Suppl. 1), S55-S57.
[http://dx.doi.org/10.1097/01.ASN.0000093460.24823.5B] [PMID: 14684674]
[58]
McGowan, T.A.; Sharma, K. Regulation of inositol 1,4,5-trisphosphate receptors by transforming growth factor-beta: Implications for vascular dysfunction in diabetes. Kidney Int. Suppl., 2000, 77, S99-S103.
[http://dx.doi.org/10.1046/j.1523-1755.2000.07716.x] [PMID: 10997698]
[59]
Sharma, K.; Deelman, L.; Madesh, M.; Kurz, B.; Ciccone, E.; Siva, S.; Hu, T.; Zhu, Y.; Wang, L.; Henning, R.; Ma, X.; Hajnoczky, G. Involvement of transforming growth factor-beta in regulation of calcium transients in diabetic vascular smooth muscle cells. Am. J. Physiol. Renal Physiol., 2003, 285(6), F1258-F1270.
[http://dx.doi.org/10.1152/ajprenal.00145.2003] [PMID: 12876066]
[60]
Sharma, K.; Wang, L.; Zhu, Y.; DeGuzman, A.; Cao, G.Y.; Lynn, R.B.; Joseph, S.K. Renal type I inositol 1,4,5-trisphosphate receptor is reduced in streptozotocin-induced diabetic rats and mice. Am. J. Physiol., 1999, 276(1), F54-F61.
[http://dx.doi.org/10.1152/ajprenal.1999.276.1.f54] [PMID: 9887080]
[61]
Kanwar, Y.S.; Sun, L. Shuttling of calcium between endoplasmic reticulum and mitochondria in the renal vasculature. Am. J. Physiol. Renal Physiol., 2008, 295(5), F1301-F1302.
[http://dx.doi.org/10.1152/ajprenal.90506.2008] [PMID: 18768586]
[62]
Yang, M.; Zhao, L.; Gao, P.; Zhu, X.; Han, Y.; Chen, X.; Li, L.; Xiao, Y.; Wei, L.; Li, C.; Xiao, L.; Yuan, S.; Liu, F.; Dong, L.Q.; Kanwar, Y.S.; Sun, L. DsbA-L ameliorates high glucose induced tubular damage through maintaining MAM integrity. EBioMedicine, 2019, 43, 607-619.
[http://dx.doi.org/10.1016/j.ebiom.2019.04.044] [PMID: 31060900]
[63]
Wei, X.; Wei, X.; Lu, Z.; Li, L.; Hu, Y.; Sun, F.; Jiang, Y.; Ma, H.; Zheng, H.; Yang, G.; Liu, D.; Gao, P.; Zhu, Z. Activation of TRPV1 channel antagonizes diabetic nephropathy through inhibiting endoplasmic reticulum-mitochondria contact in podocytes. Metabolism, 2020, 105, 154182.
[http://dx.doi.org/10.1016/j.metabol.2020.154182] [PMID: 32061660]
[64]
Xu, S.; Nam, S.M.; Kim, J.H.; Das, R.; Choi, S.K.; Nguyen, T.T.; Quan, X.; Choi, S.J.; Chung, C.H.; Lee, E.Y.; Lee, I.K.; Wiederkehr, A.; Wollheim, C.B.; Cha, S.K.; Park, K.S. Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress. Cell Death Dis., 2015, 6(11), e1976.
[http://dx.doi.org/10.1038/cddis.2015.331] [PMID: 26583319]
[65]
Yuan, Z.; Cao, A.; Liu, H.; Guo, H.; Zang, Y.; Wang, Y.; Wang, Y.; Wang, H.; Yin, P.; Peng, W. Calcium uptake via mitochondrial uniporter contributes to palmitic acid-induced apoptosis in mouse podocytes. J. Cell. Biochem., 2017, 118(9), 2809-2818.
[http://dx.doi.org/10.1002/jcb.25930] [PMID: 28181698]
[66]
Jurkovicova, D.; Sedlakova, B.; Lacinova, L.; Kopacek, J.; Sulova, Z.; Sedlak, J.; Krizanova, O. Hypoxia differently modulates gene expression of inositol 1,4,5-trisphosphate receptors in mouse kidney and HEK 293 cell line. Ann. N. Y. Acad. Sci., 2008, 1148, 421-427.
[http://dx.doi.org/10.1196/annals.1410.034] [PMID: 19120137]
[67]
Malis, C.D.; Bonventre, J.V. Mechanism of calcium potentiation of oxygen free radical injury to renal mitochondria. A model for post-ischemic and toxic mitochondrial damage. J. Biol. Chem., 1986, 261(30), 14201-14208.
[http://dx.doi.org/10.1016/S0021-9258(18)67004-8] [PMID: 2876985]
[68]
Hou, X.; Xiao, H.; Zhang, Y.; Zeng, X.; Huang, M.; Chen, X.; Birnbaumer, L.; Liao, Y. Transient receptor potential channel 6 knockdown prevents apoptosis of renal tubular epithelial cells upon oxidative stress via autophagy activation. Cell Death Dis., 2018, 9(10), 1015.
[http://dx.doi.org/10.1038/s41419-018-1052-5] [PMID: 30282964]
[69]
Schrier, R.W.; Hensen, J. Cellular mechanism of ischemic acute renal failure: Role of Ca2+ and calcium entry blockers. Klin. Wochenschr., 1988, 66(18), 800-807.
[http://dx.doi.org/10.1007/BF01728940] [PMID: 2846945]
[70]
Wu, D.; Chen, X.; Ding, R.; Qiao, X.; Shi, S.; Xie, Y.; Hong, Q.; Feng, Z. Ischemia/reperfusion induce renal tubule apoptosis by inositol 1,4,5-trisphosphate receptor and L-type Ca2+ channel opening. Am. J. Nephrol., 2008, 28(3), 487-499.
[http://dx.doi.org/10.1159/000113107] [PMID: 18185015]
[71]
Jiang, X.; Liao, X.H.; Huang, L.L.; Sun, H.; Liu, Q.; Zhang, L. Overexpression of augmenter of liver regeneration (ALR) mitigates the effect of H2O2-induced endoplasmic reticulum stress in renal tubule epithelial cells. Apoptosis, 2019, 24(3-4), 278-289.
[http://dx.doi.org/10.1007/s10495-019-01517-z] [PMID: 30680481]
[72]
Kopacek, J.; Ondrias, K.; Sedlakova, B.; Tomaskova, J.; Zahradnikova, L.; Sedlak, J.; Sulova, Z.; Zahradnikova, A.; Pastorek, J.; Krizanova, O. Type 2 IP(3) receptors are involved in uranyl acetate induced apoptosis in HEK 293 cells. Toxicology, 2009, 262(1), 73-79.
[http://dx.doi.org/10.1016/j.tox.2009.05.006] [PMID: 19460415]
[73]
Arhatte, M.; Gunaratne, G.S.; El Boustany, C.; Kuo, I.Y.; Moro, C.; Duprat, F.; Plaisant, M.; Duval, H.; Li, D.; Picard, N.; Couvreux, A.; Duranton, C.; Rubera, I.; Pagnotta, S.; Lacas-Gervais, S.; Ehrlich, B.E.; Marchant, J.S.; Savage, A.M.; van Eeden, F.J.M.; Wilkinson, R.N.; Demolombe, S.; Honoré, E.; Patel, A. TMEM33 regulates intracellular calcium homeostasis in renal tubular epithelial cells. Nat. Commun., 2019, 10(1), 2024.
[http://dx.doi.org/10.1038/s41467-019-10045-y] [PMID: 31048699]
[74]
Wang, J.; Toan, S.; Li, R.; Zhou, H. Melatonin fine-tunes intracellular calcium signals and eliminates myocardial damage through the IP3R/MCU pathways in cardiorenal syndrome type 3. Biochem. Pharmacol., 2020, 174, 113832.
[http://dx.doi.org/10.1016/j.bcp.2020.113832] [PMID: 32006470]
[75]
Anyatonwu, G.I.; Ehrlich, B.E. Calcium signaling and polycystin-2. Biochem. Biophys. Res. Commun., 2004, 322(4), 1364-1373.
[http://dx.doi.org/10.1016/j.bbrc.2004.08.043] [PMID: 15336985]
[76]
Li, Y.; Wright, J.M.; Qian, F.; Germino, G.G.; Guggino, W.B. Polycystin 2 interacts with type I inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling. J. Biol. Chem., 2005, 280(50), 41298-41306.
[http://dx.doi.org/10.1074/jbc.M510082200] [PMID: 16223735]
[77]
Di Mise, A.; Tamma, G.; Ranieri, M.; Centrone, M.; van den Heuvel, L.; Mekahli, D.; Levtchenko, E.N.; Valenti, G. Activation of Calcium-Sensing Receptor increases intracellular calcium and decreases cAMP and mTOR in PKD1 deficient cells. Sci. Rep., 2018, 8(1), 5704.
[http://dx.doi.org/10.1038/s41598-018-23732-5] [PMID: 29632324]
[78]
Mamenko, M.; Zaika, O.; Boukelmoune, N.; O’Neil, R.G.; Pochynyuk, O. Deciphering physiological role of the mechanosensitive TRPV4 channel in the distal nephron. Am. J. Physiol. Renal Physiol., 2015, 308(4), F275-F286.
[http://dx.doi.org/10.1152/ajprenal.00485.2014] [PMID: 25503733]
[79]
Yamaguchi, T.; Hempson, S.J.; Reif, G.A.; Hedge, A.M.; Wallace, D.P. Calcium restores a normal proliferation phenotype in human polycystic kidney disease epithelial cells. J. Am. Soc. Nephrol., 2006, 17(1), 178-187.
[http://dx.doi.org/10.1681/ASN.2005060645] [PMID: 16319189]
[80]
Tomilin, V.; Reif, G.A.; Zaika, O.; Wallace, D.P.; Pochynyuk, O. Deficient transient receptor potential vanilloid type 4 function contributes to compromised [Ca2+]i homeostasis in human autosomal-dominant polycystic kidney disease cells. FASEB J., 2018, 32(8), 4612-4623.
[http://dx.doi.org/10.1096/fj.201701535RR] [PMID: 29553832]
[81]
Lajdova, I.; Spustova, V.; Oksa, A.; Chorvatova, A.; Chorvat, D., Jr; Dzurik, R. Intracellular calcium homeostasis in patients with early stages of chronic kidney disease: Effects of vitamin D3 supplementation. Nephrol. Dial. Transplant., 2009, 24(11), 3376-3381.
[http://dx.doi.org/10.1093/ndt/gfp292] [PMID: 19531669]
[82]
Saliba, Y.; Karam, R.; Smayra, V.; Aftimos, G.; Abramowitz, J.; Birnbaumer, L.; Farès, N. Evidence of a role for fibroblast transient receptor potential canonical 3 Ca2+ channel in renal fibrosis. J. Am. Soc. Nephrol., 2015, 26(8), 1855-1876.
[http://dx.doi.org/10.1681/ASN.2014010065] [PMID: 25479966]
[83]
Eisner, V.; Csordás, G.; Hajnóczky, G. Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle - pivotal roles in Ca2+ and reactive oxygen species signaling. J. Cell Sci., 2013, 126(Pt 14), 2965-2978.
[http://dx.doi.org/10.1242/jcs.093609] [PMID: 23843617]
[84]
Bernard-Marissal, N.; Chrast, R.; Schneider, B.L. Endoplasmic reticulum and mitochondria in diseases of motor and sensory neurons: A broken relationship? Cell Death Dis., 2018, 9(3), 333.
[http://dx.doi.org/10.1038/s41419-017-0125-1] [PMID: 29491369]
[85]
Stacchiotti, A.; Favero, G.; Lavazza, A.; Monsalve, M.; Rodella, L.F.; Rezzani, R. Taurine supplementation alleviates puromycin aminonucleoside damage by modulating endoplasmic reticulum stress and mitochondrial-related apoptosis in rat kidney. Nutrients, 2018, 10(6), E689.
[http://dx.doi.org/10.3390/nu10060689] [PMID: 29843457]
[86]
Lim, J.H.; Kim, H.W.; Kim, M.Y.; Kim, T.W.; Kim, E.N.; Kim, Y.; Chung, S.; Kim, Y.S.; Choi, B.S.; Kim, Y.S.; Chang, Y.S.; Kim, H.W.; Park, C.W. Cinacalcet-mediated activation of the CaMKKβ-LKB1-AMPK pathway attenuates diabetic nephropathy in db/db mice by modulation of apoptosis and autophagy. Cell Death Dis., 2018, 9(3), 270.
[http://dx.doi.org/10.1038/s41419-018-0324-4] [PMID: 29449563]
[87]
Singh, A.V.; Ansari, M.H.D.; Rosenkranz, D.; Maharjan, R.S.; Kriegel, F.L.; Gandhi, K.; Kanase, A.; Singh, R.; Laux, P.; Luch, A. Artificial intelligence and machine learning in computational nanotoxicology: Unlocking and empowering nanomedicine. Adv. Healthc. Mater., 2020, 9(17), e1901862.
[http://dx.doi.org/10.1002/adhm.201901862] [PMID: 32627972]
[88]
Nougarede, A.; Popgeorgiev, N.; Kassem, L.; Omarjee, S.; Borel, S.; Mikaelian, I.; Lopez, J.; Gadet, R.; Marcillat, O.; Treilleux, I.; Villoutreix, B.O.; Rimokh, R.; Gillet, G. Breast cancer targeting through inhibition of the endoplasmic reticulum-based apoptosis regulator Nrh/BCL2L10. Cancer Res., 2018, 78(6), 1404-1417.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0846] [PMID: 29330143]
[89]
Nougarède, A.; Rimokh, R.; Gillet, G. BH4-mimetics and -antagonists: An emerging class of Bcl-2 protein modulators for cancer therapy. Oncotarget, 2018, 9(82), 35291-35292.
[http://dx.doi.org/10.18632/oncotarget.26250] [PMID: 30450157]
[90]
Ivanova, H.; Wagner, L.E., II; Tanimura, A.; Vandermarliere, E.; Luyten, T.; Welkenhuyzen, K.; Alzayady, K.J.; Wang, L.; Hamada, K.; Mikoshiba, K.; De Smedt, H.; Martens, L.; Yule, D.I.; Parys, J.B.; Bultynck, G. Bcl-2 and IP3 compete for the ligand-binding domain of IP3Rs modulating Ca2+ signaling output. Cell. Mol. Life Sci., 2019, 76(19), 3843-3859.
[http://dx.doi.org/10.1007/s00018-019-03091-8] [PMID: 30989245]
[91]
Distelhorst, C.W. Targeting Bcl-2-IP3 receptor interaction to treat cancer: A novel approach inspired by nearly a century treating cancer with adrenal corticosteroid hormones. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(11 Pt B), 1795-1804.
[http://dx.doi.org/10.1016/j.bbamcr.2018.07.020] [PMID: 30053503]
[92]
Ivanova, H.; Vervliet, T.; Monaco, G.; Terry, L.E.; Rosa, N.; Baker, M.R.; Parys, J.B.; Serysheva, I.I.; Yule, D.I.; Bultynck, G. Bcl-2-protein family as modulators of IP3 receptors and other organellar Ca2+ channels. Cold Spring Harb. Perspect. Biol., 2020, 12(4), a035089.
[http://dx.doi.org/10.1101/cshperspect.a035089] [PMID: 31501195]
[93]
Rong, Y.P.; Aromolaran, A.S.; Bultynck, G.; Zhong, F.; Li, X.; McColl, K.; Matsuyama, S.; Herlitze, S.; Roderick, H.L.; Bootman, M.D.; Mignery, G.A.; Parys, J.B.; De Smedt, H.; Distelhorst, C.W. Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2's inhibition of apoptotic calcium signals. Mol. Cell, 2008, 31(2), 255-265.
[http://dx.doi.org/10.1016/j.molcel.2008.06.014] [PMID: 18657507]
[94]
Ando, H.; Kawaai, K.; Bonneau, B.; Mikoshiba, K. Remodeling of Ca2+ signaling in cancer: Regulation of inositol 1,4,5-trisphosphate receptors through oncogenes and tumor suppressors. Adv. Biol. Regul., 2018, 68, 64-76.
[http://dx.doi.org/10.1016/j.jbior.2017.12.001] [PMID: 29287955]
[95]
Li, L.; Cui, J.; Liu, Z.; Zhou, X.; Li, Z.; Yu, Y.; Jia, Y.; Zuo, D.; Wu, Y. Silver nanoparticles induce SH-SY5Y cell apoptosis via endoplasmic reticulum- and mitochondrial pathways that lengthen endoplasmic reticulum-mitochondria contact sites and alter inositol-3-phosphate receptor function. Toxicol. Lett., 2018, 285, 156-167.
[http://dx.doi.org/10.1016/j.toxlet.2018.01.004] [PMID: 29306025]
[96]
Parys, J.B.; Vervliet, T. New insights in the IP3 receptor and its regulation. Adv. Exp. Med. Biol., 2020, 1131, 243-270.
[http://dx.doi.org/10.1007/978-3-030-12457-1_10] [PMID: 31646513]
[97]
Monaco, G.; Decrock, E.; Akl, H.; Ponsaerts, R.; Vervliet, T.; Luyten, T.; De Maeyer, M.; Missiaen, L.; Distelhorst, C.W.; De Smedt, H.; Parys, J.B.; Leybaert, L.; Bultynck, G. Selective regulation of IP3-receptor-mediated Ca2+ signaling and apoptosis by the BH4 domain of Bcl-2versus Bcl-Xl. Cell Death Differ., 2012, 19(2), 295-309.
[http://dx.doi.org/10.1038/cdd.2011.97] [PMID: 21818117]
[98]
Vervliet, T.; Gerasimenko, J.V.; Ferdek, P.E.; Jakubowska, M.A.; Petersen, O.H.; Gerasimenko, O.V.; Bultynck, G. BH4 domain peptides derived from Bcl-2/Bcl-XL as novel tools against acute pancreatitis. Cell Death Discov., 2018, 4, 58.
[http://dx.doi.org/10.1038/s41420-018-0054-5] [PMID: 29760956]
[99]
Monaco, G.; Vervliet, T.; Akl, H.; Bultynck, G. The selective BH4-domain biology of Bcl-2-family members: IP3Rs and beyond. Cell. Mol. Life Sci., 2013, 70(7), 1171-1183.
[http://dx.doi.org/10.1007/s00018-012-1118-y] [PMID: 22955373]
[100]
Gabellini, C.; Trisciuoglio, D.; Del Bufalo, D. Non-canonical roles of Bcl-2 and Bcl-xL proteins: Relevance of BH4 domain. Carcinogenesis, 2017, 38(6), 579-587.
[http://dx.doi.org/10.1093/carcin/bgx016] [PMID: 28203756]
[101]
Akl, H.; Monaco, G.; La Rovere, R.; Welkenhuyzen, K.; Kiviluoto, S.; Vervliet, T.; Molgó, J.; Distelhorst, C.W.; Missiaen, L.; Mikoshiba, K.; Parys, J.B.; De Smedt, H.; Bultynck, G. IP3R2 levels dictate the apoptotic sensitivity of diffuse large B-cell lymphoma cells to an IP3R-derived peptide targeting the BH4 domain of Bcl-2. Cell Death Dis., 2013, 4(5), e632.
[http://dx.doi.org/10.1038/cddis.2013.140] [PMID: 23681227]
[102]
Yu, Y.; Xie, Q.; Liu, W.; Guo, Y.; Xu, N.; Xu, L.; Liu, S.; Li, S.; Xu, Y.; Sun, L. Increased intracellular Ca2+ decreases cisplatin resistance by regulating iNOS expression in human ovarian cancer cells. Biomed. Pharmacother., 2017, 86, 8-15.
[http://dx.doi.org/10.1016/j.biopha.2016.11.135] [PMID: 27936394]
[103]
Vargas-Jaimes, L.; Xiao, L.; Zhang, J.; Possani, L.D.; Valdivia, H.H.; Quintero-Hernández, V. Recombinant expression of Intrepicalcin from the scorpion Vaejovis intrepidus and its effect on skeletal ryanodine receptors. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(4), 936-946.
[http://dx.doi.org/10.1016/j.bbagen.2017.01.032] [PMID: 28159581]
[104]
Ramos-Franco, J.; Fill, M. Approaching ryanodine receptor therapeutics from the calcin angle. J. Gen. Physiol., 2016, 147(5), 369-373.
[http://dx.doi.org/10.1085/jgp.201611599] [PMID: 27114611]
[105]
Gorski, P.A.; Ceholski, D.K.; Young, H.S. Structure-function relationship of the serca pump and its regulation by phospholamban and sarcolipin. Adv. Exp. Med. Biol., 2017, 981, 77-119.
[http://dx.doi.org/10.1007/978-3-319-55858-5_5] [PMID: 29594859]
[106]
Martin, P.D.; James, Z.M.; Thomas, D.D. Effect of phosphorylation on interactions between transmembrane domains of SERCA and phospholamban. Biophys. J., 2018, 114(11), 2573-2583.
[http://dx.doi.org/10.1016/j.bpj.2018.04.035] [PMID: 29874608]
[107]
Makarewich, C.A.; Munir, A.Z.; Schiattarella, G.G.; Bezprozvannaya, S.; Raguimova, O.N.; Cho, E.E.; Vidal, A.H.; Robia, S.L.; Bassel-Duby, R.; Olson, E.N. The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy. eLife, 2018, 7, 7.
[http://dx.doi.org/10.7554/eLife.38319] [PMID: 30299255]
[108]
Valberg, S.J.; Soave, K.; Williams, Z.J.; Perumbakkam, S.; Schott, M.; Finno, C.J.; Petersen, J.L.; Fenger, C.; Autry, J.M.; Thomas, D.D. Coding sequences of sarcoplasmic reticulum calcium ATPase regulatory peptides and expression of calcium regulatory genes in recurrent exertional rhabdomyolysis. J. Vet. Intern. Med., 2019, 33(2), 933-941.
[http://dx.doi.org/10.1111/jvim.15425] [PMID: 30720217]
[109]
Singh, D.R.; Dalton, M.P.; Cho, E.E.; Pribadi, M.P.; Zak, T.J.; Šeflová, J.; Makarewich, C.A.; Olson, E.N.; Robia, S.L. Newly discovered micropeptide regulators of SERCA form oligomers but bind to the pump as monomers. J. Mol. Biol., 2019, 431(22), 4429-4443.
[http://dx.doi.org/10.1016/j.jmb.2019.07.037] [PMID: 31449798]
[110]
Prezma, T.; Shteinfer, A.; Admoni, L.; Raviv, Z.; Sela, I.; Levi, I.; Shoshan-Barmatz, V. VDAC1-based peptides: Novel pro-apoptotic agents and potential therapeutics for B-cell chronic lymphocytic leukemia. Cell Death Dis., 2013, 4(9), e809.
[http://dx.doi.org/10.1038/cddis.2013.316] [PMID: 24052077]
[111]
Arzoine, L.; Zilberberg, N.; Ben-Romano, R.; Shoshan-Barmatz, V. Voltage-dependent anion channel 1-based peptides interact with hexokinase to prevent its anti-apoptotic activity. J. Biol. Chem., 2009, 284(6), 3946-3955.
[http://dx.doi.org/10.1074/jbc.M803614200] [PMID: 19049977]
[112]
Shteinfer-Kuzmine, A.; Amsalem, Z.; Arif, T.; Zooravlov, A.; Shoshan-Barmatz, V. Selective induction of cancer cell death by VDAC1-based peptides and their potential use in cancer therapy. Mol. Oncol., 2018, 12(7), 1077-1103.
[http://dx.doi.org/10.1002/1878-0261.12313] [PMID: 29698587]
[113]
Azarashvili, T.; Krestinina, O.; Baburina, Y.; Odinokova, I.; Grachev, D.; Papadopoulos, V.; Akatov, V.; Lemasters, J.J.; Reiser, G. Combined effect of G3139 and TSPO ligands on Ca(2+)-induced permeability transition in rat brain mitochondria. Arch. Biochem. Biophys., 2015, 587, 70-77.
[http://dx.doi.org/10.1016/j.abb.2015.10.012] [PMID: 26498031]
[114]
Lai, J.C.; Tan, W.; Benimetskaya, L.; Miller, P.; Colombini, M.; Stein, C.A. A pharmacologic target of G3139 in melanoma cells may be the mitochondrial VDAC. Proc. Natl. Acad. Sci. USA, 2006, 103(19), 7494-7499.
[http://dx.doi.org/10.1073/pnas.0602217103] [PMID: 16648253]
[115]
Tan, W.; Loke, Y.H.; Stein, C.A.; Miller, P.; Colombini, M. Phosphorothioate oligonucleotides block the VDAC channel. Biophys. J., 2007, 93(4), 1184-1191.
[http://dx.doi.org/10.1529/biophysj.107.105379] [PMID: 17483171]
[116]
Mostert, J.P.; Koch, M.W.; Heerings, M.; Heersema, D.J.; De Keyser, J. Therapeutic potential of fluoxetine in neurological disorders. CNS Neurosci. Ther., 2008, 14(2), 153-164.
[http://dx.doi.org/10.1111/j.1527-3458.2008.00040.x] [PMID: 18482027]
[117]
Nahon, E.; Israelson, A.; Abu-Hamad, S.; Varda, S.B. Fluoxetine (Prozac) interaction with the mitochondrial voltage-dependent anion channel and protection against apoptotic cell death. FEBS Lett., 2005, 579(22), 5105-5110.
[http://dx.doi.org/10.1016/j.febslet.2005.08.020] [PMID: 16139271]
[118]
Thinnes, F.P. Does fluoxetine (Prozak) block mitochondrial permeability transition by blocking VDAC as part of permeability transition pores? Mol. Genet. Metab., 2005, 84(4), 378.
[http://dx.doi.org/10.1016/j.ymgme.2004.12.008] [PMID: 15781203]
[119]
Yuan, S.; Fu, Y.; Wang, X.; Shi, H.; Huang, Y.; Song, X.; Li, L.; Song, N.; Luo, Y. Voltage-dependent anion channel 1 is involved in endostatin-induced endothelial cell apoptosis. FASEB J., 2008, 22(8), 2809-2820.
[http://dx.doi.org/10.1096/fj.08-107417] [PMID: 18381814]
[120]
Shoshan-Barmatz, V.; Golan, M. Mitochondrial VDAC1: Function in cell life and death and a target for cancer therapy. Curr. Med. Chem., 2012, 19(5), 714-735.
[http://dx.doi.org/10.2174/092986712798992110] [PMID: 22204343]
[121]
Koval, O.M.; Nguyen, E.K.; Santhana, V.; Fidler, T.P.; Sebag, S.C.; Rasmussen, T.P.; Mittauer, D.J.; Strack, S.; Goswami, P.C.; Abel, E.D.; Grumbach, I.M. Loss of MCU prevents mitochondrial fusion in G1-S phase and blocks cell cycle progression and proliferation. Sci. Signal., 2019, 12(579), eaav1439.
[http://dx.doi.org/10.1126/scisignal.aav1439] [PMID: 31040260]
[122]
Nguyen, E.K.; Koval, O.M.; Noble, P.; Broadhurst, K.; Allamargot, C.; Wu, M.; Strack, S.; Thiel, W.H.; Grumbach, I.M. CaMKII (Ca2+/calmodulin-dependent kinase II) in mitochondria of smooth muscle cells controls mitochondrial mobility, migration, and neointima formation. Arterioscler. Thromb. Vasc. Biol., 2018, 38(6), 1333-1345.
[http://dx.doi.org/10.1161/ATVBAHA.118.310951] [PMID: 29599132]
[123]
Cuello, F.; Lorenz, K. Inhibition of cardiac CaMKII to cure heart failure: Step by step towards translation? Basic Res. Cardiol., 2016, 111(6), 66.
[http://dx.doi.org/10.1007/s00395-016-0582-1] [PMID: 27683175]
[124]
Gaudio, E.; Paduano, F.; Ngankeu, A.; Ortuso, F.; Lovat, F.; Pinton, S.; D’Agostino, S.; Zanesi, N.; Aqeilan, R.I.; Campiglia, P.; Novellino, E.; Alcaro, S.; Croce, C.M.; Trapasso, F. A Fhit-mimetic peptide suppresses annexin A4-mediated chemoresistance to paclitaxel in lung cancer cells. Oncotarget, 2016, 7(21), 29927-29936.
[http://dx.doi.org/10.18632/oncotarget.9179] [PMID: 27166255]
[125]
Sun, Y.; Deng, T.; Lu, N.; Yan, M.; Zheng, X. B-type natriuretic peptide protects cardiomyocytes at reperfusion via mitochondrial calcium uniporter. Biomed. Pharmacother., 2010, 64(3), 170-176.
[http://dx.doi.org/10.1016/j.biopha.2009.09.024] [PMID: 20149572]
[126]
Zhang, L.; Lu, X.; Wang, J.; Li, P.; Li, H.; Wei, S.; Zhou, X.; Li, K.; Wang, L.; Wang, R.; Zhao, Y.; Xiao, X. Zingiberis rhizoma mediated enhancement of the pharmacological effect of aconiti lateralis radix praeparata against acute heart failure and the underlying biological mechanisms. Biomed. Pharmacother., 2017, 96, 246-255.
[http://dx.doi.org/10.1016/j.biopha.2017.09.145] [PMID: 28987949]
[127]
Nguyen, D.T.; He, S.; Han, J.H.; Park, J.; Seo, Y.W.; Kim, T.H. Mitochondrial targeting domain of NOXA causes necrosis in apoptosis-resistant tumor cells. Amino Acids, 2018, 50(12), 1707-1717.
[http://dx.doi.org/10.1007/s00726-018-2644-1] [PMID: 30196335]
[128]
Kim, J.Y.; Han, J.H.; Moon, A.R.; Park, J.H.; Chang, J.H.; Bae, J.; Kim, T.H. Minimal killing unit of the mitochondrial targeting domain of Noxa. J. Pept. Sci., 2013, 19(8), 485-490.
[http://dx.doi.org/10.1002/psc.2525] [PMID: 23794461]
[129]
Karch, J.; Bround, M.J.; Khalil, H.; Sargent, M.A.; Latchman, N.; Terada, N.; Peixoto, P.M.; Molkentin, J.D. Inhibition of mitochondrial permeability transition by deletion of the ANT family and CypD. Sci. Adv., 2019, 5(8), eaaw4597.
[http://dx.doi.org/10.1126/sciadv.aaw4597] [PMID: 31489369]
[130]
Mishra, J.; Davani, A.J.; Natarajan, G.K.; Kwok, W.M.; Stowe, D.F.; Camara, A.K.S. Cyclosporin A increases mitochondrial buffering of calcium: An additional mechanism in delaying mitochondrial permeability transition pore opening. Cells, 2019, 8(9), E1052.
[http://dx.doi.org/10.3390/cells8091052] [PMID: 31500337]
[131]
Ottani, F.; Latini, R.; Staszewsky, L.; La Vecchia, L.; Locuratolo, N.; Sicuro, M.; Masson, S.; Barlera, S.; Milani, V.; Lombardi, M.; Costalunga, A.; Mollichelli, N.; Santarelli, A.; De Cesare, N.; Sganzerla, P.; Boi, A.; Maggioni, A.P.; Limbruno, U. CYCLE Investigators. Cyclosporine A in reperfused myocardial infarction: The multicenter, controlled, open-label CYCLE trial. J. Am. Coll. Cardiol., 2016, 67(4), 365-374.
[http://dx.doi.org/10.1016/j.jacc.2015.10.081] [PMID: 26821623]
[132]
Gan, X.; Zhang, L.; Liu, B.; Zhu, Z.; He, Y.; Chen, J.; Zhu, J.; Yu, H. CypD-mPTP axis regulates mitochondrial functions contributing to osteogenic dysfunction of MC3T3-E1 cells in inflammation. J. Physiol. Biochem., 2018, 74(3), 395-402.
[http://dx.doi.org/10.1007/s13105-018-0627-z] [PMID: 29679227]
[133]
Seidlmayer, L.K.; Gomez-Garcia, M.R.; Shiba, T.; Porter, G.A., Jr; Pavlov, E.V.; Bers, D.M.; Dedkova, E.N. Dual role of inorganic polyphosphate in cardiac myocytes: The importance of polyP chain length for energy metabolism and mPTP activation. Arch. Biochem. Biophys., 2019, 662, 177-189.
[http://dx.doi.org/10.1016/j.abb.2018.12.019] [PMID: 30571965]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy