Abstract
Grey wolf optimizer is a recently developed metaheuristic algorithm that mimics hunting and social behaviour. It has been applied in most of the engineering design problems. Grey wolf optimizer and its variants have been effectively used to solve real-life applications. For some complex problems, a grey wolf optimizer has been hybridized with other metaheuristics. This paper summarizes the overview of the grey wolf optimizer and its variants. The pros and cons of these variants have been discussed. The application of a grey wolf optimizer has also been discussed with future research directions. This paper will encourage the researchers to use this algorithm for their real-life problems.
Keywords: Grey wolf optimizer, optimisation, metaheuristic, swarm intelligence, social hierarchy, exploration.
Graphical Abstract
[http://dx.doi.org/10.1155/2016/7950348]
[http://dx.doi.org/10.1109/CEC.2005.1554904]
[http://dx.doi.org/10.1109/INVENTIVE.2016.7830162]
[http://dx.doi.org/10.1109/CCDC.2018.8407544]
[http://dx.doi.org/10.1016/j.knosys.2019.01.018]
[http://dx.doi.org/10.1109/PIC.2016.7949476]
[http://dx.doi.org/10.1016/j.jcde.2017.02.005]
[http://dx.doi.org/10.1016/j.eswa.2018.04.028]
[http://dx.doi.org/10.1109/IDAACS.2017.8095129]
[http://dx.doi.org/10.1155/2017/2030489]
[http://dx.doi.org/10.3390/mca23010014]
[http://dx.doi.org/10.1155/2018/6495362]
[http://dx.doi.org/10.1016/j.asoc.2018.02.049]
[http://dx.doi.org/10.1016/j.advengsoft.2016.06.004]
[http://dx.doi.org/10.1080/09720502.2020.1721664]
[http://dx.doi.org/10.1016/j.advengsoft.2013.12.007]
[http://dx.doi.org/10.1109/WI.2006.35]
[http://dx.doi.org/10.1109/INVENTIVE.2016.7830162]
[http://dx.doi.org/10.1016/j.neucom.2015.06.083]
[http://dx.doi.org/10.1016/j.cie.2018.12.061]
[http://dx.doi.org/10.1007/978-3-319-44427-7]
[http://dx.doi.org/10.1016/j.advengsoft.2016.01.008]
[http://dx.doi.org/10.1007/978-3-319-13572-4_1]
[http://dx.doi.org/10.1016/j.neucom.2015.06.083]
[http://dx.doi.org/10.1016/j.procs.2015.09.006]
[http://dx.doi.org/10.1007/978-3-319-26690-9_22]
[http://dx.doi.org/10.1016/j.asoc.2015.09.045]
[http://dx.doi.org/10.1016/j.eswa.2017.04.029]
[http://dx.doi.org/10.1155/2017/3295769] [PMID: 28127305]
[http://dx.doi.org/10.1109/ACCESS.2016.2613940]
[http://dx.doi.org/10.1007/s10489-014-0645-7]
[http://dx.doi.org/10.14311/NNW.2016.26.023]
[http://dx.doi.org/10.1111/coin.12349]
[http://dx.doi.org/10.1515/jisys-2014-0137]
[http://dx.doi.org/10.1155/2015/481360]
[http://dx.doi.org/10.1016/j.ijleo.2018.05.096]
[http://dx.doi.org/10.1186/s40537-019-0247-7]
[http://dx.doi.org/10.3390/s20072147] [PMID: 32290193]
[http://dx.doi.org/10.1016/j.ijleo.2016.11.173]
[http://dx.doi.org/10.1016/j.engappai.2013.11.008]
[http://dx.doi.org/10.1016/j.advengsoft.2017.05.008]
[http://dx.doi.org/10.1080/01969722.2014.929349]
[http://dx.doi.org/10.1007/s00521-018-3796-3]
[http://dx.doi.org/10.1080/03772063.2014.987702]
[http://dx.doi.org/10.1504/IJITST.2017.091520]
[http://dx.doi.org/10.2174/1574362411666160607084415]
[http://dx.doi.org/10.1016/j.jocs.2013.12.001]
[http://dx.doi.org/10.1016/j.knosys.2020.105746]
[http://dx.doi.org/10.1142/S0217732319501931]
[http://dx.doi.org/10.1016/j.procs.2020.03.261]
[http://dx.doi.org/10.1142/S0217984920503467]
[http://dx.doi.org/10.1007/s00521-017-3321-0]
[http://dx.doi.org/10.35940/ijitee.A4215.119119]
[http://dx.doi.org/10.1007/s12652-019-01324-z]
[http://dx.doi.org/10.1038/s41598-019-43546-3] [PMID: 31073211]
[http://dx.doi.org/10.26782/jmcms.2020.04.00007]