Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Structural Engineering

Lessons Learnt from a National Competition on Structural Optimization and Additive Manufacturing

Author(s): Yulin Xiong, Dingwen Bao, Xin Yan, Tao Xu and Yi Min Xie*

Volume 1, Issue 1, 2021

Published on: 06 October, 2020

Page: [151 - 159] Pages: 9

DOI: 10.2174/2666001601999201006191103

Abstract

Background: As an advanced design technique, topology optimization has received much attention over the past three decades. Topology optimization aims at finding an optimal material distribution in order to maximize the structural performance while satisfying certain constraints. It is a useful tool for the conceptional design. At the same time, additive manufacturing technologies have provided unprecedented opportunities to fabricate intricate shapes generated by topology optimization.

Objective: To design a highly efficient structure using topology optimization and to fabricate it using additive manufacturing.

Method: The bi-directional evolutionary structural optimization (BESO) technique provides the conceptional design, and the topology-optimized result is post-processed to obtain smooth structural boundaries.

Results: We have achieved a highly efficient and elegant structural design which won the first prize in a national competition in China on design optimization and additive manufacturing.

Conclusion: In this paper, we present an effective topology optimization approach to maximize the structural load-bearing capacity and establish a procedure to achieve efficient and elegant structural designs.

In the loading test of the final competition, our design carried the highest loading and won the first prize in the competition, which demonstrates the capability of BESO in engineering applications.

Keywords: Topology optimization, Bi-directional evolutionary structural optimization (BESO), structural optimization, additivemanufacturing, load-bearing structural design, national competition.

Graphical Abstract

[1]
A.G.M Michell. The limits of economy of material in frame-structures. Lond Edinb Dublin Philos Mag J Sci vol. 8, no. 47, pp. 589-597, 1904..
[http://dx.doi.org/10.1080/14786440409463229]
[2]
M. Bendsøe. Optimal shape design as a material distribution problem. Struct Optim vol. 1, pp. 193-202, 1989..
[http://dx.doi.org/10.1007/BF01650949]
[3]
Y.M. Xie and, G.P Steven. A simple evolutionary procedure for structural optimization. Comput Struc vol. 49, no. 5, pp. 885-896, 1993..
[http://dx.doi.org/10.1016/0045-7949(93)90035-C]
[4]
X. Huang, Y.M Xie and, M.C Burry. A new algorithm for bi-directional evolutionary structural optimization. JSME Int J Series C C, vol. 49, no. 4, pp. 1091-1099, 2006.
[http://dx.doi.org/10.1299/jsmec.49.1091]
[5]
M.Y Wang, X , Wang, and D Guo. A level set method for structural topology optimization. Comput Methods Appl Mech Eng vol. 192, no. 1-2, pp. 227-246, 2003.
[http://dx.doi.org/10.1016/S0045-7825(02)00559-5]
[6]
G. Allaire, F Jouve and, A.M Toader. Structural optimization using sensitivity analysis and a level-set method. J Comput Phys vol. 194, no. 1, pp. 363-393, 2004..
[http://dx.doi.org/10.1016/j.jcp.2003.09.032]
[7]
Z-L. Zhao, S. Zhou , .X.Q. Feng and Y.M. Xie . On the internal architecture of emergent plants", J. Mech. Phys. Solids, O vol. 119, pp. 224-239, 2018..
[http://dx.doi.org/10.1016/j.jmps.2018.06.014]
[8]
J.H.K. Haertel , K. Engelbrecht , B.S. Lazarov, and , O. Sigmund . Topology optimization of a pseudo 3D thermofluid heat sink model", Int. J. Heat Mass Transf. vol. 121, pp. 1073-1088, 2018.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.01.078]
[9]
Q. Li , G.P. Steven , O.M. Querin and , Y.M. Xie . Shape and topology design for heat conduction by evolutionary structural optimization"Int. J. Heat Mass Transf. vol. 42, no. 17, pp. 3361-3371 1999 .
[http://dx.doi.org/10.1016/S0017-9310(99)00008-3]
[10]
F.M. Azevedo , M.S. Moura , W.M. Vicente , R. Picelli and , R. Pavanello . Topology optimization of reactive acoustic mufflers using a bi-directional evolutionary optimization method", Struct. Multidiscipl. Optim. vol. 58, no. 5, pp. 2239-2252, 2018.
[http://dx.doi.org/10.1007/s00158-018-2012-5]
[11]
W. Li, F. Meng, Y. , Y. Chen , F. Li, and X. , X. Huang . Topology optimization of photonic and phononic crystals and metamaterials: A review Adv Theory Simul, vol 2, no 7 2019.
[http://dx.doi.org/10.1002/adts.201900017]
[12]
R.E Christiansen , F. Wang , O. Sigmund and , S. Stobbe . Designing photonic topological insulators with quantum-spin-Hall edge states using topology optimization.Nanophotonics, vol. 8, no. 8, pp. 1363-1369, 2019..
[http://dx.doi.org/10.1515/nanoph-2019-0057]
[13]
J. Tang, , Y.M. Xie, and , P Felicetti. Conceptual design of buildings subjected to wind load by using topology optimization. Wind Struct vol. 18, no. 1, pp. 21-35, 2014.
[http://dx.doi.org/10.12989/was.2014.18.1.021]
[14]
M. Cavazzuti , A Baldini , E Bertocchi , D Costi , E Torricelli and , P. Moruzzi . High performance automotive chassis design: a topology optimization based approach. Struct Multidiscipl Optim vol. 44, no. 1, pp. 45-56, 2011..
[http://dx.doi.org/10.1007/s00158-010-0578-7]
[15]
J.H Zhu , W.H Zhang and , L Xia . Topology optimization in aircraft and aerospace structures design. Arch Comput Methods Eng vol. 23, no. 4, pp. 595-622, 2016..
[http://dx.doi.org/10.1007/s11831-015-9151-2]
[16]
R. Das , R Jones and , Y.M Xie . Optimal topology design of industrial structures using an evolutionary algorithm. Optim Eng vol. 12, no. 4, pp. 681-717, 2011.
[http://dx.doi.org/10.1007/s11081-010-9132-0]
[17]
L Krog , A Tucker and , G Rollema . Application of topology, sizing and shape optimization methods to optimal design of aircraft components 3rd Altair UK HyperWorks users conference, UK, 75 2002.
[18]
H Liu , Y Tian , H Zong , Q Ma , M.Y Wang and , L Zhang . Fully parallel level set method for large-scale structural topology optimization. Comput Struc vol. 221, pp. 13-27, 2019..
[http://dx.doi.org/10.1016/j.compstruc.2019.05.010]
[19]
X. Huang . Smooth topological design of structures using the floating projectionEng Struct. vol. 208110330, 2020..
[http://dx.doi.org/10.1016/j.engstruct.2020.110330]
[20]
B. Liu , C Jiang , G Li and , X Huang . Topology optimization of structures considering local material uncertainties in additive manufacturingComput Methods Appl Mech Eng. vol. 360112786 2020.
[http://dx.doi.org/10.1016/j.cma.2019.112786]
[21]
Y. Xiong , S Yao , Z-L Zhao and , Y.M Xie . A new approach to eliminating enclosed voids in topology optimization for additive manufacturingAdditive Manuf. , vol. 32101006, 2020.
[http://dx.doi.org/10.1016/j.addma.2019.101006]
[22]
D.T Pham and , R.S Gault . A comparison of rapid prototyping technologies. Int J Mach Tools Manuf vol. 38, no. 10-11, pp. 1257-1287, 1998..
[http://dx.doi.org/10.1016/S0890-6955(97)00137-5]
[23]
Y.M Xie , K Yang and , Y He . How to obtain diverse and efficient structural designs through topology optimization Proceedings of IASS Annual Symposia. International Association for Shell and Spatial Structures (IASS), Barcelona, Spain, 2019, pp. 1-8.
[24]
X. Huang and , Y.M Xie . Evolutionary Topology Optimization of Continuum Structures: Methods and Applications. John Wiley & Sons 2010.
[http://dx.doi.org/10.1002/9780470689486]
[25]
Z-L Zhao , S Zhou , X.Q Feng and , Y.M Xie . Morphological optimization of scorpion telson J Mech Phys Solids, vol135103773 2020.
[http://dx.doi.org/10.1016/j.jmps.2019.103773]
[26]
Z-L Zhao , S Zhou , K Cai and , Y M Xie . A direct approach to controlling the topology in structural optimizationComput Struc, vol 227106141, 2020.
[http://dx.doi.org/10.1016/j.compstruc.2019.106141]
[27]
L. Xia , Q Xia , X Huang and , Y.M Xie . Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review. Arch Comput Methods Eng vol. 25, no. 2, pp. 437-478, 2018..
[http://dx.doi.org/10.1007/s11831-016-9203-2]
[28]
J-H Zhu , K-K Yang and , W-H Zhang . Backbone cup – a structure design competition based on topology optimization and 3D printing. Int J Simul Multidiscipl Des Optimiz vol. 7, p. A1, 2016..
[http://dx.doi.org/10.1051/smdo/2016004]
[29]
A. Chen , K Cai and , Z-L Zhao . Controlling the maximum first principal stress in topology optimization. Struct Multidiscipl Optim pp. 1-13, 2020..
[http://dx.doi.org/10.1007/s00158-020-02701-5]
[30]
X. Huang and , Y.M Xie . A further review of ESO type methods for topology optimization. Struct Multidiscipl Optim vol. 41, no. 5, pp. 671-683, 2010..
[http://dx.doi.org/10.1007/s00158-010-0487-9]
[31]
M.P Bendsøe and , O Sigmund . Material interpolation schemes in topology optimization. Arch Appl Mech vol. 69, no. 9-10, pp.635-654, 1999..
[http://dx.doi.org/10.1007/s004190050248]
[32]
O. Sigmund and , J Petersson . Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim vol. 16, no. 1, pp. 68-75, 1998..
[http://dx.doi.org/10.1007/BF01214002]
[33]
X. Huang and , Y.M Xie . Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des vol. 43, no. 14, pp. 1039-1049, 2007..
[http://dx.doi.org/10.1016/j.finel.2007.06.006]
[34]
Z.H Zuo and , Y.M Xie . A simple and compact Python code for complex 3D topology optimization. Adv Eng Softw vol. 85, pp. 1-11, 2015..
[http://dx.doi.org/10.1016/j.advengsoft.2015.02.006]
[35]
Y. He , K. Cai and , Z-L Zhao . Stochastic approaches to generating diverse and competitive structural designs in topology optimizationFinite Elem Anal Des, v. Vol. 173103399 2020.
[http://dx.doi.org/10.1016/j.finel.2020.103399]
[36]
K. Yang , Z-L Zhao , Y He and . Simple and effective strategies for achieving diverse and competitive structural designs, Extreme Mech Lett. Vol. 30100481 2019.
[http://dx.doi.org/10.1016/j.eml.2019.100481]
[37]
T. Ju , F Losasso , S Schaefer and , J Warren . Dual contouring of hermite data Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques. 2002, pp. 339-346.
[38]
O. Sorkine , D Cohen-Or , Y. Lipman , M Alexa , C Rössl and , H.P Seidel . Laplacian surface editing", Proceedings of the 2004 Eurographics/ ACM SIGGRAPH Symposium On Geometry Processing 2004, pp. 175-184..
[http://dx.doi.org/10.1145/1057432.1057456]
[39]
Y Zhang and , A Ben Hamza . Vertex-based diffusion for 3-D mesh denoising. IEEE Trans Image Process vol. 16, no. 4, pp.1036-1045, 2007..
[http://dx.doi.org/10.1109/TIP.2007.891787] [PMID: 17405435]
[40]
W. Jakob , M Tarini , D Panozzo and , O Sorkine-Hornung . Instant field-aligned meshes. ACM Trans Graph vol. 34, no. 6,pp. 1-189, 2015..
[http://dx.doi.org/10.1145/2816795.2818078]

© 2024 Bentham Science Publishers | Privacy Policy