Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Quinoline-based Compounds as Key Candidates to Tackle Drug Discovery Programs of Microbicidal Agents

Author(s): Aline N. Silva da Gama and Maria N.C. Soeiro*

Volume 27, Issue 15, 2021

Published on: 06 October, 2020

Page: [1757 - 1762] Pages: 6

DOI: 10.2174/1381612826666201006125644

Price: $65

Abstract

Quinolines are heterocyclic nitrogen compounds, ubiquitous in nature and largely used as a structural component of dyes, solvent for resins, terpenes as well as during the production of several other chemical stuffs, including pesticides. Quinolines, such as quinine and chloroquine, exhibit various pharmacological properties, acting as antimalarial drugs, antiparasitic, antibacterial, antiviral, antifungal, and anticancer agents, besides being in clinical use for autoimmune diseases. A brief review has been presented regarding the biological effect and clinical use of quinolines and derivatives upon three trypanosomatids agents of important neglected tropical diseases; Trypanosoma cruzi, Trypanosoma brucei spp and Leishmania spp, which trigger Chagas disease, sleeping sickness and leishmaniasis, respectively, also extending to a glance update of their potential application towards other microbes relevant for emerging illness caused by fungi, bacteria and virus, including the pandemic Covid-19.

Keywords: Quinolines, chloroquine, drug discovery, repurposing drugs, Leishmania, Trypanosoma cruzi, Covid-19.

Next »
[1]
Chu XM, Wang C, Liu W, et al. Quinoline and quinolone dimers and their biological activities: An overview. Eur J Med Chem 2019; 161: 101-17.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.035] [PMID: 30343191]
[2]
Canales NA, Gress Hansen TN, Cornett C, et al. Historical chemical annotations of Cinchona bark collections are comparable to results from current day high-pressure liquid chromatography technologies. J Ethnopharmacol 2020; 249: 112375.
[3]
Cortez-Maya S, Moreno-Herrera A, Palos I, Rivera G. Old antiprotozoal drugs: are they still viable options for parasitic infections or new options for other diseases? Curr Med Chem 2019; 27: 5403-28.
[http://dx.doi.org/10.2174/0929867326666190628163633] [PMID: 31264538]
[4]
Pinheiro LCS, Feitosa LM, Silveira FFD, Boechat N. Current antimalarial therapies and advances in the development of semi-synthetic artemisinin derivatives. An Acad Bras Cienc 2018; 90(1)(Suppl. 2): 1251-71.
[http://dx.doi.org/10.1590/0001-3765201820170830] [PMID: 29873667]
[5]
Abena PM, Decloedt EH, Bottieau E, et al. Chloroquine and Hydroxychloroquine for the prevention or treatment of novel coronavirus disease (COVID-19) in Africa: Caution for inappropriate off-label use in healthcare settings. Am J Trop Med Hyg 2020; 102: 1184-8.
[http://dx.doi.org/10.4269/ajtmh.20-0290] [PMID: 32323646]
[6]
Schwartz RA, Janniger CK. Generalized pustular figurate erythema: A newly delineated severe cutaneous drug reaction linked with hydroxychloroquine. Dermatol Ther 2020; 33(3): e13380.
[http://dx.doi.org/10.1111/dth.13380]
[7]
Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol 2020; 16(3): 155-66.
[http://dx.doi.org/10.1038/s41584-020-0372-x] [PMID: 32034323]
[8]
Plantone D, Koudriavtseva T. Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: A Mini-Review. Clin Drug Investig 2018; 38(8): 653-71.
[http://dx.doi.org/10.1007/s40261-018-0656-y] [PMID: 29737455]
[9]
Dos Reis Neto ET, Kakehasi AM, de Medeiros Pinheiro M, et al. Revisiting hydroxychloroquine and chloroquine for patients with chronic immunity-mediated inflammatory rheumatic diseases. Adv Rheumatol 2020; 60(1): 32.
[http://dx.doi.org/10.1186/s42358-020-00134-8]
[10]
Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis 2003; 3(11): 722-7.
[http://dx.doi.org/10.1016/S1473-3099(03)00806-5] [PMID: 14592603]
[11]
Jha TK, Sundar S, Thakur CP, Felton JM, Sabin AJ, Horton J. A phase II dose-ranging study of sitamaquine for the treatment of visceral leishmaniasis in India. Am J Trop Med Hyg 2005; 73(6): 1005-11.
[http://dx.doi.org/10.4269/ajtmh.2005.73.1005] [PMID: 16354802]
[12]
Al-Bari MA. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother 2015; 70(6): 1608-21.
[http://dx.doi.org/10.1093/jac/dkv018] [PMID: 25693996]
[13]
de Meneses Santos R, Barros PR, Bortoluzzi JH, et al. Synthesis and evaluation of the anti-nociceptive and anti-inflammatory activity of 4-aminoquinoline derivatives. Bioorg Med Chem 2015; 23(15): 4390-6.
[http://dx.doi.org/10.1016/j.bmc.2015.06.029] [PMID: 26116178]
[14]
Chokkar N, Kalra S, Chauhan M, Kumar R. A review on quinoline derived scaffolds as anti-HIV agents. Mini Rev Med Chem 2019; 19(6): 510-26.
[http://dx.doi.org/10.2174/1389557518666181018163448] [PMID: 30338737]
[15]
Akkachairin B, Rodphon W, Reamtong O, et al. Synthesis of neocryptolepines and carbocycle-fused quinolines and evaluation of their anticancer and antiplasmodial activities. Bioorg Chem 2020; 98: 103732.
[http://dx.doi.org/10.1016/j.bioorg.2020.103732]
[16]
Schellenberg D, Abdulla S, Roper C. Current issues for anti-malarial drugs to control P. falciparum malaria. Curr Mol Med 2006; 6(2): 253-60.
[http://dx.doi.org/10.2174/156652406776055168] [PMID: 16515515]
[17]
Leite ACL, Espíndola JWP, de Oliveira Cardoso MV, de Oliveira Filho GB. Privileged structures in the design of potential drug candidates for neglected diseases. Curr Med Chem 2019; 26(23): 4323-54.
[http://dx.doi.org/10.2174/0929867324666171023163752] [PMID: 29065822]
[18]
Di Pietro O, Vicente-García E, Taylor MC, et al. Multicomponent reaction-based synthesis and biological evaluation of tricyclic heterofused quinolines with multi-trypanosomatid activity. Eur J Med Chem 2015; 105: 120-37.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.007] [PMID: 26479031]
[19]
Coa JC, Castrillón W, Cardona W, et al. Synthesis, leishmanicidal, trypanocidal and cytotoxic activity of quinoline-hydrazone hybrids. Eur J Med Chem 2015; 101: 746-53.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.018] [PMID: 26218652]
[20]
World Health Organization (WHO). Neglected diseases. Available from: https://www.who.int/neglected_diseases/diseases/en/
[21]
Conteh L, Engels T, Molyneux DH. Socioeconomic aspects of neglected tropical diseases. Lancet 2010; 375(9710): 239-47.
[http://dx.doi.org/10.1016/S0140-6736(09)61422-7] [PMID: 20109925]
[22]
Morillo CA, Waskin H, Sosa-Estani S, et al. STOP-CHAGAS Investigators. Benznidazole and Posaconazole in eliminating parasites in asymptomatic T. cruzi Carriers: The STOP-CHAGAS trial. J Am Coll Cardiol 2017; 69(8): 939-47.
[http://dx.doi.org/10.1016/j.jacc.2016.12.023] [PMID: 28231946]
[23]
Aldasoro E, Posada E, Requena-Méndez A, et al. What to expect and when: benznidazole toxicity in chronic Chagas’ disease treatment. J Antimicrob Chemother 2018; 73(4): 1060-7.
[http://dx.doi.org/10.1093/jac/dkx516] [PMID: 29351667]
[24]
Zingales B, Araujo RGA, Moreno M, et al. A novel ABCG-like transporter of Trypanosoma cruzi is involved in natural resistance to benznidazole. Mem Inst Oswaldo Cruz 2015; 110(3): 433-44.
[http://dx.doi.org/10.1590/0074-02760140407] [PMID: 25946152]
[25]
Zingales B. Trypanosoma cruzi genetic diversity: Something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Trop 2018; 184: 38-52.
[http://dx.doi.org/10.1016/j.actatropica.2017.09.017] [PMID: 28941731]
[26]
Ghorbani M, Farhoudi R. Leishmaniasis in humans: drug or vaccine therapy? Drug Des Devel Ther 2017; 12: 25-40.
[http://dx.doi.org/10.2147/DDDT.S146521] [PMID: 29317800]
[27]
Büscher P, Cecchi G, Jamonneau V, Priotto G. Human African trypanosomiasis. Lancet 2017; 390(10110): 2397-409.
[http://dx.doi.org/10.1016/S0140-6736(17)31510-6] [PMID: 28673422]
[28]
Sundar S, Chakravarty J. Investigational drugs for visceral leishmaniasis. Expert Opin Investig Drugs 2015; 24(1): 43-59.
[http://dx.doi.org/10.1517/13543784.2014.954035] [PMID: 25409760]
[29]
Wasunna MK, Rashid JR, Mbui J, et al. A phase II dose-increasing study of sitamaquine for the treatment of visceral leishmaniasis in Kenya. Am J Trop Med Hyg 2005; 73(5): 871-6.
[http://dx.doi.org/10.4269/ajtmh.2005.73.871] [PMID: 16282296]
[30]
Dietze R, Carvalho SF, Valli LC, et al. Phase 2 trial of WR6026, an orally administered 8-aminoquinoline, in the treatment of visceral leishmaniasis caused by Leishmania chagasi. Am J Trop Med Hyg 2001; 65(6): 685-9.
[http://dx.doi.org/10.4269/ajtmh.2001.65.685] [PMID: 11791957]
[31]
Loiseau PM, Cojean S, Schrével J. Sitamaquine as a putative antileishmanial drug candidate: from the mechanism of action to the risk of drug resistance. Parasite 2011; 18(2): 115-9.
[http://dx.doi.org/10.1051/parasite/2011182115] [PMID: 21678786]
[32]
Imbert L, Cojean S, Libong D, Chaminade P, Loiseau PM. Sitamaquine-resistance in Leishmania donovani affects drug accumulation and lipid metabolism. Biomed Pharmacother 2014; 68(7): 893-7.
[http://dx.doi.org/10.1016/j.biopha.2014.08.009] [PMID: 25201056]
[33]
Bories C, Cojean S, Huteau F, Loiseau PM. Selection and phenotype characterisation of sitamaquine-resistant promastigotes of Leishmania donovani. Biomed Pharmacother 2008; 62(3): 164-7.
[http://dx.doi.org/10.1016/j.biopha.2007.12.006] [PMID: 18249083]
[34]
Almandil NB, Taha M, Rahim F, et al. Synthesis of novel quinoline-based thiadiazole, evaluation of their antileishmanial potential and molecular docking studies. Bioorg Chem 2019; 85: 109-16.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.025] [PMID: 30605884]
[35]
Chanquia SN, Larregui F, Puente V, Labriola C, Lombardo E, García Liñares G. Synthesis and biological evaluation of new quinoline derivatives as antileishmanial and antitrypanosomal agents. Bioorg Chem 2019; 83: 526-34.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.053] [PMID: 30469145]
[36]
Upadhayaya RS, Dixit SS, Földesi A, Chattopadhyaya J. New antiprotozoal agents: their synthesis and biological evaluations. Bioorg Med Chem Lett 2013; 23(9): 2750-8.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.054] [PMID: 23518280]
[37]
Nefertiti ASG, Batista MM, Da Silva PB, et al. In vitro and in vivo studies of the trypanocidal effect of novel quinolines. Antimicrob Agents Chemother 2018; 62(2): e01936-17. Available from: https://aac.asm.org/content/62/2/e01936-17.long
[PMID: 29203485]
[38]
Zhang H, Collins J, Nyamwihura R, Ware S, Kaiser M, Ogungbe IV. Discovery of a quinoline-based phenyl sulfone derivative as an antitrypanosomal agent. Bioorg Med Chem Lett 2018; 28(9): 1647-51.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.039] [PMID: 29609908]
[39]
Senerovic L, Opsenica D, Moric I, Aleksic I, Spasić M, Vasiljevic B. Quinolines and quinolones as antibacterial, antifungal, anti-virulence, antiviral and anti-parasitic agents. Adv Exp Med Biol 2020; 1282: 37-69.
[http://dx.doi.org/10.1007/5584_2019_428]
[40]
Desai NC, Patel BY, Dave BP. Synthesis and antimicrobial activity of novel quinoline derivatives bearing pyrazoline and pyridine analogues. Med Chem Res 2017; 26: 109-19.
[http://dx.doi.org/10.1007/s00044-016-1732-6]
[41]
Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 2017; 15(12): 740-55.
[http://dx.doi.org/10.1038/nrmicro.2017.99] [PMID: 28944770]
[42]
Yin W, Wang Y, Liu L, He J. Biofilms: The microbial "protective clothing" in extreme environments. Int J Mol Sci 2019; 20(14): 3423.
[43]
Gulati M, Nobile CJ. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect 2016; 18(5): 310-21.
[http://dx.doi.org/10.1016/j.micinf.2016.01.002] [PMID: 26806384]
[44]
Qiu MN, Wang F, Chen SY, et al. Novel 2, 8-bit derivatives of quinolines attenuate Pseudomonas aeruginosa virulence and biofilm formation. Bioorg Med Chem Lett 2019; 29(5): 749-54.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.068] [PMID: 30630718]
[45]
Cretton S, Dorsaz S, Azzollini A, et al. Antifungal quinoline alkaloids from Waltheria indica. J Nat Prod 2016; 79(2): 300-7.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00896] [PMID: 26848627]
[46]
Inglot AD. Comparison of the antiviral activity in vitro of some non-steroidal anti-inflammatory drugs. J Gen Virol 1969; 4(2): 203-14.
[http://dx.doi.org/10.1099/0022-1317-4-2-203] [PMID: 4306296]
[47]
Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2005; 2: 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[48]
Romanelli F, Smith KM, Hoven AD. Chloroquine and hydroxychloroquine as inhibitors of human immunodeficiency virus (HIV-1) activity. Curr Pharm Des 2004; 10(21): 2643-8.
[http://dx.doi.org/10.2174/1381612043383791] [PMID: 15320751]
[49]
Di Trani L, Savarino A, Campitelli L, et al. Different pH requirements are associated with divergent inhibitory effects of chloroquine on human and avian influenza A viruses. Virol J 2007; 4: 39.
[http://dx.doi.org/10.1186/1743-422X-4-39]
[50]
Wang LF, Lin YS, Huang NC, et al. Hydroxychloroquine-inhibited dengue virus is associated with host defense machinery. J Interferon Cytokine Res 2015; 35(3): 143-56.
[http://dx.doi.org/10.1089/jir.2014.0038] [PMID: 25321315]
[51]
Zhu YZ, Xu QQ, Wu DG, et al. Japanese encephalitis virus enters rat neuroblastoma cells via a pH-dependent, dynamin and caveola-mediated endocytosis pathway. J Virol 2012; 86(24): 13407-22.
[http://dx.doi.org/10.1128/JVI.00903-12] [PMID: 23015720]
[52]
Silva MC, Guerrero-Plata A, Gilfoy FD, Garofalo RP, Mason PW. Differential activation of human monocyte-derived and plasmacytoid dendritic cells by West Nile virus generated in different host cells. J Virol 2007; 81(24): 13640-8.
[http://dx.doi.org/10.1128/JVI.00857-07] [PMID: 17913823]
[53]
Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun 2004; 323(1): 264-8.
[http://dx.doi.org/10.1016/j.bbrc.2004.08.085] [PMID: 15351731]
[54]
Al-Bari MAA. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect 2017; 5(1): e00293.
[http://dx.doi.org/10.1002/prp2.293]
[55]
Tricou V, Minh NN, Van TP, et al. A randomized controlled trial of chloroquine for the treatment of dengue in vietnamese adults. PLoS Negl Trop Dis 2010; 4(8): e785.
[56]
Borges MC, Castro LA, Fonseca BA. Chloroquine use improves dengue-related symptoms. Mem Inst Oswaldo Cruz 2013; 108(5): 596-9.
[http://dx.doi.org/10.1590/S0074-02762013000500010] [PMID: 23903975]
[57]
Helal GK, Gad MA, Abd-Ellah MF, Eid MS. Hydroxychloroquine augments early virological response to pegylated interferon plus ribavirin in genotype-4 chronic hepatitis C patients. J Med Virol 2016; 88(12): 2170-8.
[http://dx.doi.org/10.1002/jmv.24575] [PMID: 27183377]
[58]
Siqueira-Neto JL. A quick fix for Chagas disease therapy: a new trick using an old drug. Rev Soc Bras Med Trop 2018; 51(2): 123-4.
[http://dx.doi.org/10.1590/0037-8682-0154-2018] [PMID: 29768542]
[59]
Delvecchio R, Higa LM, Pezzuto P, et al. Chloroquine, an endocytosis blocking agent, inhibits Zika virus infection in different cell models. Viruses 2016; 8(12): 322.
[60]
Shiryaev SA, Mesci P, Pinto A, et al. Repurposing of the anti-malaria drug chloroquine for Zika Virus treatment andprophylaxis. Sci Rep 2017; 7(1)
[61]
World Health Organization (WHO). Rolling updates on coronavirus disease (COVID-19). Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen
[62]
Del Rio C, Malani PN. Novel coronavirus-important information for clinicians. JAMA 2020; 17; 323(11): 1039-40.
[63]
Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system: A review. JAMA Cardiol 2020; 5(7): 831-40.
[http://dx.doi.org/10.1001/jamacardio.2020.1286] [PMID: 32219363]
[64]
Pan American Health Organization (PAHO). COVID-19: Chloroquine and hydroxychloroquine research. Available from: https://iris.paho.org/bitstream/handle/10665.2/52105/PAHOEIHKTCOVID-19200002_eng.pdf?sequLence=5&isAllowed=y
[65]
Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2005; 2: 69.
[66]
de Wilde AH, Jochmans D, Posthuma CC, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother 2014; 58(8): 4875-84.
[http://dx.doi.org/10.1128/AAC.03011-14] [PMID: 24841269]
[67]
Borba MGS, Val FFA, Sampaio VS, et al. Effect of high vs. low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial. JAMA New Open 2020; 3(4): e208857.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy