Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Repurposing of Acriflavine to Target Chronic Myeloid Leukemia Treatment

Author(s): Rawan Nehme, Rawan Hallal, Maya El Dor, Firas Kobeissy, Fabrice Gouilleux, Frédéric Mazurier and Kazem Zibara*

Volume 28, Issue 11, 2021

Published on: 08 September, 2020

Page: [2218 - 2233] Pages: 16

DOI: 10.2174/0929867327666200908114411

Price: $65

Abstract

Drug repurposing has lately received increasing interest in several diseases especially in cancers, due to its advantages in facilitating the development of new therapeutic strategies, by adopting a cost-friendly approach and avoiding the strict Food and Drug Administration (FDA) regulations. Acriflavine (ACF) is an FDA approved molecule that has been extensively studied since 1912 with antiseptic, trypanocidal, anti-viral, anti-bacterial and anti-cancer effects. ACF has been shown to block the growth of solid and hematopoietic tumor cells. Indeed, ACF acts as an inhibitor of various proteins, including DNA-dependent protein kinases C (DNA-PKcs), topoisomerase I and II, hypoxia-inducible factor 1α (HIF-1α), in addition to its recent discovery as an inhibitor of the signal transducer and activator of transcription (STAT). Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by the expression of the constitutively active tyrosine kinase BCR-ABL. This protein allows the activation of several signaling pathways known for their role in cell proliferation and survival, such as the JAK/STAT pathway. CML therapy, based on tyrosine kinase inhibitors (TKIs), such as imatinib (IM), is highly effective. However, 15% of patients are refractory to IM, where in some cases, 20-30% of patients become resistant. Thus, we suggest the repurposing of ACF in CML after IM failure or in combination with IM to improve the anti-tumor effects of IM. In this review, we present the different pharmacological properties of ACF along with its anti-leukemic effects in the hope of its repurposing in CML therapy.

Keywords: Acriflavine, ACF, drug repurposing, chronic myeloid leukemia, leukemia, anti-tumoral, anti-leukemic.

[1]
Langedijk, J.; Mantel-Teeuwisse, A.K.; Slijkerman, D.S.; Schutjens, M.H.D.B. Drug repositioning and repurposing: terminology and definitions in literature. Drug Discov. Today, 2015, 20(8), 1027-1034.
[http://dx.doi.org/10.1016/j.drudis.2015.05.001]] [PMID: 25975957]
[2]
Lotfi Shahreza, M.; Ghadiri, N.; Mousavi, S.R.; Varshosaz, J.; Green, J.R. A review of network-based approaches to drug repositioning. Brief. Bioinform., 2018, 19(5), 878-892.
[http://dx.doi.org/10.1093/bib/bbx017]] [PMID: 28334136]
[3]
Sleire, L.; Førde, H.E.; Netland, I.A.; Leiss, L.; Skeie, B.S.; Enger, P.Ø. Drug repurposing in cancer. Pharmacol. Res., 2017, 124, 74-91.
[http://dx.doi.org/doi.org/10.1016/j.phrs.2017.07.013] [PMID: 28712971]
[4]
Rathi, S.K. Acne vulgaris treatment: the current scenario. Indian J. Dermatol., 2011, 56(1), 7-13.
[http://dx.doi.org/10.4103/0019-5154.77543] [PMID: 21572783]
[5]
Damery, E.; Solimando, D.A. Jr.; Waddell, J.A. Arsenic trioxide and tretinoin (AsO/ATRA) for acute promyelocytic leukemia (APL). Hosp. Pharm., 2016, 51(8), 628-632.
[http://dx.doi.org/doi.org/10.1310/hpj5108-628] [PMID: 27698500]
[6]
Yeu, Y.; Yoon, Y.; Park, S. Protein localization vector propagation: a method for improving the accuracy of drug repositioning. Mol. Biosyst., 2015, 11(7), 2096-2102.
[http://dx.doi.org/10.1039/C5MB00306G] [PMID: 25998487]
[7]
Pammolli, F.; Magazzini, L.; Riccaboni, M. The productivity crisis in pharmaceutical R&D. Nat. Rev. Drug Discov., 2011, 10(6), 428-438.
[http://dx.doi.org/10.1038/nrd3405] [PMID: 21629293]
[8]
Wong, H-H.; Jessup, A.; Sertkaya, A.; Birkenbach, A.; Berlind, A.; Eyraud, J. Examination of clinical trial costs and barriers for drug development final, 2014 Available at:.https://aspe.hhs.gov/report/examination-clinical-trial-costs-and-barriers-drug-development (Accessed June 15, 2020)..
[9]
Cha, Y.; Erez, T.; Reynolds, I.J.; Kumar, D.; Ross, J.; Koytiger, G.; Kusko, R.; Zeskind, B.; Risso, S.; Kagan, E.; Papapetropoulos, S.; Grossman, I.; Laifenfeld, D. Drug repurposing from the perspective of pharmaceutical companies. Br. J. Pharmacol., 2018, 175(2), 168-180.
[http://dx.doi.org/doi.org/10.1111/bph.13798P MID: 28369768]
[10]
Ekins, S.; Mestres, J.; Testa, B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br. J. Pharmacol., 2007, 152(1), 9-20.
[http://dx.doi.org/doi.org/10.1038/sj.bjp.0707305] [PMID: 17549047]
[11]
Shim, J.S.; Liu, J.O. Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Bio. Sci., 2014, 10(7), 654-663.
[http://dx.doi.org/www.ijbs.com/v10p0654.htm] [PMID: 25013375]
[12]
Xue, H.; Li, J.; Xie, H.; Wang, Y. Review of drug repositioning approaches and resources. Int. J. Biol. Sci., 2018, 14(10), 1232-1244.
[http://dx.doi.org/www.ijbs.com/v14p1232.htm] [PMID: 30123072 ]
[13]
Grinnan, D.; Trankle, C.; Andruska, A.; Bloom, B.; Spiekerkoetter, E. Drug repositioning in pulmonary arterial hypertension: challenges and opportunities. Pulm. Circ., 2019, 9(1)2045894019832226
[http://dx.doi.org/doi.org/10.1177/2045894019832226] [PMID: 30729869]
[14]
Hernandez, J.J.; Pryszlak, M.; Smith, L.; Yanchus, C.; Kurji, N.; Shahani, V.M.; Molinski, S.V. Giving drugs a second chance: overcoming regulatory and financial hurdles in repurposing approved drugs as cancer therapeutics. Front. Oncol., 2017, 7, 273.
[http://dx.doi.org/doi.org/10.3389/fonc.2017.00273 ] [PMID: 29184849]
[15]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov., 2018, 18(1), 41-58.
[http://dx.doi.org/doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[16]
Yaseen, S.; Akram, S. Drug repositioning, an approach for identification of new therapeutics. J. Nat. Appl. Sci. Pakistan, 2019, 1(2), 192-200. Available at: ; https://aspe.hhs.gov/report/examination-clinical-trial-costs-and-barriers-drug-development(Accessed June 15, 2020).
[17]
Ashburn, T.T.; Thor, K.B. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/doi.org/10.1038/nrd1468] [PMID: 15286734]
[18]
Talevi, A.; Bellera, C.L. Challenges and opportunities with drug repurposing: finding strategies to find alternative uses of therapeutics. Expert Opin. Drug Discov., 2020, 15(4), 397-401.
[http://dx.doi.org/10.1080/17460441.2020.1704729] [PMID: 31847616]
[19]
Jafari, R.M.; Sheibani, M.; Nezamoleslami, S.; Shayesteh, S.; Jand, Y.; Dehpour, A.R. Drug repositioning: a review., Available at: ; http://www.jimc.ir/article_ 66203.html (Accessed Jun 17, 2020)..
[20]
Quianzon, C.C.L.; Cheikh, I.E. History of current non-insulin medications for diabetes mellitus. J. Community Hosp. Intern. Med. Perspect., 2012, 2(3), 19081.
[http://dx.doi.org/10.3402/jchimp.v2i3.19081] [PMID: 23882374]
[21]
Amelio, I.; Gostev, M.; Knight, R.A.; Willis, A.E.; Melino, G.; Antonov, A.V. DRUGSURV: a resource for repositioning of approved and experimental drugs in oncology based on patient survival information. Cell Death Dis., 2014, 5(2)e1051
[http://dx.doi.org/10.1038/cddis.2014.9] [PMID: 24503543]
[22]
Musa, A.; Ghoraie, L.S.; Zhang, S-D.; Glazko, G.; Yli-Harja, O.; Dehmer, M.; Haibe-Kains, B.; Emmert-Streib, F. A review of connectivity map and computational approaches in pharmacogenomics. Brief. Bioinform., 2018, 19(3), 506-523.
[http://dx.doi.org/10.1093/BIB] [PMID: 28069634]
[23]
Lotfi Shahreza, M.; Ghadiri, N.; Mousavi, S.R.; Varshosaz, J.; Green, J.R. A review of network-based approaches to drug repositioning. Brief. Bioinform., 2018, 19(5), 878-892.
[http://dx.doi.org/10.1093/bib/bbx017] [PMID: 28334136]
[24]
Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 2006, 34(Database issue), D668-D672.
[http://dx.doi.org/10.1093/nar/gkj067] [PMID: 16381955]
[25]
Mewes, H.W.; Hani, J.; Pfeiffer, F.; Frishman, D. MIPS: a database for protein sequences and complete genomes. Nucleic Acids Res., 1998, 26(1), 33-37.
[http://dx.doi.org/10.1093/nar/26.1.33] [PMID: 9399795]
[26]
Ai, N.; Wood, R.D.; Welsh, W.J. Identification of nitazoxanide as a group I metabotropic glutamate receptor negative modulator for the treatment of neuropathic pain: an in silico drug repositioning study. Pharm. Res., 2015, 32(8), 2798-2807.
[http://dx.doi.org/10.1007/s11095-015-1665-7] [PMID: 25762088]
[27]
Wainwright, M. Acridine-A neglected antibacterial chromophore. J. Antimicrob. Chemother., 2001, 47(1), 1-13.
[http://dx.doi.org/10.1093/jac/47.1.1] [PMID: 11152426]
[28]
Nasim, A.; Brychcy, T. Genetic effects of acridine compounds. Mutat. Res., 1979, 65(4), 261-288.
[http://dx.doi.org/doi.org/10.1016/0165-1110(79)90005-8] [PMID: 390382]
[29]
Kumar, R.; Kaur, M.; Kumari, M. Acridine: a versatile heterocyclic nucleus. Acta Pol. Pharm., 2012, 69(1), 3-9.
[PMID: 22574501]
[30]
Acriflavine hydrochloride and acriflavine base. J. Am. Med. Assoc., 1929, 93(9), 695-696.
[http://dx.doi.org/10.1001/jama.1929.02710090035014]
[31]
Browning, C.H.; Cohen, J.B.; Gaunt, R.; Gulbransen, R. Relationships between antiseptic action and chemical constitution with special reference to compounds of the pyridine, quinoline, acridine and phenazine series. .Proc. R. Soc. London. Ser. B, Contain. Pap. a Biol. Character, 1922, 93(653), 329-366..
[http://dx.doi.org/10.1098/rspb.1922.0025]
[32]
Assinder, E.W.; Birm, M.D. Acriflavine as a urinary antiseptic. Lancet, 1936, 227(5867), 304-305.
[http://dx.doi.org/10.1016/S0140-6736(00)56423-X]
[33]
Kozurkova, M.; Sabolova, D. Acridine Isothiocyanates: Chemistry and Biology; Pavol Krastian Ed.; LAP LAMBERT Academic Publishing,2014..
[34]
Mukherjee, A.; Sasikala, W.D. Proflavine - an overview. Adv. Protein Chem. Struct. Biol., 2013.
[35]
Kožurková, M.; Sabolová, D.; Kristian, P. A review on acridinylthioureas and its derivatives: biological and cytotoxic activity. J. Appl. Toxicol., 2017, 37(10), 1132-1139.
[http://dx.doi.org/10.1002/jat.3464] [PMID: 28370171]
[36]
Ježek, J.; Hlaváček, J.; Šebestík, J. Biomedical Applications of Acridines, 72; Springer, 2017.
[http://dx.doi.org/10.1007/978-3-319-63953-6]
[37]
Albert, A. The Acridines: Their Preparation, Physical, Chemical, and Biological Properties and Uses, 2nd ed; Edward Arnold: London, 1966.
[38]
Mangraviti, A.; Raghavan, T.; Volpin, F.; Skuli, N.; Gullotti, D.; Zhou, J.; Asnaghi, L.; Sankey, E.; Liu, A.; Wang, Y.; Lee, D.H.; Gorelick, N.; Serra, R.; Peters, M.; Schriefer, D.; Delaspre, F.; Rodriguez, F.J.; Eberhart, C.G.; Brem, H.; Olivi, A.; Tyler, B. HIF-1α- targeting acriflavine provides long term survival and radiological tumor response in brain cancer therapy. Sci. Rep., 2017, 7(1), 14978.
[http://dx.doi.org/10.1038/s41598-017-14990-w] [PMID: 29097800 ]
[39]
Collins, G.W.; Stasiak, A. Comparative chemical examination of different brands of acriflavine hydrochloride (acriflavine) and acriflavine base (“neutral” acriflavine). J. Am. Pharm. Assoc., 1929, 18(7), 659-669.
[http://dx.doi.org/10.1002/jps.3080180703]
[40]
Dana, S.; Prusty, D.; Dhayal, D.; Gupta, M.K.; Dar, A.; Sen, S.; Mukhopadhyay, P.; Adak, T.; Dhar, S.K. Potent antimalarial activity of acriflavine in vitro and in vivo. ACS Chem. Biol., 2014, 9(10), 2366-2373.
[http://dx.doi.org/10.1021/cb500476q] [PMID: 25089658]
[41]
Vicentini, C.B.; Manfredini, S.; Maritati, M.; Di Nuzzo, M.; Contini, C. Gonorrhea, a current disease with ancient roots: from the remedies of the past to future perspectives. Infez. Med., 2019, 27(2), 212-221.
[PMID: 31205048]
[42]
Acriflavine | antiseptic and dye | Britannica. Available at:. https://www.britannica.com/science/acriflavine (Accessed date: Jun 5, 2020.)..
[43]
Watson, D. The treatment of gonorrhoea with acriflavine. BMJ, 1919, 1(3045), 571-572.
[http://dx.doi.org/10.1136/bmj.1.3045.571] [PMID: 20769469]
[44]
Mathé, G.; Huppert, J.; Chenu, E.; Bourut, C. Amino acridines action on Friend’s retrovirus in relation to their molecular ionization. Biomed. Pharmacother., 1989, 43(4), 235-236.
[http://dx.doi.org/10.1016/0753-3322(89)90002-4] [PMID: 2790144]
[45]
Mathé, G.; Pontiggia, P.; Orbach-Arbouys, S.; Triana, K.; Ambetima, N.; Morette, C.; Hallard, M.; Blanquet, D. AIDS therapy with two, three or four agent combinations, applied in short sequences, differing from each other by drug rotation. I. First of two parts: a phase I trial equivalent, concerning five virostatics: AZT, ddI, ddC, acriflavine and an ellipticine analogue. Biomed. Pharmacother., 1996, 50(5), 220-227.
[http://dx.doi.org/10.1016/0753-3322(96)87662-1] [PMID: 8949403]
[46]
Fan, J.; Yang, X.; Bi, Z. Acriflavine suppresses the growth of human osteosarcoma cells through apoptosis and autophagy. Tumour Biol., 2014, 35(10), 9571-9576.
[http://dx.doi.org/10.1007/s13277-014-2156-x] [PMID: 24961347]
[47]
Thurber, D.S. The results of the use of acriflavine hydrochloride in the treatment of undulant fever. Can. Med. Assoc. J., 1930, 23(5), 665-668.
[PMID: 20318053]
[48]
Quackenbos, M. The use of acriflavine. J. Am. Med. Assoc., 1919, 73(21), 1629.
[http://dx.doi.org/10.1001/jama.1919.02610470065029 ]
[49]
Leelavathi, M.; Le, Y.; Tohid, H.; Hasliza, A. Contact dermatitis presenting as non-healing wound: case report. Asia Pac. Fam. Med., 2011, 10(1), 6.
[http://dx.doi.org/10.1186/1447-056X-10-6] [PMID: 21575147]
[50]
Nilsson, O. The acriflavine method, a rapid morphological test of the effect of oestrogen on the mouse uterus. J. Endocrinol., 1964, 30(1), 151-152.
[http://dx.doi.org/10.1677/joe.0.0300151]] [PMID: 14199277]
[51]
Goldie, H.; Walker, M.; Graham, T.; Williams, F. Topical effect of acriflavine compounds on growth and spread of malignant cells. J. Natl. Cancer Inst., 1959, 23, 841-855.
[PMID: 13850654]
[52]
Hassan, S.; Laryea, D.; Mahteme, H.; Felth, J. FryknAs, M.; Fayad, W.; Linder, S.; Rickardson, L.; Gullbo, J.; Graf, W.; Páhlman, L.; Glimelius, B.; Larsson, R.; Nygren, P. Novel activity of acriflavine against colorectal cancer tumor cells. Cancer Sci., 2011, 102(12), 2206-2213.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02097.x] [PMID: 21910782]
[53]
Lee, K.; Zhang, H.; Qian, D.Z.; Rey, S.; Liu, J.O.; Semenza, G.L. Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proc. Natl. Acad. Sci. USA, 2009, 106(42), 17910-17915.
[http://dx.doi.org/10.1073/pnas.0909353106] [PMID: 19805192]
[54]
Shay, J.E.S.; Imtiyaz, H.Z.; Sivanand, S.; Durham, A.C.; Skuli, N.; Hsu, S.; Mucaj, V.; Eisinger-Mathason, T.S.; Krock, B.L.; Giannoukos, D.N.; Simon, M.C. Inhibition of hypoxia-inducible factors limits tumor progression in a mouse model of colorectal cancer. Carcinogenesis, 2014, 35(5), 1067-1077.
[http://dx.doi.org/10.1093/carcin/bgu004] [PMID: 24408928]
[55]
Guo, X.; Xue, H.; Shao, Q.; Wang, J.; Guo, X.; Chen, X.; Zhang, J.; Xu, S.; Li, T.; Zhang, P.; Gao, X.; Qiu, W.; Liu, Q.; Li, G. Hypoxia promotes glioma-associated macrophage infiltration via periostin and subsequent M2 polarization by upregulating TGF-beta and M-CSFR. Oncotarget, 2016, 7(49), 80521-80542.
[http://dx.doi.org/10.18632/oncotarget.11825] [PMID: 27602954]
[56]
Zargar, P.; Ghani, E.; Mashayekhi, F.J.; Ramezani, A.; Eftekhar, E. Acriflavine enhances the antitumor activity of the chemotherapeutic drug 5-fluorouracil in colorectal cancer cells. Oncol. Lett., 2018, 15(6), 10084-10090.
[http://dx.doi.org/10.3892/ol.2018.8569] [PMID: 29928378]
[57]
Weijer, R.; Broekgaarden, M.; Krekorian, M.; Alles, L.K.; van Wijk, A.C.; Mackaaij, C.; Verheij, J.; van der Wal, A.C.; van Gulik, T.M.; Storm, G.; Heger, M. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy. Oncotarget, 2016, 7(3), 3341-3356.
[http://dx.doi.org/10.18632/oncotarget.6490] [PMID: 26657503]
[58]
Yin, T.; He, S.; Shen, G.; Wang, Y. HIF-1 dimerization inhibitor acriflavine enhances antitumor activity of sunitinib in breast cancer model. Oncol. Res., 2014, 22(3), 139-145.
[http://dx.doi.org/10.3727/096504014X13983417587366] [PMID: 26168132]
[59]
Wong, C.C.L.; Zhang, H.; Gilkes, D.M.; Chen, J.; Wei, H.; Chaturvedi, P.; Hubbi, M.E.; Semenza, G.L. Inhibitors of hypoxia-inducible factor 1 block breast cancer metastatic niche formation and lung metastasis. J. Mol. Med. (Berl.), 2012, 90(7), 803-815.
[http://dx.doi.org/10.1007/s00109-011-0855-y] [PMID: 22231744]
[60]
Lee, C-J.; Yue, C-H.; Lin, Y-Y.; Wu, J-C.; Liu, J-Y. Antitumor activity of acriflavine in human hepatocellular carcinoma cells. Anticancer Res., 2014, 34(7), 3549-3556.
[PMID: 24982368]
[61]
Davis, E.G.; Harrell, B.E. Acriflavine in the treatment of gonorrhoea - an experimental and clinical study. J. Urol., 1918, 2(4), 257-276.
[http://dx.doi.org/10.1016/S0022-5347(17)74204-8]
[62]
Mathé, G.; Triana, K.; Pontiggia, P.; Blanquet, D.; Hallard, M.; Morette, C. Data of pre-clinical and early clinical trials of acriflavine and hydroxy-methyl-ellipticine reviewed, enriched by the experience of their use for 18 months to 6 years in combinations with other HIV1 virostatics. Biomed. Pharmacother., 1998, 52(9), 391-396.
[http://dx.doi.org/10.1016/S0753-3322(99)80007-9] [PMID: 9856286]
[63]
Richard Laboratoire M. Use of Acriflavine as an Anti-HIV Agent. Patent FR2711527A1, October 22,1993..
[64]
Nunes, C.P.; dos Órgãos, F.E.S. Clinical assessment of urinary antiseptics methenamine andmethylthioninium in recurrent cystitis. Patent NCT03379389, December 20, 2017.
[65]
Höglund, M.; Sandin, F.; Simonsson, B. Epidemiology of chronic myeloid leukaemia: an update. Ann. Hematol., 2015, 94(Suppl. 2), S241-S247.
[http://dx.doi.org/10.1007/s00277-015-2314-2] [PMID: 25814090]
[66]
Clarke, C.J.; Holyoake, T.L. Preclinical approaches in chronic myeloid leukemia: from cells to systems. Exp. Hematol., 2017, 47, 13-23.
[http://dx.doi.org/10.1016/j.exphem.2016.11.005] [PMID: 28017647]
[67]
Ren, R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat. Rev. Cancer, 2005, 5(3), 172-183.
[http://dx.doi.org/10.1038/nrc1567] [PMID: 15719031]
[68]
Druker, B.J.; Talpaz, M.; Resta, D.J.; Peng, B.; Buchdunger, E.; Ford, J.M.; Lydon, N.B.; Kantarjian, H.; Capdeville, R.; Ohno-Jones, S.; Sawyers, C.L. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med., 2001, 344(14), 1031-1037.
[http://dx.doi.org/10.1056/NEJM200104053441401] [PMID: 11287972]
[69]
Pophali, P.A.; Patnaik, M.M. The role of new tyrosine kinase inhibitors in chronic myeloid leukemia. Cancer J., 2016, 22(1), 40-50.
[http://dx.doi.org/10.1097/PPO.0000000000000165] [PMID: 26841016 ]
[70]
Gambacorti-Passerini, C.B.; Gunby, R.H.; Piazza, R.; Galietta, A.; Rostagno, R.; Scapozza, L. Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol., 2003, 4(2), 75-85.
[http://dx.doi.org/doi.org/10.1016/S1470-2045(03)00979-3] [PMID: 12573349]
[71]
Yu, Z.; Liu, L.; Shu, Q.; Li, D.; Wang, R. Leukemia stem cells promote chemoresistance by inducing downregulation of lumican in mesenchymal stem cells. Oncol. Lett., 2019, 18(4), 4317-4327.
[http://dx.doi.org/10.3892/ol.2019.10767] [PMID: 31579426]
[72]
Sprycel (Dasatinib) Information | FDA. Available at:; https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/sprycel-dasatinib-information(Accessed March 22, 2021)..
[73]
Tasigna (nilotinib) FDA Approval History - Drugs.com. Avaialable at: . https://www.drugs.com/history/tasigna.html (Accessed March 22, 2021).
[74]
Ponatinib (marketed as Iclusig) Informaton | FDA. Available at:. https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/ponatinib-marketed-iclusig-informaton(Accessed date: August 9, 2020.)..
[75]
Jabbour, E.; Kantarjian, H.; Cortes, J. Use of second- and third-generation tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia: an evolving treatment paradigm. Clin. Lymphoma Myeloma Leuk., 2015, 15(6), 323-334.
[http://dx.doi.org/doi.org/10.1016/j.clml.2015.03.006] [PMID: 25971713]
[76]
Kim, S.G.; Kim, C.W.; Ahn, E.T.; Lee, K.Y.; Hong, E.K.; Yoo, B.I.; Han, Y.B. Enhanced anti-tumour effects of acriflavine in combination with guanosine in mice. J. Pharm. Pharmacol., 1997, 49(2), 216-222.
[http://dx.doi.org/10.1111/j.2042-7158.1997.tb06783.x] [PMID: 9055199]
[77]
Hallal, R.; Nehme, R.; Brachet-Botineau, M.; Nehme, A.; Dakik, H.; Deynoux, M.; Dello Sbarba, P.; Levern, Y.; Zibara, K.; Gouilleux, F.; Mazurier, F. Acriflavine targets oncogenic STAT5 signaling in myeloid leukemia cells. J. Cell. Mol. Med., 2020, 24(17), 10052-10062.
[http://dx.doi.org/10.1111/jcmm.15612] [PMID: 32667731]
[78]
Sabolova, D.; Kristian, P.; Kozurkova, M. Proflavine/acriflavine derivatives with versatile biological activities. J. Appl. Toxicol., 2020, 40(1), 64-71.
[http://dx.doi.org/10.1002/jat.3818] [PMID: 31222780]
[79]
Cheloni, G.; Tanturli, M.; Tusa, I.; Ho DeSouza, N.; Shan, Y.; Gozzini, A.; Mazurier, F.; Rovida, E.; Li, S.; Dello Sbarba, P. Targeting chronic myeloid leukemia stem cells with the hypoxia-inducible factor inhibitor acriflavine. Blood, 2017, 130(5), 655-665.
[http://dx.doi.org/10.1182/blood-2016-10-745588] [PMID: 28576876]
[80]
Maxwell, P.H.; Pugh, C.W.; Ratcliffe, P.J. Activation of the HIF pathway in cancer. Curr. Opin. Genet. Dev., 2001, 11(3), 293-299.
[http://dx.doi.org/10.1016/S0959-437X(00)00193-3] [PMID: 11377966]
[81]
Deynoux, M.; Sunter, N. HA(c)rault, O.; Mazurier, F. Hypoxia and hypoxia-inducible factors in leukemias. Front. Oncol., 2016, 6(FEB), 41.
[http://dx.doi.org/10.3389/fonc.2016.00041] [PMID: 26955619]
[82]
Majmundar, A.J.; Wong, W.J.; Simon, M.C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell, 2010, 40(2), 294-309.
[http://dx.doi.org/10.1016/j.molcel.2010.09.022] [PMID: 20965423]
[83]
Ng, K.P.; Manjeri, A.; Lee, K.L.; Huang, W.; Tan, S.Y.; Chuah, C.T.H.; Poellinger, L.; Ong, S.T. Physiologic hypoxia promotes maintenance of CML stem cells despite effective BCR-ABL1 inhibition. Blood, 2014, 123(21), 3316-3326.
[http://dx.doi.org/10.1182/blood-2013-07-511907] [PMID: 24705490]
[84]
Zhang, H.; Li, H.; Xi, H.S.; Li, S. HIF1α is required for survival maintenance of chronic myeloid leukemia stem cells. Blood, 2012, 119(11), 2595-2607.
[http://dx.doi.org/10.1182/blood-2011-10-387381] [PMID: 22275380]
[85]
Wang, Y.; Liu, Y.; Malek, S.N.; Zheng, P.; Liu, Y. Targeting HIF1α eliminates cancer stem cells in hematological malignancies. Cell Stem Cell, 2011, 8(4), 399-411.
[http://dx.doi.org/10.1016/j.stem.2011.02.006] [PMID: 21474104]
[86]
Kawada, H.; Kaneko, M.; Sawanobori, M.; Uno, T.; Matsuzawa, H.; Nakamura, Y.; Matsushita, H.; Ando, K. High concentrations of L-ascorbic acid specifically inhibit the growth of human leukemic cells via downregulation of HIF-1α transcription. PLoS One, 2013, 8(4)e62717
[http://dx.doi.org/10.1371/journal.pone.0062717] [PMID: 23626851]
[87]
Coltella, N.; Valsecchi, R.; Ponente, M.; Ponzoni, M.; Bernardi, R. Synergistic leukemia eradication by combined treatment with retinoic acid and HIF Inhibition by EZN-2208 (PEG-SN38) in preclinical models of PML-RARα and PLZF-RARα-driven leukemia. Clin. Cancer Res., 2015, 21(16), 3685-3694.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3022] [PMID: 25931453]
[88]
Chen, B-A.; Wang, F.; Cheng, J.; Ding, J-H.; Xu, W-L.; Wang, X-M.; Gao, C.; Wang, J.; Zhao, G.; Bao, W.; Song, H-H.; Gao, F.; Zhang, W.; Xia, G-H.; Pei, X-P.; Wu, W-W.; Chen, N-N. Effect of YC-1, a HIF inhibitor, on apoptosis of leukemia cell. Blood, 2009, 114(22), 4432.
[http://dx.doi.org/10.1182/blood.V114.22.4432.4432]
[89]
Chung, J.G.; Yang, J.S.; Huang, L.J.; Lee, F.Y.; Teng, C.M.; Tsai, S.C.; Lin, K.L.; Wang, S.F.; Kuo, S.C. Proteomic approach to studying the cytotoxicity of YC-1 on U937 leukemia cells and antileukemia activity in orthotopic model of leukemia mice. Proteomics, 2007, 7(18), 3305-3317.
[http://dx.doi.org/10.1002/pmic.200700200] [PMID: 17849408]
[90]
Ajith, T.A. Current insights and future perspectives of hypoxia-inducible factor-targeted therapy in cancer. J. Basic Clin. Physiol. Pharmacol., 2019, 30(1), 11-18.
[http://dx.doi.org/doi.org/10.1515/jbcpp-2017-0167P MID: 30260792]
[91]
Tanturli, M.; Giuntoli, S.; Barbetti, V.; Rovida, E.; Dello Sbarba, P. Hypoxia selects bortezomib-resistant stem cells of chronic myeloid leukemia. PLoS One, 2011, 6(2)e17008
[http://dx.doi.org/10.1371/journal.pone.0017008] [PMID: 21347297]
[92]
Sullivan, R.; Paré, G.C.; Frederiksen, L.J.; Semenza, G.L.; Graham, C.H. Hypoxia-induced resistance to anticancer drugs is associated with decreased senescence and requires hypoxia-inducible factor-1 activity. Mol. Cancer Ther., 2008, 7(7), 1961-1973.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0198] [PMID: 18645006]
[93]
Shuai, K.; Halpern, J.; ten Hoeve, J.; Rao, X.; Sawyers, C.L. Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia. Oncogene, 1996, 13(2), 247-254.
[PMID: 8710363]
[94]
Warsch, W.; Kollmann, K.; Eckelhart, E.; Fajmann, S.; Cerny-Reiterer, S. HAlbl, A.; Gleixner, K.V.; Dworzak, M.; Mayerhofer, M.; Hoermann, G.; Herrmann, H.; Sillaber, C.; Egger, G.; Valent, P.; Moriggl, R.; Sexl, V. High STAT5 levels mediate imatinib resistance and indicate disease progression in chronic myeloid leukemia. Blood, 2011, 117(12), 3409-3420.
[http://dx.doi.org/10.1182/blood-2009-10-248211] [PMID: 21220747]
[95]
Houshmand, M.; Simonetti, G.; Circosta, P.; Gaidano, V.; Cignetti, A.; Martinelli, G.; Saglio, G.; Gale, R.P. Chronic myeloid leukemia stem cells. Leukemia, 2019, 33(7), 1543-1556.
[http://dx.doi.org/doi.org/10.1038/s41375-019-0490-0] [PMID: 31127148 ]
[96]
Brachet-Botineau, M.; Polomski, M.; Neubauer, H.A.; Juen, L. HA(c)dou, D.; Viaud-Massuard, M. C.; PriA(c), G.; Gouilleux, F. Pharmacological inhibition of oncogenic STAT3 and STAT5 signaling in hematopoietic cancers. Cancers , 2020, 2(1), 240.
[http://dx.doi.org/doi.org/10.3390/cancers12010240] [PMID: 31963765]
[97]
Pimozide Oral: Uses, Side Effects, Interactions, Pictures, Warnings & Dosing. WebMD. Available at. https://www. webmd.com/drugs/2/drug-11062/pimozide-oral/details(Accessed date: Jun 24, 2020.)..
[98]
Nelson, E.A.; Walker, S.R.; Weisberg, E.; Bar-Natan, M.; Barrett, R.; Gashin, L.B.; Terrell, S.; Klitgaard, J.L.; Santo, L.; Addorio, M.R.; Ebert, B.L.; Griffin, J.D.; Frank, D.A. The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors. Blood, 2011, 117(12), 3421-3429.
[http://dx.doi.org/10.1182/blood-2009-11-255232] [PMID: 21233313]
[99]
Bar-Natan, M.; Nelson, E.A.; Walker, S.R.; Kuang, Y.; Distel, R.J.; Frank, D.A. Dual inhibition of Jak2 and STAT5 enhances killing of myeloproliferative neoplasia cells. Leukemia, 2012, 26(6), 1407-1410.
[http://dx.doi.org/doi.org/10.1038/leu.2011.338] [PMID: 22134716]
[100]
Yun, U.J.; Park, S.E.; Jo, Y.S.; Kim, J.; Shin, D.Y. DNA damage induces the IL-6/STAT3 signaling pathway, which has anti-senescence and growth-promoting functions in human tumors. Cancer Lett., 2012, 323(2), 155-160.
[http://dx.doi.org/10.1016/j.canlet.2012.04.003] [PMID: 22521547]
[101]
Wang, L.; Niu, M.; Zheng, C.; Zhao, H.; Niu, X.; Li, L.; Hu, Y.; Zhang, Y.; Shi, J.; Zhang, Z. A Core-shell nanoplatform for synergistic enhanced sonodynamic therapy of hypoxic tumor via cascaded strategy. Adv. Healthc. Mater., 2018, 7(22)e1800819
[http://dx.doi.org/10.1002/adhm.201800819] [PMID: 30303621]
[102]
Zeng, M.; Shen, J.; Liu, Y.; Lu, L.Y.; Ding, K.; Fortmann, S.D.; Khan, M.; Wang, J.; Hackett, S.F.; Semenza, G.L.; Campochiaro, P.A. The HIF-1 antagonist acriflavine: visualization in retina and suppression of ocular neovascularization. J. Mol. Med. (Berl.), 2017, 95(4), 417-429.
[http://dx.doi.org/10.1007/s00109-016-1498-9] [PMID: 28004126]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy