Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Perspectives on Drug Repurposing

Author(s): Alejandro Schcolnik-Cabrera, Daniel Juárez-López and Alfonso Duenas-Gonzalez*

Volume 28, Issue 11, 2021

Published on: 31 August, 2020

Page: [2085 - 2099] Pages: 15

DOI: 10.2174/0929867327666200831141337

Price: $65

Abstract

Complex common diseases are a significant burden for our societies and demand not only preventive measures but also more effective, safer, and more affordable treatments. The whole process of the current model of drug discovery and development implies a high investment by the pharmaceutical industry, which ultimately impact in high drug prices. In this sense, drug repurposing would help meet the needs of patients to access useful and novel treatments. Unlike the traditional approach, drug repurposing enters both the preclinical evaluation and clinical trials of the compound of interest faster, budgeting research and development costs, and limiting potential biosafety risks. The participation of government, society, and private investors is needed to secure the funds for experimental design and clinical development of repurposing candidates to have affordable, effective, and safe repurposed drugs. Moreover, extensive advertising of repurposing as a concept in the health community, could reduce prescribing bias when enough clinical evidence exists, which will support the employment of cheaper and more accessible repurposed compounds for common conditions.

Keywords: Drug repurposing, drug discovery and development, pharmaceutical companies, common diseases, repurposed compounds, Gene-chemical Structure-target Networks.

[1]
Naylor, S.S.J.M. Therapeutic drug repurposing, repositioning, and rescue - Part I: overview. Drug Discovery World, 2014, 16(1), 49-62. Available at:. https://www.ddw-online. com/therapeutic-drug-repurposing-repositioning-and-rescue-part-i-overview-1463-201412/ (Accessed date: June 21,2020.
[2]
DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ., 2016, 47, 20-33.
[http://dx.doi.org/10.1016/j.jhealeco.2016.01.012] [PMID: 26928437]
[3]
Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A.L. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov., 2010, 9(3), 203-214.
[http://dx.doi.org/10.1038/nrd3078] [PMID: 20168317]
[4]
Matthews, H.; Hanison, J.; Nirmalan, N. “Omics”-informed drug and biomarker discovery: opportunities, challenges and future perspectives. Proteomes, 2016, 4(3) E28
[http://dx.doi.org/10.3390/proteomes4030028] [PMID: 28248238]
[5]
Hay, M.; Thomas, D.W.; Craighead, J.L.; Economides, C.; Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol., 2014, 32(1), 40-51.
[http://dx.doi.org/10.1038/nbt.2786] [PMID: 24406927]
[6]
Gibson, G. On the utilization of polygenic risk scores for therapeutic targeting. PLoS Genet., 2019, 15(4) e1008060
[http://dx.doi.org/10.1371/journal.pgen.1008060] [PMID: 31022172]
[7]
Baliga, N.S.; Björkegren, J.L.; Boeke, J.D.; Boutros, M.; Crawford, N.P.; Dudley, A.M.; Farber, C.R.; Jones, A.; Levey, A.I.; Lusis, A.J.; Mak, H.C.; Nadeau, J.H.; Noyes, M.B.; Petretto, E.; Seyfried, N.T.; Steinmetz, L.M.; Vonesch, S.C. The state of systems genetics in 2017. Cell Syst., 2017, 4(1), 7-15.
[http://dx.doi.org/10.1016/j.cels.2017.01.005] [PMID: 28125793]
[8]
Parikshak, N.N.; Gandal, M.J.; Geschwind, D.H. Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders. Nat. Rev. Genet., 2015, 16(8), 441-458.
[http://dx.doi.org/10.1038/nrg3934] [PMID: 26149713]
[9]
Cook, D.; Brown, D.; Alexander, R.; March, R.; Morgan, P.; Satterthwaite, G.; Pangalos, M.N. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat. Rev. Drug Discov., 2014, 13(6), 419-431.
[http://dx.doi.org/10.1038/nrd4309] [PMID: 24833294]
[10]
Naylor, S. Nostrapharmus revisited: a future of splendid isolation or multilevel participation for pharmaceutical companies., Drug Discov. World, 2010, 11, 24-26. Available at:. https://www.ddw-online.com/media/32/1naylor.pdf(Accessed date: June 21, 2020.)..
[11]
Vondeling, G.T.; Cao, Q.; Postma, M.J.; Rozenbaum, M.H. The impact of patent expiry on drug prices: a systematic literature review. Appl. Health Econ. Health Policy, 2018, 16(5), 653-660.
[http://dx.doi.org/10.1007/s40258-018-0406-6] [PMID: 30019138]
[12]
Kessel, M. Restoring the pharmaceutical industry’s reputation. Nat. Biotechnol., 2014, 32(10), 983-990.
[http://dx.doi.org/10.1038/nbt.3036] [PMID: 25299916]
[13]
Danzon, P.M.; Towse, A. Differential pricing for pharmaceuticals: reconciling access, R&D and patents. Int. J. Health Care Finance Econ., 2003, 3(3), 183-205.
[http://dx.doi.org/10.1023/A:1025384819575] [PMID: 14625999]
[14]
Serajuddin, H.K.; Serajuddin, A.T. Value of pharmaceuticals: ensuring the future of research and development. J. Am. Pharm. Assoc., 2006, 46(4), 511-516.
[http://dx.doi.org/10.1331/154434506778073682]
[15]
Barton, J.H.; Emanuel, E.J. The patents-based pharmaceutical development process: rationale, problems, and potential reforms. JAMA, 2005, 294(16), 2075-2082.
[http://dx.doi.org/10.1001/jama.294.16.2075] [PMID: 16249422]
[16]
Verkman, A.S. Drug discovery in academia. Am. J. Physiol. Cell Physiol., 2004, 286(3), C465-C474.
[http://dx.doi.org/10.1152/ajpcell.00397.2003] [PMID: 14761879]
[17]
Wilkinson, G.F.; Pritchard, K. In vitro screening for drug repositioning. J. Biomol. Screen., 2015, 20(2), 167-179.
[http://dx.doi.org/10.1177/1087057114563024] [PMID: 25527136]
[18]
Gns, H.S.; Gr, S.; Murahari, M.; Krishnamurthy, M. An update on drug repurposing: re-written saga of the drug’s fate. Biomed. Pharmacother., 2019, 110, 700-716.
[http://dx.doi.org/10.1016/j.biopha.2018.11.127] [PMID: 30553197]
[19]
Simsek, M.; Meijer, B.; van Bodegraven, A.A.; de Boer, N.K.H.; Mulder, C.J.J. Finding hidden treasures in old drugs: the challenges and importance of licensing generics. Drug Discov. Today, 2018, 23(1), 17-21.
[http://dx.doi.org/10.1016/j.drudis.2017.08.008] [PMID: 28867540]
[20]
Jin, G.; Wong, S.T. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov. Today, 2014, 19(5), 637-644.
[http://dx.doi.org/10.1016/j.drudis.2013.11.005] [PMID: 24239728]
[21]
Bloom, B.E. Creating new economic incentives for repurposing generic drugs for unsolved diseases using social finance. Assay Drug Dev. Technol., 2015, 13(10), 606-611.
[http://dx.doi.org/10.1089/adt.2015.29015.beddrrr] [PMID: 26284286]
[22]
Nowak-Sliwinska, P.; Scapozza, L.; Ruiz, I.; Altaba, A. Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer. Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(2), 434-454.
[http://dx.doi.org/10.1016/j.bbcan.2019.04.005] [PMID: 31034926]
[23]
Kingsmore, K.M.; Grammer, A.C.; Lipsky, P.E. Drug repurposing to improve treatment of rheumatic autoimmune inflammatory diseases. Nat. Rev. Rheumatol., 2020, 16(1), 32-52.
[http://dx.doi.org/10.1038/s41584-019-0337-0] [PMID: 31831878]
[24]
Dar, A.C.; Das, T.K.; Shokat, K.M.; Cagan, R.L. Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature, 2012, 486(7401), 80-84.
[http://dx.doi.org/10.1038/nature11127] [PMID: 22678283]
[25]
Zhao, S.; Iyengar, R. Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu. Rev. Pharmacol. Toxicol., 2012, 52, 505-521.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134520] [PMID: 22235860]
[26]
Visscher, P.M.; Wray, N.R.; Zhang, Q.; Sklar, P.; McCarthy, M.I.; Brown, M.A.; Yang, J. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet., 2017, 101(1), 5-22.
[http://dx.doi.org/10.1016/j.ajhg.2017.06.005] [PMID: 28686856]
[27]
Nelson, M.R.; Tipney, H.; Painter, J.L.; Shen, J.; Nicoletti, P.; Shen, Y.; Floratos, A.; Sham, P.C.; Li, M.J.; Wang, J.; Cardon, L.R.; Whittaker, J.C.; Sanseau, P. The support of human genetic evidence for approved drug indications. Nat. Genet., 2015, 47(8), 856-860.
[http://dx.doi.org/10.1038/ng.3314] [PMID: 26121088]
[28]
Dunning, A.M.; Michailidou, K.; Kuchenbaecker, K.B.; Thompson, D.; French, J.D.; Beesley, J.; Healey, C.S.; Kar, S.; Pooley, K.A.; Lopez-Knowles, E.; Dicks, E.; Barrowdale, D.; Sinnott-Armstrong, N.A.; Sallari, R.C.; Hillman, K.M.; Kaufmann, S.; Sivakumaran, H.; Moradi Marjaneh, M.; Lee, J.S.; Hills, M.; Jarosz, M.; Drury, S.; Canisius, S.; Bolla, M.K.; Dennis, J.; Wang, Q.; Hopper, J.L.; Southey, M.C.; Broeks, A.; Schmidt, M.K.; Lophatananon, A.; Muir, K.; Beckmann, M.W.; Fasching, P.A.; Dos-Santos-Silva, I.; Peto, J.; Sawyer, E.J.; Tomlinson, I.; Burwinkel, B.; Marme, F.; Guénel, P.; Truong, T.; Bojesen, S.E.; Flyger, H.; González-Neira, A.; Perez, J.I.; Anton-Culver, H.; Eunjung, L.; Arndt, V.; Brenner, H.; Meindl, A.; Schmutzler, R.K.; Brauch, H.; Hamann, U.; Aittomäki, K.; Blomqvist, C.; Ito, H.; Matsuo, K.; Bogdanova, N.; Dörk, T.; Lindblom, A.; Margolin, S.; Kosma, V.M.; Mannermaa, A.; Tseng, C.C.; Wu, A.H.; Lambrechts, D.; Wildiers, H.; Chang-Claude, J.; Rudolph, A.; Peterlongo, P.; Radice, P.; Olson, J.E.; Giles, G.G.; Milne, R.L.; Haiman, C.A.; Henderson, B.E.; Goldberg, M.S.; Teo, S.H.; Yip, C.H.; Nord, S.; Borresen-Dale, A.L.; Kristensen, V.; Long, J.; Zheng, W.; Pylkäs, K.; Winqvist, R.; Andrulis, I.L.; Knight, J.A.; Devilee, P.; Seynaeve, C.; Figueroa, J.; Sherman, M.E.; Czene, K.; Darabi, H.; Hollestelle, A.; van den Ouweland, A.M.; Humphreys, K.; Gao, Y.T.; Shu, X.O.; Cox, A.; Cross, S.S.; Blot, W.; Cai, Q.; Ghoussaini, M.; Perkins, B.J.; Shah, M.; Choi, J.Y.; Kang, D.; Lee, S.C.; Hartman, M.; Kabisch, M.; Torres, D.; Jakubowska, A.; Lubinski, J.; Brennan, P.; Sangrajrang, S.; Ambrosone, C.B.; Toland, A.E.; Shen, C.Y.; Wu, P.E.; Orr, N.; Swerdlow, A.; McGuffog, L.; Healey, S.; Lee, A.; Kapuscinski, M.; John, E.M.; Terry, M.B.; Daly, M.B.; Goldgar, D.E.; Buys, S.S.; Janavicius, R.; Tihomirova, L.; Tung, N.; Dorfling, C.M.; van Rensburg, E.J.; Neuhausen, S.L.; Ejlertsen, B.; Hansen, T.V.; Osorio, A.; Benitez, J.; Rando, R.; Weitzel, J.N.; Bonanni, B.; Peissel, B.; Manoukian, S.; Papi, L.; Ottini, L.; Konstantopoulou, I.; Apostolou, P.; Garber, J.; Rashid, M.U.; Frost, D.; Izatt, L.; Ellis, S.; Godwin, A.K.; Arnold, N.; Niederacher, D.; Rhiem, K.; Bogdanova-Markov, N.; Sagne, C.; Stoppa-Lyonnet, D.; Damiola, F.; Sinilnikova, O.M.; Mazoyer, S.; Isaacs, C.; Claes, K.B.; De Leeneer, K.; de la Hoya, M.; Caldes, T.; Nevanlinna, H.; Khan, S.; Mensenkamp, A.R.; Hooning, M.J.; Rookus, M.A.; Kwong, A.; Olah, E.; Diez, O.; Brunet, J.; Pujana, M.A.; Gronwald, J.; Huzarski, T.; Barkardottir, R.B.; Laframboise, R.; Soucy, P.; Montagna, M.; Agata, S.; Teixeira, M.R.; Park, S.K.; Lindor, N.; Couch, F.J.; Tischkowitz, M.; Foretova, L.; Vijai, J.; Offit, K.; Singer, C.F.; Rappaport, C.; Phelan, C.M.; Greene, M.H.; Mai, P.L.; Rennert, G.; Imyanitov, E.N.; Hulick, P.J.; Phillips, K.A.; Piedmonte, M.; Mulligan, A.M.; Glendon, G.; Bojesen, A.; Thomassen, M.; Caligo, M.A.; Yoon, S.Y.; Friedman, E.; Laitman, Y.; Borg, A.; von Wachenfeldt, A.; Ehrencrona, H.; Rantala, J.; Olopade, O.I.; Ganz, P.A.; Nussbaum, R.L.; Gayther, S.A.; Nathanson, K.L.; Domchek, S.M.; Arun, B.K.; Mitchell, G.; Karlan, B.Y.; Lester, J.; Maskarinec, G.; Woolcott, C.; Scott, C.; Stone, J.; Apicella, C.; Tamimi, R.; Luben, R.; Khaw, K.T.; Helland, Å.; Haakensen, V.; Dowsett, M.; Pharoah, P.D.; Simard, J.; Hall, P.; García-Closas, M.; Vachon, C.; Chenevix-Trench, G.; Antoniou, A.C.; Easton, D.F.; Edwards, S.L. EMBRACE; GEMO Study Collaborators; HEBON; kConFab Investigators. Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nat. Genet., 2016, 48(4), 374-386.
[http://dx.doi.org/10.1038/ng.3521] [PMID: 26928228]
[29]
Thompson, D.J.; O’Mara, T.A.; Glubb, D.M.; Painter, J.N.; Cheng, T.; Folkerd, E.; Doody, D.; Dennis, J.; Webb, P.M.; Gorman, M.; Martin, L.; Hodgson, S.; Michailidou, K.; Tyrer, J.P.; Maranian, M.J.; Hall, P.; Czene, K.; Darabi, H.; Li, J.; Fasching, P.A.; Hein, A.; Beckmann, M.W.; Ekici, A.B.; Dörk, T.; Hillemanns, P.; Dürst, M.; Runnebaum, I.; Zhao, H.; Depreeuw, J.; Schrauwen, S.; Amant, F.; Goode, E.L.; Fridley, B.L.; Dowdy, S.C.; Winham, S.J.; Salvesen, H.B.; Trovik, J.; Njolstad, T.S.; Werner, H.M.; Ashton, K.; Proietto, T.; Otton, G.; Carvajal-Carmona, L.; Tham, E.; Liu, T.; Mints, M.; Scott, R.J.; McEvoy, M.; Attia, J.; Holliday, E.G.; Montgomery, G.W.; Martin, N.G.; Nyholt, D.R.; Henders, A.K.; Hopper, J.L.; Traficante, N.; Ruebner, M.; Swerdlow, A.J.; Burwinkel, B.; Brenner, H.; Meindl, A.; Brauch, H.; Lindblom, A.; Lambrechts, D.; Chang-Claude, J.; Couch, F.J.; Giles, G.G.; Kristensen, V.N.; Cox, A.; Bolla, M.K.; Wang, Q.; Bojesen, S.E.; Shah, M.; Luben, R.; Khaw, K.T.; Pharoah, P.D.; Dunning, A.M.; Tomlinson, I.; Dowsett, M.; Easton, D.F.; Spurdle, A.B. Australian National Endometrial Cancer Study Group (ANECS); National Study of Endometrial Cancer Genetics Group (NSECG); for RENDOCAS; AOCS Group. CYP19A1 fine-mapping and Mendelian randomization: estradiol is causal for endometrial cancer. Endocr. Relat. Cancer, 2016, 23(2), 77-91.
[http://dx.doi.org/10.1530/ERC-15-0386] [PMID: 26574572]
[30]
Shu, L.; Blencowe, M.; Yang, X. Translating GWAS findings to novel therapeutic targets for coronary artery disease. Front. Cardiovasc. Med., 2018, 5, 56.
[http://dx.doi.org/10.3389/fcvm.2018.00056] [PMID: 29900175]
[31]
Arida, A.; Sfikakis, P.P. Anti-cytokine biologic treatment beyond anti-TNF in Behçet’s disease. Clin. Exp. Rheumatol., 2014, 32(4)(Suppl. 84), S149-S155.
[PMID: 25268669]
[32]
King, E.A.; Davis, J.W.; Degner, J.F. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet., 2019, 15(12) e1008489
[http://dx.doi.org/10.1371/journal.pgen.1008489] [PMID: 31830040]
[33]
Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.P.; Subramanian, A.; Ross, K.N.; Reich, M.; Hieronymus, H.; Wei, G.; Armstrong, S.A.; Haggarty, S.J.; Clemons, P.A.; Wei, R.; Carr, S.A.; Lander, E.S.; Golub, T.R. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 2006, 313(5795), 1929-1935.
[http://dx.doi.org/10.1126/science.1132939] [PMID: 17008526]
[34]
Chung, F.H.; Lee, H.H.; Lee, H.C. ToP: a trend-of-disease-progression procedure works well for identifying cancer genes from multi-state cohort gene expression data for human colorectal cancer. PLoS One, 2013, 8(6) e65683
[http://dx.doi.org/10.1371/journal.pone.0065683] [PMID: 23799036]
[35]
Li, B.; Dai, C.; Wang, L.; Deng, H.; Li, Y.; Guan, Z.; Ni, H. A novel drug repurposing approach for non-small cell lung cancer using deep learning. PLoS One, 2020, 15(6) e0233112
[http://dx.doi.org/10.1371/journal.pone.0233112] [PMID: 32525938]
[36]
Ding, Q.; Sethna, F.; Wu, X.T.; Miao, Z.; Chen, P.; Zhang, Y.; Xiao, H.; Feng, W.; Feng, Y.; Li, X.; Wang, H. Transcriptome signature analysis repurposes trifluoperazine for the treatment of fragile X syndrome in mouse model. Commun. Biol., 2020, 3(1), 127.
[http://dx.doi.org/10.1038/s42003-020-0833-4] [PMID: 32179850]
[37]
Bolgár, B.; Arany, Á.; Temesi, G.; Balogh, B.; Antal, P.; Mátyus, P. Drug repositioning for treatment of movement disorders: from serendipity to rational discovery strategies. Curr. Top. Med. Chem., 2013, 13(18), 2337-2363.
[http://dx.doi.org/10.2174/15680266113136660164] [PMID: 24059461]
[38]
Hurle, M.R.; Yang, L.; Xie, Q.; Rajpal, D.K.; Sanseau, P.; Agarwal, P. Computational drug repositioning: from data to therapeutics. Clin. Pharmacol. Ther., 2013, 93(4), 335-341.
[http://dx.doi.org/10.1038/clpt.2013.1] [PMID: 23443757]
[39]
Oh, M.; Ahn, J.; Lee, T.; Jang, G.; Park, C.; Yoon, Y. Drug voyager: a computational platform for exploring unintended drug action. BMC Bioinformatics, 2017, 18(1), 131.
[http://dx.doi.org/10.1186/s12859-017-1558-3] [PMID: 28241745]
[40]
Campillos, M.; Kuhn, M.; Gavin, A.C.; Jensen, L.J.; Bork, P. Drug target identification using side-effect similarity. Science, 2008, 321(5886), 263-266.
[http://dx.doi.org/10.1126/science.1158140] [PMID: 18621671]
[41]
Andronis, C.; Sharma, A.; Virvilis, V.; Deftereos, S.; Persidis, A. Literature mining, ontologies and information visualization for drug repurposing. Brief. Bioinform., 2011, 12(4), 357-368.
[http://dx.doi.org/10.1093/bib/bbr005] [PMID: 21712342]
[42]
Su, E.W.; Sanger, T.M. Systematic drug repositioning through mining adverse event data in ClinicalTrials.gov. PeerJ, 2017, 5 e3154
[http://dx.doi.org/10.7717/peerj.3154] [PMID: 28348935]
[43]
Dolan, M.E. Capturing cancer initiating events in OncoCL, a cancer cell ontology. AMIA Jt. Summits Transl. Sci. Proc., 2014, 2014, 41.
[PMID: 25717398]
[44]
Lee, H.J.; Dang, T.C.; Lee, H.; Park, J.C. OncoSearch: cancer gene search engine with literature evidence Nucleic Acids Res. 2014, ., 42(Web Server issue), W416-421..
[http://dx.doi.org/10.1093/nar/gku368] [PMID: 24813447]
[45]
Napolitano, F.; Zhao, Y.; Moreira, V.M.; Tagliaferri, R.; Kere, J.; D’Amato, M.; Greco, D. Drug repositioning: a machine-learning approach through data integration. J. Cheminform., 2013, 5(1), 30.
[http://dx.doi.org/10.1186/1758-2946-5-30] [PMID: 23800010]
[46]
Isik, Z.; Baldow, C.; Cannistraci, C.V.; Schroeder, M. Drug target prioritization by perturbed gene expression and network information. Sci. Rep., 2015, 5, 17417.
[http://dx.doi.org/10.1038/srep17417] [PMID: 26615774]
[47]
Goh, K.I.; Choi, I.G. Exploring the human diseasome: the human disease network. Brief. Funct. Genomics, 2012, 11(6), 533-542.
[http://dx.doi.org/10.1093/bfgp/els032] [PMID: 23063808]
[48]
Langhauser, F.; Casas, A.I.; Dao, V.T.; Guney, E.; Menche, J.; Geuss, E.; Kleikers, P.W.M.; López, M.G.; Barabási, A.L.; Kleinschnitz, C.; Schmidt, H.H.H.W. A diseasome cluster-based drug repurposing of soluble guanylate cyclase activators from smooth muscle relaxation to direct neuroprotection. NPJ Syst. Biol. Appl., 2018, 4, 8.
[http://dx.doi.org/10.1038/s41540-017-0039-7] [PMID: 29423274]
[49]
Chu, Y.; He, X. MoleGear: a java-based platform for evolutionary de novo molecular design. Molecules, 2019, 24(7) E1444
[http://dx.doi.org/10.3390/molecules24071444] [PMID: 30979097]
[50]
Douguet, D.; Thoreau, E.; Grassy, G. A genetic algorithm for the automated generation of small organic molecules: drug design using an evolutionary algorithm. J. Comput. Aided Mol. Des., 2000, 14(5), 449-466.
[http://dx.doi.org/10.1023/A:1008108423895] [PMID: 10896317]
[51]
Nowak-Sliwinska, P.; Weiss, A.; Ding, X.; Dyson, P.J.; van den Bergh, H.; Griffioen, A.W.; Ho, C.M. Optimization of drug combinations using feedback system control. Nat. Protoc., 2016, 11(2), 302-315.
[http://dx.doi.org/10.1038/nprot.2016.017] [PMID: 26766116]
[52]
Bielza, C.; Larrañaga, P. Bayesian networks in neuroscience: a survey. Front. Comput. Neurosci., 2014, 8, 131.
[http://dx.doi.org/10.3389/fncom.2014.00131] [PMID: 25360109]
[53]
Li, P.; Huang, C.; Fu, Y.; Wang, J.; Wu, Z.; Ru, J.; Zheng, C.; Guo, Z.; Chen, X.; Zhou, W.; Zhang, W.; Li, Y.; Chen, J.; Lu, A.; Wang, Y. Large-scale exploration and analysis of drug combinations. Bioinformatics, 2015, 31(12), 2007-2016.
[http://dx.doi.org/10.1093/bioinformatics/btv080] [PMID: 25667546]
[54]
Cruz-Ramírez, N.; Acosta-Mesa, H.G.; Carrillo-Calvet, H.; Nava-Fernández, L.A.; Barrientos-Martínez, R.E. Diagnosis of breast cancer using Bayesian networks: a case study. Comput. Biol. Med., 2007, 37(11), 1553-1564.
[http://dx.doi.org/10.1016/j.compbiomed.2007.02.003] [PMID: 17434159]
[55]
Sawada, R.; Iwata, M.; Tabei, Y.; Yamato, H.; Yamanishi, Y. Predicting inhibitory and activatory drug targets by chemically and genetically perturbed transcriptome signatures. Sci. Rep., 2018, 8(1), 156.
[http://dx.doi.org/10.1038/s41598-017-18315-9] [PMID: 29317676]
[56]
Gottlieb, A.; Stein, G.Y.; Ruppin, E.; Sharan, R. PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol., 2011, 7, 496.
[http://dx.doi.org/10.1038/msb.2011.26] [PMID: 21654673]
[57]
Hall, A.K.S.; Sireau, N.; Raffai, F. Findacure: empowering patient groups for drug development. Expert Opin. Orphan Drugs, 2014, 2(11), 1175-1179.
[http://dx.doi.org/10.1517/21678707.2014.974552]
[58]
Pantziarka, P.; Bouche, G.; Meheus, L.; Sukhatme, V.; Sukhatme, V.P.; Vikas, P. The repurposing drugs in oncology. (ReDO) Project. Ecancermedicalscience, 2014, 8, 442.
[http://dx.doi.org/10.3332/ecancer.2014.442] [PMID: 25075216]
[59]
Corsello, S.M.; Bittker, J.A.; Liu, Z.; Gould, J.; McCarren, P.; Hirschman, J.E.; Johnston, S.E.; Vrcic, A.; Wong, B.; Khan, M.; Asiedu, J.; Narayan, R.; Mader, C.C.; Subramanian, A.; Golub, T.R. The Drug Repurposing Hub: a next-generation drug library and information resource. Nat. Med., 2017, 23(4), 405-408.
[http://dx.doi.org/10.1038/nm.4306] [PMID: 28388612]
[60]
Janes, J.; Young, M.E.; Chen, E.; Rogers, N.H.; Burgstaller-Muehlbacher, S.; Hughes, L.D.; Love, M.S.; Hull, M.V.; Kuhen, K.L.; Woods, A.K.; Joseph, S.B.; Petrassi, H.M.; McNamara, C.W.; Tremblay, M.S.; Su, A.I.; Schultz, P.G.; Chatterjee, A.K. The ReFRAME library as a comprehensive drug repurposing library and its application to the treatment of cryptosporidiosis. Proc. Natl. Acad. Sci. USA, 2018, 115(42), 10750-10755.
[http://dx.doi.org/10.1073/pnas.1810137115] [PMID: 30282735]
[61]
Pandika, M. Mining Gene Expression Data for Drug Discovery. ACS Cent. Sci., 2018, 4(8), 944-947.
[http://dx.doi.org/10.1021/acscentsci.8b00529] [PMID: 30159389]
[62]
Bray, M.A.; Singh, S.; Han, H.; Davis, C.T.; Borgeson, B.; Hartland, C.; Kost-Alimova, M.; Gustafsdottir, S.M.; Gibson, C.C.; Carpenter, A.E. Cell painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat. Protoc., 2016, 11(9), 1757-1774.
[http://dx.doi.org/10.1038/nprot.2016.105] [PMID: 27560178]
[63]
Amelio, I.; Gostev, M.; Knight, R.A.; Willis, A.E.; Melino, G.; Antonov, A.V. DRUGSURV: a resource for repositioning of approved and experimental drugs in oncology based on patient survival information. Cell Death Dis., 2014, 5 e1051
[http://dx.doi.org/10.1038/cddis.2014.9] [PMID: 24503543]
[64]
Lee, B.K.; Tiong, K.H.; Chang, J.K.; Liew, C.S.; Abdul Rahman, Z.A.; Tan, A.C.; Khang, T.F.; Cheong, S.C. Design: connecting gene expression with therapeutics for drug repurposing and development. BMC Genomics, 2017, 18(Suppl. 1), 934.
[http://dx.doi.org/10.1186/s12864-016-3260-7] [PMID: 28198666]
[65]
Hintzsche, J.D.; Yoo, M.; Kim, J.; Amato, C.M.; Robinson, W.A.; Tan, A.C. IMPACT web portal: oncology database integrating molecular profiles with actionable therapeutics. BMC Med. Genomics, 2018, 11(Suppl. 2), 26.
[http://dx.doi.org/10.1186/s12920-018-0350-1] [PMID: 29697364]
[66]
Pantziarka, P.; Verbaanderd, C.; Sukhatme, V.; Rica Capistrano, I.; Crispino, S.; Gyawali, B.; Rooman, I.; Van Nuffel, A.M.; Meheus, L.; Sukhatme, V.P.; Bouche, G. ReDO_DB: the repurposing drugs in oncology database. Ecancermedicalscience, 2018, 12, 886.
[http://dx.doi.org/10.3332/ecancer.2018.886] [PMID: 30679953]
[67]
Iyengar, S.K.; Elston, R.C. The genetic basis of complex traits: rare variants or “common gene, common disease”? Methods Mol. Biol., 2007, 376, 71-84.
[http://dx.doi.org/10.1007/978-1-59745-389-9_6] [PMID: 17984539]
[68]
McCarthy, M.I.; Hirschhorn, J.N. Genome-wide association studies: potential next steps on a genetic journey. Hum. Mol. Genet., 2008, 17(R2), R156-R165.
[http://dx.doi.org/10.1093/hmg/ddn289] [PMID: 18852205]
[69]
Di Rienzo, A.; Hudson, R.R. An evolutionary framework for common diseases: the ancestral-susceptibility model. Trends Genet., 2005, 21(11), 596-601.
[http://dx.doi.org/10.1016/j.tig.2005.08.007] [PMID: 16153740]
[70]
Kitano, H. Cancer as a robust system: implications for anticancer therapy. Nat. Rev. Cancer, 2004, 4(3), 227-235.
[http://dx.doi.org/10.1038/nrc1300] [PMID: 14993904]
[71]
Stelling, J.; Sauer, U.; Szallasi, Z.; Doyle, F.J. III.; Doyle, J. Robustness of cellular functions. Cell, 2004, 118(6), 675-685.
[http://dx.doi.org/10.1016/j.cell.2004.09.008] [PMID: 15369668]
[72]
Baker, S.G. A cancer theory kerfuffle can lead to new lines of research. J. Natl. Cancer Inst., 2014, 107(2) dju405
[http://dx.doi.org/10.1093/jnci/dju405] [PMID: 25528755]
[73]
Adjiri, A. DNA mutations may not be the cause of cancer. Oncol. Ther., 2017, 5(1), 85-101.
[http://dx.doi.org/10.1007/s40487-017-0047-1] [PMID: 28680959]
[74]
Rosenfeld, S. Biomolecular self-defense and futility of high-specificity therapeutic targeting. Gene Regul. Syst. Bio., 2011, 5, 89-104.
[http://dx.doi.org/10.4137/GRSB.S8542] [PMID: 22272063]
[75]
Rosenfeld, S. Mathematical descriptions of biochemical networks: stability, stochasticity, evolution. Prog. Biophys. Mol. Biol., 2011, 106(2), 400-409.
[http://dx.doi.org/10.1016/j.pbiomolbio.2011.03.003] [PMID: 21419158]
[76]
Chuang, H.Y.; Lee, E.; Liu, Y.T.; Lee, D.; Ideker, T. Network-based classification of breast cancer metastasis. Mol. Syst. Biol., 2007, 3, 140.
[http://dx.doi.org/10.1038/msb4100180] [PMID: 17940530]
[77]
Pawson, T.; Linding, R. Network medicine. FEBS Lett., 2008, 582(8), 1266-1270.
[http://dx.doi.org/10.1016/j.febslet.2008.02.011] [PMID: 18282479]
[78]
Agoston, V.; Csermely, P.; Pongor, S. Multiple weak hits confuse complex systems: a transcriptional regulatory network as an example. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2005, 71(5 Pt 1) 051909
[http://dx.doi.org/10.1103/PhysRevE.71.051909] [PMID: 16089573]
[79]
Roth, B.L.; Sheffler, D.J.; Kroeze, W.K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug Discov., 2004, 3(4), 353-359.
[http://dx.doi.org/10.1038/nrd1346] [PMID: 15060530]
[80]
Chen, Z.; Han, L.; Xu, M.; Xu, Y.; Qian, X. Rationally designed multitarget anticancer agents. Curr. Med. Chem., 2013, 20(13), 1694-1714.
[http://dx.doi.org/10.2174/0929867311320130009] [PMID: 23410168]
[81]
Kucuksayan, E.; Ozben, T. Hybrid compounds as multitarget directed anticancer agents. Curr. Top. Med. Chem., 2017, 17(8), 907-918.
[http://dx.doi.org/10.2174/1568026616666160927155515] [PMID: 27697050]
[82]
Zheng, W.; Zhao, Y.; Luo, Q.; Zhang, Y.; Wu, K.; Wang, F. Multi-targeted anticancer agents. Curr. Top. Med. Chem., 2017, 17(28), 3084-3098.
[http://dx.doi.org/10.2174/1568026617666170707124126] [PMID: 28685693]
[83]
Scotti, L.; Ishiki, H.M.; Duarte, M.C.; Oliveira, T.B.; Scotti, M.T. Computational approaches in multitarget drug discovery. Methods Mol. Biol., 2018, 1800, 327-345.
[http://dx.doi.org/10.1007/978-1-4939-7899-1_16] [PMID: 29934901]
[84]
Kast, R.E.; Skuli, N.; Cos, S.; Karpel-Massler, G.; Shiozawa, Y.; Goshen, R.; Halatsch, M.E. The ABC7 regimen: a new approach to metastatic breast cancer using seven common drugs to inhibit epithelial-to-mesenchymal transition and augment capecitabine efficacy. Breast Cancer (Dove Med. Press), 2017, 9, 495-514.
[http://dx.doi.org/10.2147/BCTT.S139963] [PMID: 28744157]
[85]
Skaga, E.; Skaga, I.O.; Grieg, Z.; Sandberg, C.J.; Langmoen, I.A.; Vik-Mo, E.O. The efficacy of a coordinated pharmacological blockade in glioblastoma stem cells with nine repurposed drugs using the CUSP9 strategy. J. Cancer Res. Clin. Oncol., 2019, 145(6), 1495-1507.
[http://dx.doi.org/10.1007/s00432-019-02920-4] [PMID: 31028540]
[86]
Ahmad, F.; Murata, T.; Shimizu, K.; Degerman, E.; Maurice, D.; Manganiello, V. Cyclic nucleotide phosphodiesterases: important signaling modulators and therapeutic targets. Oral Dis., 2015, 21(1), e25-e50.
[http://dx.doi.org/10.1111/odi.12275] [PMID: 25056711]
[87]
Baillie, G.S.; Tejeda, G.S.; Kelly, M.P. Therapeutic targeting of 3′,5′-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat. Rev. Drug Discov., 2019, 18(10), 770-796.
[http://dx.doi.org/10.1038/s41573-019-0033-4] [PMID: 31388135]
[88]
Kita, T.; Fujimura, M.; Myou, S.; Watanabe, K.; Waseda, Y.; Nakao, S. Effects of KF19514, a phosphodiesterase 4 and 1 Inhibitor, on bronchial inflammation and remodeling in a murine model of chronic asthma. Allergol. Int., 2009, 58(2), 267-275.
[http://dx.doi.org/10.2332/allergolint.08-OA-0053] [PMID: 19390238]
[89]
Franciosi, L.G.; Diamant, Z.; Banner, K.H.; Zuiker, R.; Morelli, N.; Kamerling, I.M.; de Kam, M.L.; Burggraaf, J.; Cohen, A.F.; Cazzola, M.; Calzetta, L.; Singh, D.; Spina, D.; Walker, M.J.; Page, C.P. Efficacy and safety of RPL554, a dual PDE3 and PDE4 inhibitor, in healthy volunteers and in patients with asthma or chronic obstructive pulmonary disease: findings from four clinical trials. Lancet Respir. Med., 2013, 1(9), 714-727.
[http://dx.doi.org/10.1016/S2213-2600(13)70187-5] [PMID: 24429275]
[90]
Keravis, T.; Lugnier, C. Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br. J. Pharmacol., 2012, 165(5), 1288-1305.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01729.x] [PMID: 22014080]
[91]
Lee, L.C.; Maurice, D.H.; Baillie, G.S. Targeting protein-protein interactions within the cyclic AMP signaling system as a therapeutic strategy for cardiovascular disease. Future Med. Chem., 2013, 5(4), 451-464.
[http://dx.doi.org/10.4155/fmc.12.216] [PMID: 23495691]
[92]
Zhao, B.; Luo, J.; Yu, T.; Zhou, L.; Lv, H.; Shang, P. Anticancer mechanisms of metformin: a review of the current evidence. Life Sci., 2020, 254 117717
[http://dx.doi.org/10.1016/j.lfs.2020.117717] [PMID: 32339541]
[93]
Pácal, L.; Kaňková, K. Metformin in oncology - how far is its repurposing as an anticancer drug? Klin. Onkol., 2020, 33(2), 107-113.
[http://dx.doi.org/10.14735/amko2020107] [PMID: 32303131]
[94]
Cha, Y.; Erez, T.; Reynolds, I.J.; Kumar, D.; Ross, J.; Koytiger, G.; Kusko, R.; Zeskind, B.; Risso, S.; Kagan, E.; Papapetropoulos, S.; Grossman, I.; Laifenfeld, D. Drug repurposing from the perspective of pharmaceutical companies. Br. J. Pharmacol., 2018, 175(2), 168-180.
[http://dx.doi.org/10.1111/bph.13798] [PMID: 28369768]
[95]
Ventola, C.L. Direct-to-consumer pharmaceutical advertising: therapeutic or toxic? P&T, 2011, 36(10), 669-684.
[PMID: 22346300]
[96]
Bloomberg, N. Viagra ads and $1 billion in spending put Pfizer on top of pharma boom. 2020. Available at:; https://adage.com/article/media/viagra-ads-put-pfizer-top-drug-industry-promo-boom/297818 (Accessed date: 21 June, 2020)..
[97]
Baron, J.A.; Cole, B.F.; Sandler, R.S.; Haile, R.W.; Ahnen, D.; Bresalier, R.; McKeown-Eyssen, G.; Summers, R.W.; Rothstein, R.; Burke, C.A.; Snover, D.C.; Church, T.R.; Allen, J.I.; Beach, M.; Beck, G.J.; Bond, J.H.; Byers, T.; Greenberg, E.R.; Mandel, J.S.; Marcon, N.; Mott, L.A.; Pearson, L.; Saibil, F.; van Stolk, R.U. A randomized trial of aspirin to prevent colorectal adenomas. N. Engl. J. Med., 2003, 348(10), 891-899.
[http://dx.doi.org/10.1056/NEJMoa021735] [PMID: 12621133]
[98]
Elwood, P.C.; Morgan, G.; Pickering, J.E.; Galante, J.; Weightman, A.L.; Morris, D.; Kelson, M.; Dolwani, S. Aspirin in the treatment of cancer: reductions in metastatic spread and in mortality: a systematic review and meta-analyses of published studies. PLoS One, 2016, 11(4) e0152402
[http://dx.doi.org/10.1371/journal.pone.0152402] [PMID: 27096951]
[99]
Bosetti, C.; Rosato, V.; Gallus, S.; Cuzick, J.; La Vecchia, C. Aspirin and cancer risk: a quantitative review to 2011. Ann. Oncol., 2012, 23(6), 1403-1415.
[http://dx.doi.org/10.1093/annonc/mds113] [PMID: 22517822]
[100]
Mucke, H.A.M. COVID-19 and the drug repurposing Tsunami. Assay Drug Dev. Technol., 2020, 18(5), 211-214.
[http://dx.doi.org/10.1089/adt.2020.996] [PMID: 32551883]
[101]
Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; Lopez de Castilla, D.; Finberg, R.W.; Dierberg, K.; Tapson, V.; Hsieh, L.; Patterson, T.F.; Paredes, R.; Sweeney, D.A.; Short, W.R.; Touloumi, G.; Lye, D.C.; Ohmagari, N.; Oh, M.D.; Ruiz-Palacios, G.M.; Benfield, T.; Fatkenheuer, G.; Kortepeter, M.G.; Atmar, R.L.; Creech, C.B.; Lundgren, J.; Babiker, A.G.; Pett, S.; Neaton, J.D.; Burgess, T.H.; Bonnett, T.; Green, M.; Makowski, M.; Osinusi, A.; Nayak, S.; Lane, H.C. Members, A.-S.G. Remdesivir for the treatment of Covid-19 - preliminary report. N. Engl. J. Med., 2020, 383(19), 1813-1826.
[http://dx.doi.org/10.1056/NEJMoa2007764] [PMID: 32445440]
[102]
Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; Hu, Y.; Luo, G.; Wang, K.; Lu, Y.; Li, H.; Wang, S.; Ruan, S.; Yang, C.; Mei, C.; Wang, Y.; Ding, D.; Wu, F.; Tang, X.; Ye, X.; Ye, Y.; Liu, B.; Yang, J.; Yin, W.; Wang, A.; Fan, G.; Zhou, F.; Liu, Z.; Gu, X.; Xu, J.; Shang, L.; Zhang, Y.; Cao, L.; Guo, T.; Wan, Y.; Qin, H.; Jiang, Y.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Cao, B.; Wang, C. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2020, 395(10236), 1569-1578.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[103]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[104]
Singh, A.P.; Tousif, S.; Umbarkar, P.; Lal, H. A Pharmacovigilance Study of Hydroxychloroquine Cardiac Safety Profile: Potential Implication in COVID-19 Mitigation. J. Clin. Med., 2020, 9(6) E1867
[http://dx.doi.org/10.3390/jcm9061867] [PMID: 32549293]
[105]
Ledford, H. Coronavirus breakthrough: dexamethasone is first drug shown to save lives. Nature, 2020, 582(7813), 469.
[http://dx.doi.org/10.1038/d41586-020-01824-5] [PMID: 32546811]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy