Review Article

肿瘤药物的重新利用:当前证据和未来方向

卷 28, 期 11, 2021

发表于: 20 August, 2020

页: [2175 - 2194] 页: 20

弟呕挨: 10.2174/0929867327999200820124111

价格: $65

摘要

背景:药物再利用,即以非肿瘤为主要目的的已知药物和化合物的应用,可能是一种有吸引力的策略,可以以较低的成本和较短的时间为癌症患者提供更有效的治疗选择。 方法:这篇综述描述了来自100多项力学研究的10种非肿瘤药物以及基于人群的研究的证据。讨论了利用患者源性肿瘤类器官许多老药表现出以前未知的作用或脱靶作用,可以智能地应用于癌症的化学预防和治疗。重新使用药物的鉴定需要结合力学研究和基于人群的研究的证据。由于肿瘤的异质性,患者来源的肿瘤类器官可以用于非肿瘤药物的体外筛选。 结论:这些已鉴定的旧药物可以用于肿瘤学,并可能作为佐剂添加,最终有益于癌症患者。

关键词: 药物再利用,抗癌,人群队列,药物筛选,类器官,癌症的未来发展方向

[1]
Verma, M. Genome-wide association studies and epigenome-wide association studies go together in cancer control. Future Oncol., 2016, 12(13), 1645-1664.
[http://dx.doi.org/10.2217/fon-2015-0035] [PMID: 27079684]
[2]
Gerlinger, M.; Rowan, A.J.; Horswell, S.; Math, M.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; Tarpey, P.; Varela, I.; Phillimore, B.; Begum, S.; McDonald, N.Q.; Butler, A.; Jones, D.; Raine, K.; Latimer, C.; Santos, C.R.; Nohadani, M.; Eklund, A.C.; Spencer-Dene, B.; Clark, G.; Pickering, L.; Stamp, G.; Gore, M.; Szallasi, Z.; Downward, J.; Futreal, P.A.; Swanton, C. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med., 2012, 366(10), 883-892.
[http://dx.doi.org/10.1056/NEJMoa1113205] [PMID: 22397650]
[3]
Bertolini, F.; Sukhatme, V.P.; Bouche, G. Drug repurposing in oncology--patient and health systems opportunities. Nat. Rev. Clin. Oncol., 2015, 12(12), 732-742.
[http://dx.doi.org/10.1038/nrclinonc.2015.169] [PMID: 26483297]
[4]
Collins, F.S.; Varmus, H. A new initiative on precision medicine. N. Engl. J. Med., 2015, 372(9), 793-795.
[http://dx.doi.org/10.1056/NEJMp1500523] [PMID: 25635347]
[5]
Orecchioni, S.; Roma, S.; Raimondi, S.; Gandini, S.; Bertolini, F. Identifying drug repurposing opportunities in oncology. Cancer J., 2019, 25(2), 82-87.
[http://dx.doi.org/10.1097/PPO.0000000000000360] [PMID: 30896529]
[6]
Scannell, J.W.; Blanckley, A.; Boldon, H.; Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov., 2012, 11(3), 191-200.
[http://dx.doi.org/10.1038/nrd3681] [PMID: 22378269]
[7]
Austin, C.P.; Brady, L.S.; Insel, T.R.; Collins, F.S. NIH molecular libraries initiative. NIH molecular libraries initiative. Science, 2004, 306(5699), 1138-1139.
[http://dx.doi.org/10.1126/science.1105511] [PMID: 15542455]
[8]
Skrabanek, L.; Saini, H.K.; Bader, G.D.; Enright, A.J. Computational prediction of protein-protein interactions. Mol. Biotechnol., 2008, 38(1), 1-17.
[http://dx.doi.org/10.1007/s12033-007-0069-2] [PMID: 18095187]
[9]
Kandela, I.; Aird, F. Reproducibility project: cancer, b. replication study: discovery and preclinical validation of drug indications using compendia of public gene expression data. eLife, 2017, 6e17044
[http://dx.doi.org/10.7554/eLife.17044 ] [PMID: 28100397]
[10]
Xu, H.; Aldrich, M.C.; Chen, Q.; Liu, H.; Peterson, N.B.; Dai, Q.; Levy, M.; Shah, A.; Han, X.; Ruan, X.; Jiang, M.; Li, Y.; Julien, J.S.; Warner, J.; Friedman, C.; Roden, D.M.; Denny, J.C. Validating drug repurposing signals using electronic health records: a case study of metformin associated with reduced cancer mortality. J. Am. Med. Inform. Assoc., 2015, 22(1), 179-191.
[http://dx.doi.org/10.1136/amiajnl-2014-002649]] [PMID: 25053577]
[11]
Darash-Yahana, M.; Pozniak, Y.; Lu, M.; Sohn, Y.S.; Karmi, O.; Tamir, S.; Bai, F.; Song, L.; Jennings, P.A.; Pikarsky, E.; Geiger, T.; Onuchic, J.N.; Mittler, R.; Nechushtai, R. Breast cancer tumorigenicity is dependent on high expression levels of NAF-1 and the lability of its Fe-S clusters. Proc. Natl. Acad. Sci. USA, 2016, 113(39), 10890-10895.
[http://dx.doi.org/10.1073/pnas.1612736113] [PMID: 27621439]
[12]
Piątkowska-Chmiel, I.; Gawrońska-Grzywacz, M.; Natorska-Chomicka, D.; Herbet, M.; Sysa, M.; Iwan, M.; Korga, A.; Dudka, J. Pioglitazone as a modulator of the chemoresistance of renal cell adenocarcinoma to methotrexate. Oncol. Rep., 2020, 43(3), 1019-1030.
[http://dx.doi.org/10.3892/or.2020.7482] [PMID: 32020228]
[13]
Higuchi, T.; Sugisawa, N.; Miyake, K.; Oshiro, H.; Yamamoto, N.; Hayashi, K.; Kimura, H.; Miwa, S.; Igarashi, K.; Kline, Z.; Bouvet, M.; Singh, S.R.; Tsuchiya, H.; Hoffman, R.M. Pioglitazone, an agonist of PPARγ, reverses doxorubicin-resistance in an osteosarcoma patient-derived orthotopic xenograft model by downregulating P-glycoprotein expression. Biomed. Pharmacother., 2019, 118109356
[http://dx.doi.org/10.1016/j.biopha.2019.109356] [PMID: 31545293]
[14]
Higuchi, T.; Yamamoto, J.; Sugisawa, N.; Tashiro, Y.; Nishino, H.; Yamamoto, N.; Hayashi, K.; Kimura, H.; Miwa, S.; Igarashi, K.; Bouvet, M.; Singh, S.R.; Tsuchiya, H.; Hoffman, R.M. PPARγ agonist pioglitazone in combination with cisplatinum arrests a chemotherapy-resistant osteosarcoma PDOX model. Cancer Genomics Proteomics, 2020, 17(1), 35-40.
[http://dx.doi.org/10.21873/cgp.20165] [PMID: 31882549]
[15]
Lv, S.; Wang, W.; Wang, H.; Zhu, Y.; Lei, C. PPARγ activation serves as therapeutic strategy against bladder cancer via inhibiting PI3K-Akt signaling pathway. BMC Cancer, 2019, 19(1), 204.
[http://dx.doi.org/10.1186/s12885-019-5426-6] [PMID: 30845932]
[16]
Ciaramella, V.; Sasso, F.C.; Di Liello, R.; Corte, C.M.D.; Barra, G.; Viscardi, G.; Esposito, G.; Sparano, F.; Troiani, T.; Martinelli, E.; Orditura, M.; De Vita, F.; Ciardiello, F.; Morgillo, F. Activity and molecular targets of pioglitazone via blockade of proliferation, invasiveness and bioenergetics in human NSCLC. J. Exp. Clin. Cancer Res., 2019, 38(1), 178.
[http://dx.doi.org/10.1186/s13046-019-1176-1] [PMID: 31027492]
[17]
Vancura, A.; Bu, P.; Bhagwat, M.; Zeng, J.; Vancurova, I. Metformin as an anticancer agent. Trends Pharmacol. Sci., 2018, 39(10), 867-878.
[http://dx.doi.org/10.1016/j.tips.2018.07.006] [PMID: 30150001]
[18]
Morris, A. In search of the mechanisms of metformin in cancer. Nat. Rev. Endocrinol., 2018, 14(11), 628.
[http://dx.doi.org/10.1038/s41574-018-0104-3] [PMID: 30258089]
[19]
Chen, K.; Li, Y.; Guo, Z.; Zeng, Y.; Zhang, W.; Wang, H. Metformin: current clinical applications in nondiabetic patients with cancer. Aging (Albany NY), 2020, 12(4), 3993-4009.
[http://dx.doi.org/10.18632/aging.102787] [PMID: 32074084]
[20]
Wu, L.; Zhou, B.; Oshiro-Rapley, N.; Li, M.; Paulo, J.A.; Webster, C.M.; Mou, F.; Kacergis, M.C.; Talkowski, M.E.; Carr, C.E.; Gygi, S.P.; Zheng, B.; Soukas, A.A. An ancient, unified mechanism for metformin growth inhibition in C.elegans and cancer. Cell, 2016, 167(7), 1705-1718.e13.
[http://dx.doi.org/10.1016/j.cell.2016.11.055]] [PMID: 27984722]
[21]
Deschênes-Simard, X.; Rowell, M.C.; Ferbeyre, G. Metformin turns off the metabolic switch of pancreatic cancer. Aging (Albany NY), 2019, 11(23), 10793-10795.
[http://dx.doi.org/10.18632/aging.102622] [PMID: 31831715]
[22]
Han, H.; Hou, Y.; Chen, X.; Zhang, P.; Kang, M.; Jin, Q.; Ji, J.; Gao, M. Metformin-induced stromal depletion to enhance the penetration of gemcitabine-loaded magnetic nanoparticles for pancreatic cancer targeted therapy. J. Am. Chem. Soc., 2020, 142(10), 4944-4954.
[http://dx.doi.org/10.1021/jacs.0c00650] [PMID: 32069041]
[23]
Zhang, X.; Liu, P.; Shang, Y.; Kerndl, H.; Kumstel, S.; Gong, P.; Vollmar, B.; Zechner, D. Metformin and LW6 impairs pancreatic cancer cells and reduces nuclear localization of YAP1. J. Cancer, 2020, 11(2), 479-487.
[http://dx.doi.org/10.7150/jca.33029] [PMID: 31897243]
[24]
Dong, S.; Ruiz-Calderon, B.; Rathinam, R.; Eastlack, S.; Maziveyi, M.; Alahari, S.K. Knockout model reveals the role of Nischarin in mammary gland development, breast tumorigenesis and response to metformin treatment. Int. J. Cancer, 2020, 146(9), 2576-2587.
[http://dx.doi.org/10.1002/ijc.32690] [PMID: 31525254]
[25]
Lord, S.R.; Cheng, W.C.; Liu, D.; Gaude, E.; Haider, S.; Metcalf, T.; Patel, N.; Teoh, E.J.; Gleeson, F.; Bradley, K.; Wigfield, S.; Zois, C.; McGowan, D.R.; Ah-See, M.L.; Thompson, A.M.; Sharma, A.; Bidaut, L.; Pollak, M.; Roy, P.G.; Karpe, F.; James, T.; English, R.; Adams, R.F.; Campo, L.; Ayers, L.; Snell, C.; Roxanis, I.; Frezza, C.; Fenwick, J.D.; Buffa, F.M.; Harris, A.L. Integrated pharmacodynamic analysis identifies two metabolic adaption pathways to metformin in breast cancer. Cell Metab., 2018, 28, 679-688.
[http://dx.doi.org/10.1016/j.cmet.2018.08.021] [PMID: 30244975 ]
[26]
Chen, H.; Lin, C.; Peng, T.; Hu, C.; Lu, C.; Li, L.; Wang, Y.; Han, R.; Feng, M.; Sun, F.; He, Y. Metformin reduces HGF-induced resistance to alectinib via the inhibition of Gab1. Cell Death Dis., 2020, 11(2), 111.
[http://dx.doi.org/10.1038/s41419-020-2307-5] [PMID: 32041944]
[27]
Moro, M.; Caiola, E.; Ganzinelli, M.; Zulato, E.; Rulli, E.; Marabese, M.; Centonze, G.; Busico, A.; Pastorino, U.; de Braud, F.G.; Vernieri, C.; Simbolo, M.; Bria, E.; Scarpa, A.; Indraccolo, S.; Broggini, M.; Sozzi, G.; Garassino, M.C. Metformin enhances cisplatin-induced apoptosis and prevents resistance to cisplatin in co-mutated KRAS/LKB1 NSCLC. J. Thorac. Oncol., 2018, 13(11), 1692-1704.
[http://dx.doi.org/10.1016/j.jtho.2018.07.102] [PMID: 30149143]
[28]
Arrieta, O.; Barrón, F.; Padilla, M.S.; Avilés-Salas, A.; Ramírez-Tirado, L.A.; Arguelles Jiménez, M.J.; Vergara, E.; Zatarain-Barrón, Z.L.; Hernández-Pedro, N.; Cardona, A.F.; Cruz-Rico, G.; Barrios-Bernal, P.; Yamamoto Ramos, M.; Rosell, R. Effect of metformin plus tyrosine kinase inhibitors compared with tyrosine kinase inhibitors alone in patients with epidermal growth factor receptor-mutated lung adenocarcinoma: a phase 2 randomized clinical trial. JAMA Oncol., 2019, 5(15)e192553
[http://dx.doi.org/10.1001/jamaoncol.2019.2553] [PMID: 31486833]
[29]
Hart, P.C.; Kenny, H.A.; Grassl, N.; Watters, K.M.; Litchfield, L.M.; Coscia, F.; Blazenovic, I.; Ploetzky, L.; Fiehn, O.; Mann, M.; Lengyel, E.; Romero, I.L. Mesothelial cell HIF1alpha expression is metabolically downregulated by metformin to prevent oncogenic tumor-stromal crosstalk. Cell Rep., 2019, 29(12), 4086-4098.
[http://dx.doi.org/10.1016/j.celrep.2019.11.079]] [PMID: 31851935]
[30]
de Oliveira, S.; Houseright, R.A.; Graves, A.L.; Golenberg, N.; Korte, B.G.; Miskolci, V.; Huttenlocher, A. Metformin modulates innate immune-mediated inflammation and early progression of NAFLD-associated hepatocellular carcinoma in zebrafish. J. Hepatol., 2019, 70(4), 710-721.
[http://dx.doi.org/10.1016/j.jhep.2018.11.034] [PMID: 30572006]
[31]
Gong, Y.; Wang, C.; Jiang, Y.; Zhang, S.; Feng, S.; Fu, Y.; Luo, Y. Metformin inhibits tumor metastasis through suppressing Hsp90α secretion in an AMPKα1-PKCγ dependent manner. Cells, 2020, 9(1)E144
[http://dx.doi.org/10.3390/cells9010144] [PMID: 31936169]
[32]
Elgendy, M.; Ciro, M.; Hosseini, A.; Weiszmann, J.; Mazzarella, L.; Ferrari, E.; Cazzoli, R.; Curigliano, G.; DeCensi, A.; Bonanni, B.; Budillon, A.; Pelicci, P.G.; Janssens, V.; Ogris, M.; Baccarini, M.; Lanfrancone, L.; Weckwerth, W.; Foiani, M.; Minucci, S. Combination of hypoglycemia and metformin impairs tumor metabolic plasticity and growth by modulating the PP2A-GSK3beta-MCL-1 axis. Cancer Cell, 2019, 35(5), 789-815.e5.
[http://dx.doi.org/10.1016/j.ccell.2019.03.007]] [PMID: 31031016]
[33]
Cha, J-H.; Yang, W-H.; Xia, W.; Wei, Y.; Chan, L-C.; Lim, S-O.; Li, C-W.; Kim, T.; Chang, S-S.; Lee, H-H.; Hsu, J.L.; Wang, H-L.; Kuo, C-W.; Chang, W.C.; Hadad, S.; Purdie, C.A.; McCoy, A.M.; Cai, S.; Tu, Y.; Litton, J.K.; Mittendorf, E.A.; Moulder, S.L.; Symmans, W.F.; Thompson, A.M.; Piwnica-Worms, H.; Chen, C.H.; Khoo, K-H.; Hung, M-C. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol. Cell, 2018, 71(4), 606-620.e7.
[http://dx.doi.org/10.1016/j.molcel.2018.07.030]] [PMID: 30118680]
[34]
Zhao, Y.; Cao, J.; Melamed, A.; Worley, M.; Gockley, A.; Jones, D.; Nia, H.T.; Zhang, Y.; Stylianopoulos, T.; Kumar, A.S.; Mpekris, F.; Datta, M.; Sun, Y.; Wu, L.; Gao, X.; Yeku, O.; Del Carmen, M.G.; Spriggs, D.R.; Jain, R.K.; Xu, L. Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma. Proc. Natl. Acad. Sci. USA, 2019, 116(6), 2210-2219.
[http://dx.doi.org/10.1073/pnas.1818357116] [PMID: 30659155]
[35]
Murphy, J.E.; Wo, J.Y.; Ryan, D.P.; Clark, J.W.; Jiang, W.; Yeap, B.Y.; Drapek, L.C.; Ly, L.; Baglini, C.V.; Blaszkowsky, L.S.; Ferrone, C.R.; Parikh, A.R.; Weekes, C.D.; Nipp, R.D.; Kwak, E.L.; Allen, J.N.; Corcoran, R.B.; Ting, D.T.; Faris, J.E.; Zhu, A.X.; Goyal, L.; Berger, D.L.; Qadan, M.; Lillemoe, K.D.; Talele, N.; Jain, R.K.; DeLaney, T.F.; Duda, D.G.; Boucher, Y.; Fernández-Del Castillo, C.; Hong, T.S. Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: a phase 2 clinical trial. JAMA Oncol., 2019, 5(7), 1020-1027.
[http://dx.doi.org/10.1001/jamaoncol.2019.0892] [PMID: 31145418]
[36]
Benjamin, D.; Colombi, M.; Hindupur, S.K.; Betz, C.; Lane, H.A.; El-Shemerly, M.Y.; Lu, M.; Quagliata, L.; Terracciano, L.; Moes, S.; Sharpe, T.; Wodnar-Filipowicz, A.; Moroni, C.; Hall, M.N. Syrosingopine sensitizes cancer cells to killing by metformin. Sci. Adv., 2016, 2(12)e1601756
[http://dx.doi.org/10.1126/sciadv.1601756] [PMID: 28028542]
[37]
Benjamin, D.; Robay, D.; Hindupur, S.K.; Pohlmann, J.; Colombi, M.; El-Shemerly, M.Y.; Maira, S.M.; Moroni, C.; Lane, H.A.; Hall, M.N. Dual inhibition of the lactate transporters MCT1 and MCT4 is synthetic lethal with metformin due to NAD+ depletion in cancer cells. Cell Rep., 2018, 25(11), 3047-3058.e4.
[http://dx.doi.org/10.1016/j.celrep.2018.11.043]] [PMID: 30540938]
[38]
Assad Kahn, S.; Costa, S.L.; Gholamin, S.; Nitta, R.T.; Dubois, L.G.; Fève, M.; Zeniou, M.; Coelho, P.L.; El-Habr, E.; Cadusseau, J.; Varlet, P.; Mitra, S.S.; Devaux, B.; Kilhoffer, M.C.; Cheshier, S.H.; Moura-Neto, V.; Haiech, J.; Junier, M.P.; Chneiweiss, H. The anti-hypertensive drug prazosin inhibits glioblastoma growth via the PKCδ-dependent inhibition of the AKT pathway. EMBO Mol. Med., 2016, 8(5), 511-526.
[http://dx.doi.org/10.15252/emmm.201505421] [PMID: 27138566]
[39]
Langley, R.E.; Burdett, S.; Tierney, J.F.; Cafferty, F.; Parmar, M.K.; Venning, G. Aspirin and cancer: has aspirin been overlooked as an adjuvant therapy? Br. J. Cancer, 2011, 105(8), 1107-1113.
[http://dx.doi.org/10.1038/bjc.2011.289] [PMID: 21847126]
[40]
Fujiwara, N.; Singal, A.G.; Hoshida, Y. Dose and duration of aspirin use to reduce incident hepatocellular carcinoma. Hepatology, 2019, 70(6), 2216-2217.
[http://dx.doi.org/10.1002/hep.30813] [PMID: 31206214]
[41]
Wang, T.; Fu, X.; Jin, T.; Zhang, L.; Liu, B.; Wu, Y.; Xu, F.; Wang, X.; Ye, K.; Zhang, W.; Ye, L. Aspirin targets P4HA2 through inhibiting NF-κB and LMCD1-AS1/let-7g to inhibit tumour growth and collagen deposition in hepatocellular carcinoma. EBioMedicine, 2019, 45, 168-180.
[http://dx.doi.org/10.1016/j.ebiom.2019.06.048] [PMID: 31278071]
[42]
Jiang, W.; Yan, Y.; Chen, M.; Luo, G.; Hao, J.; Pan, J.; Hu, S.; Guo, P.; Li, W.; Wang, R.; Zuo, Y.; Sun, Y.; Sui, S.; Yu, W.; Pan, Z.; Zou, K.; Zheng, Z.; Deng, W.; Wu, X.; Guo, W. Aspirin enhances the sensitivity of colon cancer cells to cisplatin by abrogating the binding of NF-κB to the COX-2 promoter. Aging (Albany NY), 2020, 12(1), 611-627.
[http://dx.doi.org/10.18632/aging.102644] [PMID: 31905343]
[43]
Lucotti, S.; Cerutti, C.; Soyer, M.; Gil-Bernabé, A.M.; Gomes, A.L.; Allen, P.D.; Smart, S.; Markelc, B.; Watson, K.; Armstrong, P.C.; Mitchell, J.A.; Warner, T.D.; Ridley, A.J.; Muschel, R.J. Aspirin blocks formation of metastatic intravascular niches by inhibiting platelet-derived COX-1/thromboxane A2. J. Clin. Invest., 2019, 129(5), 1845-1862.
[http://dx.doi.org/10.1172/JCI121985] [PMID: 30907747]
[44]
Hamy, A.S.; Tury, S.; Wang, X.; Gao, J.; Pierga, J.Y.; Giacchetti, S.; Brain, E.; Pistilli, B.; Marty, M.; Espié, M.; Benchimol, G.; Laas, E.; Laé, M.; Asselain, B.; Aouchiche, B.; Edelman, M.; Reyal, F. Celecoxib with neoadjuvant chemotherapy for breast cancer might worsen outcomes differentially by COX-2 expression and ER status: exploratory analysis of the REMAGUS02 trial. J. Clin. Oncol., 2019, 37(8), 624-635.
[http://dx.doi.org/10.1200/JCO.18.00636] [PMID: 30702971]
[45]
Edelman, M.J.; Wang, X.; Hodgson, L.; Cheney, R.T.; Baggstrom, M.Q.; Thomas, S.P.; Gajra, A.; Bertino, E.; Reckamp, K.L.; Molina, J.; Schiller, J.H.; Mitchell-Richards, K.; Friedman, P.N.; Ritter, J.; Milne, G.; Hahn, O.M.; Stinchcombe, T.E.; Vokes, E.E. Alliance for clinical trials in oncology. Phase III randomized, placebo-controlled, double-blind trial of celecoxib in addition to standard chemotherapy for advanced non-small-cell lung cancer with cyclooxygenase-2 overexpression: CALGB 30801 (Alliance). J. Clin. Oncol., 2017, 35(19), 2184-2192.
[http://dx.doi.org/10.1200/JCO.2016.71.3743] [PMID: 28489511]
[46]
Kelly, J.D.; Tan, W.S.; Porta, N.; Mostafid, H.; Huddart, R.; Protheroe, A.; Bogle, R.; Blazeby, J.; Palmer, A.; Cresswell, J.; Johnson, M.; Brough, R.; Madaan, S.; Andrews, S.; Cruickshank, C.; Burnett, S.; Maynard, L.; Hall, E.; Investigators, B. BOXIT Investigators. BOXIT-A randomised phase III placebo-controlled trial evaluating the addition of celecoxib to standard treatment of transitional cell carcinoma of the bladder (CRUK/07/004). Eur. Urol., 2019, 75(4), 593-601.
[http://dx.doi.org/10.1016/j.eururo.2018.09.020] [PMID: 30279015]
[47]
Liu, X.; Wu, Y.; Zhou, Z.; Huang, M.; Deng, W.; Wang, Y.; Zhou, X.; Chen, L.; Li, Y.; Zeng, T.; Wang, G.; Fu, B. Celecoxib inhibits the epithelial-to-mesenchymal transition in bladder cancer via the miRNA-145/TGFBR2/Smad3 axis. Int. J. Mol. Med., 2019, 44(2), 683-693.
[http://dx.doi.org/10.3892/ijmm.2019.4241] [PMID: 31198976]
[48]
Dai, H.; Zhang, S.; Ma, R.; Pan, L. Celecoxib inhibits hepatocellular carcinoma cell growth and migration by targeting PNO1. Med. Sci. Monit., 2019, 25, 7351-7360.
[http://dx.doi.org/10.12659/MSM.919218] [PMID: 31568401]
[49]
Qiu, Z.; Zhang, C.; Zhou, J.; Hu, J.; Sheng, L.; Li, X.; Chen, L.; Li, X.; Deng, X.; Zheng, G. Celecoxib alleviates AKT/c-Met-triggered rapid hepatocarcinogenesis by suppressing a novel COX-2/AKT/FASN cascade. Mol. Carcinog., 2019, 58(1), 31-41.
[http://dx.doi.org/10.1002/mc.22904] [PMID: 30182439]
[50]
Tołoczko-Iwaniuk, N.; Dziemiańczyk-Pakieła, D.; Celińska-Janowicz, K.; Zaręba, I.; Klupczyńska, A.; Kokot, Z.J.; Nowaszewska, B.K.; Reszeć, J.; Borys, J.; Miltyk, W. Proline-dependent induction of apoptosis in oral squamous cell carcinoma (OSCC)-The effect of celecoxib. Cancers (Basel), 2020, 12(1)E136
[http://dx.doi.org/10.3390/cancers12010136] [PMID: 31935820]
[51]
Velmurugan, B.K.; Hua, C.H.; Tsai, M.H.; Lee, C.P.; Chung, C.M.; Ko, Y.C. Combination of celecoxib and calyculin-A inhibits epithelial-mesenchymal transition in human oral cancer cells. Biotech. Histochem., 2020, 95(5), 341-348.
[http://dx.doi.org/10.1080/10520295.2019.1700429] [PMID: 31937145]
[52]
Burikhanov, R.; Hebbar, N.; Noothi, S.K.; Shukla, N.; Sledziona, J.; Araujo, N.; Kudrimoti, M.; Wang, Q.J.; Watt, D.S.; Welch, D.R.; Maranchie, J.; Harada, A.; Rangnekar, V.M. Chloroquine-inducible Par-4 secretion is essential for tumor cell apoptosis and inhibition of metastasis. Cell Rep., 2017, 18(2), 508-519.
[http://dx.doi.org/10.1016/j.celrep.2016.12.051] [PMID: 28076793]
[53]
Chen, D.; Xie, J.; Fiskesund, R.; Dong, W.; Liang, X.; Lv, J.; Jin, X.; Liu, J.; Mo, S.; Zhang, T.; Cheng, F.; Zhou, Y.; Zhang, H.; Tang, K.; Ma, J.; Liu, Y.; Huang, B. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat. Commun., 2018, 9(1), 873.
[http://dx.doi.org/10.1038/s41467-018-03225-9] [PMID: 29491374]
[54]
Boone, B.A.; Murthy, P.; Miller-Ocuin, J.; Doerfler, W.R.; Ellis, J.T.; Liang, X.; Ross, M.A.; Wallace, C.T.; Sperry, J.L.; Lotze, M.T.; Neal, M.D.; Zeh, H.J. III. Chloroquine reduces hypercoagulability in pancreatic cancer through inhibition of neutrophil extracellular traps. BMC Cancer, 2018, 18(1), 678.
[http://dx.doi.org/10.1186/s12885-018-4584-2] [PMID: 29929491]
[55]
Valdés-Abadía, B.; Morán-Zendejas, R.; Rangel-Flores, J.M.; Rodríguez-Menchaca, A.A. Chloroquine inhibits tumor-related Kv10.1 channel and decreases migration of MDA-MB-231 breast cancer cells in vitro. Eur. J. Pharmacol., 2019, 855, 262-266.
[http://dx.doi.org/10.1016/j.ejphar.2019.05.017] [PMID: 31082369]
[56]
Shiratori, H.; Kawai, K.; Hata, K.; Tanaka, T.; Nishikawa, T.; Otani, K.; Sasaki, K.; Kaneko, M.; Murono, K.; Emoto, S.; Sonoda, H.; Nozawa, H. The combination of temsirolimus and chloroquine increases radiosensitivity in colorectal cancer cells. Oncol. Rep., 2019, 42(1), 377-385.
[http://dx.doi.org/10.3892/or.2019.7134] [PMID: 31059051]
[57]
Hounjet, J.; Habets, R.; Schaaf, M.B.; Hendrickx, T.C.; Barbeau, L.M.O.; Yahyanejad, S.; Rouschop, K.M.; Groot, A.J.; Vooijs, M. The anti-malarial drug chloroquine sensitizes oncogenic NOTCH1 driven human T-ALL to γ-secretase inhibition. Oncogene, 2019, 38(27), 5457-5468.
[http://dx.doi.org/10.1038/s41388-019-0802-x] [PMID: 30967635]
[58]
Cook, K.L.; Wärri, A.; Soto-Pantoja, D.R.; Clarke, P.A.; Cruz, M.I.; Zwart, A.; Clarke, R. Hydroxychloroquine inhibits autophagy to potentiate antiestrogen responsiveness in ER+ breast cancer. Clin. Cancer Res., 2014, 20(12), 3222-3232.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-3227] [PMID: 24928945]
[59]
Rosenfeld, M.R.; Ye, X.; Supko, J.G.; Desideri, S.; Grossman, S.A.; Brem, S.; Mikkelson, T.; Wang, D.; Chang, Y.C.; Hu, J.; McAfee, Q.; Fisher, J.; Troxel, A.B.; Piao, S.; Heitjan, D.F.; Tan, K.S.; Pontiggia, L.; O’Dwyer, P.J.; Davis, L.E.; Amaravadi, R.K. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy, 2014, 10(8), 1359-1368.
[http://dx.doi.org/10.4161/auto.28984] [PMID: 24991840]
[60]
Liu, L.Q.; Wang, S.B.; Shao, Y.F.; Shi, J.N.; Wang, W.; Chen, W.Y.; Ye, Z.Q.; Jiang, J.Y.; Fang, Q.X.; Zhang, G.B.; Xuan, Z.X. Hydroxychloroquine potentiates the anti-cancer effect of bevacizumab on glioblastoma via the inhibition of autophagy. Biomed. Pharmacother., 2019, 118109339
[http://dx.doi.org/10.1016/j.biopha.2019.109339] [PMID: 31545270]
[61]
Wang, W.; Liu, L.; Zhou, Y.; Ye, Q.; Yang, X.; Jiang, J.; Ye, Z.; Gao, F.; Tan, X.; Zhang, G.; Fang, Q.; Xuan, Z.X. Hydroxychloroquine enhances the antitumor effects of BC001 in gastric cancer. Int. J. Oncol., 2019, 55(2), 405-414.
[http://dx.doi.org/10.3892/ijo.2019.4824] [PMID: 31268153]
[62]
Li, Y.; Cao, F.; Li, M.; Li, P.; Yu, Y.; Xiang, L.; Xu, T.; Lei, J.; Tai, Y.Y.; Zhu, J.; Yang, B.; Jiang, Y.; Zhang, X.; Duo, L.; Chen, P.; Yu, X. Hydroxychloroquine induced lung cancer suppression by enhancing chemo-sensitization and promoting the transition of M2-TAMs to M1-like macrophages. J. Exp. Clin. Cancer Res., 2018, 37(1), 259.
[http://dx.doi.org/10.1186/s13046-018-0938-5] [PMID: 30373678]
[63]
Efferth, T. From ancient herb to modern drug: artemisia annua and artemisinin for cancer therapy. Semin. Cancer Biol., 2017, 46, 65-83.
[http://dx.doi.org/10.1016/j.semcancer.2017.02.009] [PMID: 28254675]
[64]
Yao, Y.; Guo, Q.; Cao, Y.; Qiu, Y.; Tan, R.; Yu, Z.; Zhou, Y.; Lu, N. Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer. J. Exp. Clin. Cancer Res., 2018, 37(1), 282.
[http://dx.doi.org/10.1186/s13046-018-0960-7] [PMID: 30477536]
[65]
Li, X.; Ba, Q.; Liu, Y.; Yue, Q.; Chen, P.; Li, J.; Zhang, H.; Ying, H.; Ding, Q.; Song, H.; Liu, H.; Zhang, R.; Wang, H. Dihydroartemisinin selectively inhibits PDGFRα-positive ovarian cancer growth and metastasis through inducing degradation of PDGFRα protein. Cell Discov., 2017, 3, 17042.
[http://dx.doi.org/10.1038/celldisc.2017.42] [PMID: 29387451]
[66]
Lin, M.X.; Lin, S.H.; Lin, C.C.; Yang, C.C.; Yuan, S.Y. In vitro and in vivo antitumor effects of pyrimethamine on non-small cell lung cancers. Anticancer Res., 2018, 38(6), 3435-3445.
[http://dx.doi.org/10.21873/anticanres.12612] [PMID: 29848694]
[67]
Liu, H.; Qin, Y.; Zhai, D.; Zhang, Q.; Gu, J.; Tang, Y.; Yang, J.; Li, K.; Yang, L.; Chen, S.; Zhong, W.; Meng, J.; Liu, Y.; Sun, T.; Yang, C. Antimalarial drug pyrimethamine plays a dual role in antitumor proliferation and metastasis through targeting DHFR and TP. Mol. Cancer Ther., 2019, 18(3), 541-555.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0936] [PMID: 30642883]
[68]
Khan, M.W.; Saadalla, A.; Ewida, A.H.; Al-Katranji, K.; Al-Saoudi, G.; Giaccone, Z.T.; Gounari, F.; Zhang, M.; Frank, D.A.; Khazaie, K. The STAT3 inhibitor pyrimethamine displays anti-cancer and immune stimulatory effects in murine models of breast cancer. Cancer Immunol. Immunother., 2018, 67(1), 13-23.
[http://dx.doi.org/10.1007/s00262-017-2057-0] [PMID: 28875329]
[69]
Liu, Y.; Zhou, H.; Yi, T.; Wang, H. Pyrimethamine exerts significant antitumor effects on human ovarian cancer cells both in vitro and in vivo. Anticancer Drugs, 2019, 30(6), 571-578.
[http://dx.doi.org/10.1097/CAD.0000000000000740] [PMID: 30614834]
[70]
Oh, E.; Kim, Y.J.; An, H.; Sung, D.; Cho, T.M.; Farrand, L.; Jang, S.; Seo, J.H.; Kim, J.Y. Flubendazole elicits anti-metastatic effects in triple-negative breast cancer via STAT3 inhibition. Int. J. Cancer, 2018, 143(8), 1978-1993.
[http://dx.doi.org/10.1002/ijc.31585] [PMID: 29744876]
[71]
Kim, Y.J.; Sung, D.; Oh, E.; Cho, Y.; Cho, T.M.; Farrand, L.; Seo, J.H.; Kim, J.Y. Flubendazole overcomes trastuzumab resistance by targeting cancer stem-like properties and HER2 signaling in HER2-positive breast cancer. Cancer Lett., 2018, 412, 118-130.
[http://dx.doi.org/10.1016/j.canlet.2017.10.020] [PMID: 29080749]
[72]
Lin, S.; Yang, L.; Yao, Y.; Xu, L.; Xiang, Y.; Zhao, H.; Wang, L.; Zuo, Z.; Huang, X.; Zhao, C. Flubendazole demonstrates valid antitumor effects by inhibiting STAT3 and activating autophagy. J. Exp. Clin. Cancer Res., 2019, 38(1), 293.
[http://dx.doi.org/10.1186/s13046-019-1303-z] [PMID: 31287013]
[73]
Li, Y.; Acharya, G.; Elahy, M.; Xin, H.; Khachigian, L.M. The anthelmintic flubendazole blocks human melanoma growth and metastasis and suppresses programmed cell death protein-1 and myeloid-derived suppressor cell accumulation. Cancer Lett., 2019, 459, 268-276.
[http://dx.doi.org/10.1016/j.canlet.2019.05.026] [PMID: 31128215]
[74]
Guerini, A.E.; Triggiani, L.; Maddalo, M.; Bonù, M.L.; Frassine, F.; Baiguini, A.; Alghisi, A.; Tomasini, D.; Borghetti, P.; Pasinetti, N.; Bresciani, R.; Magrini, S.M.; Buglione, M. Mebendazole as a candidate for drug repurposing in oncology: an extensive review of current literature. Cancers (Basel), 2019, 11(9)E1284
[http://dx.doi.org/10.3390/cancers11091284] [PMID: 31480477]
[75]
Rushworth, L.K.; Hewit, K.; Munnings-Tomes, S.; Somani, S.; James, D.; Shanks, E.; Dufès, C.; Straube, A.; Patel, R.; Leung, H.Y. Repurposing screen identifies mebendazole as a clinical candidate to synergise with docetaxel for prostate cancer treatment. Br. J. Cancer, 2020, 122(4), 517-527.
[http://dx.doi.org/10.1038/s41416-019-0681-5] [PMID: 31844184]
[76]
Zhang, L.; Bochkur Dratver, M.; Yazal, T.; Dong, K.; Nguyen, A.; Yu, G.; Dao, A.; Bochkur Dratver, M.; Duhachek-Muggy, S.; Bhat, K.; Alli, C.; Pajonk, F.; Vlashi, E. Mebendazole potentiates radiation therapy in triple-negative breast cancer. Int. J. Radiat. Oncol. Biol. Phys., 2019, 103(1), 195-207.
[http://dx.doi.org/10.1016/j.ijrobp.2018.08.046] [PMID: 30196056]
[77]
Williamson, T.; Mendes, T.B.; Joe, N.; Cerutti, J.M.; Riggins, G.J. Mebendazole inhibits tumor growth and prevents lung metastasis in models of advanced thyroid cancer. Endocr. Relat. Cancer, 2020, 27(3), 123-136.
[http://dx.doi.org/10.1530/ERC-19-0341] [PMID: 31846433]
[78]
Chen, M.B.; Liu, Y.Y.; Xing, Z.Y.; Zhang, Z.Q.; Jiang, Q.; Lu, P.H.; Cao, C. Itraconazole-Induced inhibition on human esophageal cancer cell growth requires AMPK activation. Mol. Cancer Ther., 2018, 17(6), 1229-1239.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1094] [PMID: 29592879]
[79]
Kelly, R.J.; Ansari, A.M.; Miyashita, T.; Zahurak, M.; Lay, F.; Ahmed, A.K.; Born, L.J.; Pezhouh, M.K.; Salimian, K.J.; Ng, C.; Matsangos, A.E.; Stricker-Krongrad, A.H.; Mukaisho, K.I.; Marti, G.P.; Chung, C.H.; Canto, M.I.; Rudek, M.A.; Meltzer, S.J.; Harmon, J.W. Targeting the hedgehog pathway using itraconazole to prevent progression of Barrett’s Esophagus to invasive esophageal adenocarcinoma. Ann. Surg., 2019.
[http://dx.doi.org/10.1097/SLA.0000000000003455] [PMID: 31290765]
[80]
Wei, X.; Liu, W.; Wang, J.Q.; Tang, Z. “Hedgehog pathway”: a potential target of itraconazole in the treatment of cancer. J. Cancer Res. Clin. Oncol., 2020, 146(2), 297-304.
[http://dx.doi.org/10.1007/s00432-019-03117-5] [PMID: 31960187]
[81]
Hu, Q.; Hou, Y.C.; Huang, J.; Fang, J.Y.; Xiong, H. Itraconazole induces apoptosis and cell cycle arrest via inhibiting Hedgehog signaling in gastric cancer cells. J. Exp. Clin. Cancer Res., 2017, 36(1), 50.
[http://dx.doi.org/10.1186/s13046-017-0526-0] [PMID: 28399898]
[82]
Wang, X.; Wei, S.; Zhao, Y.; Shi, C.; Liu, P.; Zhang, C.; Lei, Y.; Zhang, B.; Bai, B.; Huang, Y.; Zhang, H. Anti-proliferation of breast cancer cells with itraconazole: Hedgehog pathway inhibition induces apoptosis and autophagic cell death. Cancer Lett., 2017, 385, 128-136.
[http://dx.doi.org/10.1016/j.canlet.2016.10.034] [PMID: 27810405]
[83]
Buczacki, S.J.A.; Popova, S.; Biggs, E.; Koukorava, C.; Buzzelli, J.; Vermeulen, L.; Hazelwood, L.; Francies, H.; Garnett, M.J.; Winton, D.J. Itraconazole targets cell cycle heterogeneity in colorectal cancer. J. Exp. Med., 2018, 215(7), 1891-1912.
[http://dx.doi.org/10.1084/jem.20171385] [PMID: 29853607]
[84]
Chen, C.; Zhang, W. Itraconazole alters the stem cell characteristics of A549 and NCI-H460 human lung cancer cells by suppressing Wnt signaling. Med. Sci. Monit., 2019, 25, 9509-9516.
[http://dx.doi.org/10.12659/MSM.919347] [PMID: 31833479]
[85]
Jiang, F.; Xing, H.S.; Chen, W.Y.; Du, J.; Ruan, Y.L.; Lin, A.Y.; Zhou, C.Z. Itraconazole inhibits proliferation of pancreatic cancer cells through activation of Bak-1. J. Cell. Biochem., 2019, 120(3), 4333-4341.
[http://dx.doi.org/10.1002/jcb.27719] [PMID: 30260036]
[86]
Morran, D.C.; Wu, J.; Jamieson, N.B.; Mrowinska, A.; Kalna, G.; Karim, S.A.; Au, A.Y.; Scarlett, C.J.; Chang, D.K.; Pajak, M.Z.; Oien, K.A.; McKay, C.J.; Carter, C.R.; Gillen, G.; Champion, S.; Pimlott, S.L.; Anderson, K.I.; Evans, T.R.; Grimmond, S.M.; Biankin, A.V.; Sansom, O.J.; Morton, J.P. Australian pancreatic cancer genome initiative (APGI). targeting mTOR dependency in pancreatic cancer. Gut, 2014, 63(9), 1481-1489.
[http://dx.doi.org/10.1136/gutjnl-2013-306202] [PMID: 24717934]
[87]
Liu, Q.; Zhou, X.; Li, C.; Zhang, X.; Li, C.L. Rapamycin promotes the anticancer action of dihydroartemisinin in breast cancer MDA-MB-231 cells by regulating expression of Atg7 and DAPK. Oncol. Lett., 2018, 15(4), 5781-5786.
[http://dx.doi.org/10.3892/ol.2018.8013] [PMID: 29545903]
[88]
Zhu, L.; Li, X-X.; Shi, L.; Wu, J.; Qian, J.Y.; Xia, T-S.; Zhou, W-B.; Sun, X.; Zhou, X.J.; Wei, J-F.; Ding, Q. Rapamycin enhances the sensitivity of ER positive breast cancer cells to tamoxifen by upregulating p73 expression. Oncol. Rep., 2019, 41(1), 455-464.
[http://dx.doi.org/10.3892/or.2018.6842] [PMID: 30542717]
[89]
Whang, Y.M.; Kim, M.J.; Cho, M.J.; Yoon, H.; Choi, Y.W.; Kim, T.H.; Chang, I.H. Rapamycin enhances growth inhibition on urothelial carcinoma cells through LKB1 deficiency-mediated mitochondrial dysregulation. J. Cell. Physiol., 2019, 234(8), 13083-13096.
[http://dx.doi.org/10.1002/jcp.27979] [PMID: 30549029]
[90]
Li, Y.; Sun, H.; Zhang, C.; Liu, J.; Zhang, H.; Fan, F.; Everley, R.A.; Ning, X.; Sun, Y.; Hu, J.; Liu, J.; Zhang, J.; Ye, W.; Qiu, X.; Dai, S.; Liu, B.; Xu, H.; Fu, S.; Gygi, S.P.; Zhou, C. Identification of translationally controlled tumor protein in promotion of DNA homologous recombination repair in cancer cells by affinity proteomics. Oncogene, 2017, 36(50), 6839-6849.
[http://dx.doi.org/10.1038/onc.2017.289] [PMID: 28846114]
[91]
Jiang, X.; Lu, W.; Shen, X.; Wang, Q.; Lv, J.; Liu, M.; Cheng, F.; Zhao, Z.; Pang, X. Repurposing sertraline sensitizes non-small cell lung cancer cells to erlotinib by inducing autophagy. JCI Insight, 2018, 3(11), 98921.
[http://dx.doi.org/10.1172/jci.insight.98921] [PMID: 29875309]
[92]
Xia, D.; Zhang, Y.T.; Xu, G.P.; Yan, W.W.; Pan, X.R.; Tong, J.H. Sertraline exerts its antitumor functions through both apoptosis and autophagy pathways in acute myeloid leukemia cells. Leuk. Lymphoma, 2017, 58(9), 1-10.
[http://dx.doi.org/10.1080/10428194.2017.1287358] [PMID: 28278721]
[93]
Wang, C.; Vegna, S.; Jin, H.; Benedict, B.; Lieftink, C.; Ramirez, C.; de Oliveira, R.L.; Morris, B.; Gadiot, J.; Wang, W.; du Chatinier, A.; Wang, L.; Gao, D.; Evers, B.; Jin, G.; Xue, Z.; Schepers, A.; Jochems, F.; Sanchez, A.M.; Mainardi, S.; Te Riele, H.; Beijersbergen, R.L.; Qin, W.; Akkari, L.; Bernards, R. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature, 2019, 574(7777), 268-272.
[http://dx.doi.org/10.1038/s41586-019-1607-3] [PMID: 31578521]
[94]
Caiaffo, V.; Oliveira, B.D.; de Sá, F.B.; Evêncio Neto, J. Anti-inflammatory, antiapoptotic, and antioxidant activity of fluoxetine. Pharmacol. Res. Perspect., 2016, 4(3)e00231
[http://dx.doi.org/10.1002/prp2.231] [PMID: 27433341]
[95]
Marcinkute, M.; Afshinjavid, S.; Fatokun, A.A.; Javid, F.A. Fluoxetine selectively induces p53-independent apoptosis in human colorectal cancer cells. Eur. J. Pharmacol., 2019, 857172441
[http://dx.doi.org/10.1016/j.ejphar.2019.172441] [PMID: 31181210]
[96]
Sun, D.; Zhu, L.; Zhao, Y.; Jiang, Y.; Chen, L.; Yu, Y.; Ouyang, L. Fluoxetine induces autophagic cell death via eEF2K-AMPK-mTOR-ULK complex axis in triple negative breast cancer. Cell Prolif., 2018, 51(2)e12402
[http://dx.doi.org/10.1111/cpr.12402] [PMID: 29094413]
[97]
Khing, T.M.; Po, W.W.; Sohn, U.D. Fluoxetine enhances anti-tumor activity of paclitaxel in gastric adenocarcinoma cells by triggering apoptosis and necroptosis. Anticancer Res., 2019, 39(11), 6155-6163.
[http://dx.doi.org/10.21873/anticanres.13823] [PMID: 31704843]
[98]
Wu, J.Y.; Lin, S.S.; Hsu, F.T.; Chung, J.G.; Fluoxetine Inhibits, D.N.A. Repair and NF-kB-modulated metastatic potential in non-small cell lung cancer. Anticancer Res., 2018, 38(9), 5201-5210.
[http://dx.doi.org/10.21873/anticanres.12843] [PMID: 30194168]
[99]
Cho, Y.W.; Kim, E.J.; Nyiramana, M.M.; Shin, E.J.; Jin, H.; Ryu, J.H.; Kang, K.R.; Lee, G.W.; Kim, H.J.; Han, J.; Kang, D. Paroxetine induces apoptosis of human breast cancer MCF-7 cells through Ca2+-and p38 MAP kinase-dependent ROS generation. Cancers (Basel), 2019, 11(1)E64
[http://dx.doi.org/10.3390/cancers11010064] [PMID: 30634506]
[100]
Jang, W.J.; Jung, S.K.; Vo, T.T.L.; Jeong, C.H. Anticancer activity of paroxetine in human colon cancer cells: involvement of MET and ERBB3. J. Cell. Mol. Med., 2019, 23(2), 1106-1115.
[http://dx.doi.org/10.1111/jcmm.14011] [PMID: 30421568]
[101]
Im, E.J.; Lee, C.H.; Moon, P.G.; Rangaswamy, G.G.; Lee, B.; Lee, J.M.; Lee, J.C.; Jee, J.G.; Bae, J.S.; Kwon, T.K.; Kang, K.W.; Jeong, M.S.; Lee, J.E.; Jung, H.S.; Ro, H.J.; Jun, S.; Kang, W.; Seo, S.Y.; Cho, Y.E.; Song, B.J.; Baek, M.C. Sulfisoxazole inhibits the secretion of small extracellular vesicles by targeting the endothelin receptor A. Nat. Commun., 2019, 10(1), 1387.
[http://dx.doi.org/10.1038/s41467-019-09387-4] [PMID: 30918259]
[102]
Qiao, X.; Wang, X.; Shang, Y.; Li, Y.; Chen, S.Z. Azithromycin enhances anticancer activity of TRAIL by inhibiting autophagy and up-regulating the protein levels of DR4/5 in colon cancer cells in vitro and in vivo. Cancer Commun (Lond), 2018, 38(1), 43.
[http://dx.doi.org/10.1186/s40880-018-0309-9] [PMID: 29970185]
[103]
Li, F.; Huang, J.; Ji, D.; Meng, Q.; Wang, C.; Chen, S.; Wang, X.; Zhu, Z.; Jiang, C.; Shi, Y.; Liu, S.; Li, C. Azithromycin effectively inhibits tumor angiogenesis by suppressing vascular endothelial growth factor receptor 2-mediated signaling pathways in lung cancer. Oncol. Lett., 2017, 14(1), 89-96.
[http://dx.doi.org/10.3892/ol.2017.6103] [PMID: 28693139]
[104]
Iljin, K.; Ketola, K.; Vainio, P.; Halonen, P.; Kohonen, P.; Fey, V.; Grafström, R.C.; Perälä, M.; Kallioniemi, O. High-throughput cell-based screening of 4910 known drugs and drug-like small molecules identifies disulfiram as an inhibitor of prostate cancer cell growth. Clin. Cancer Res., 2009, 15(19), 6070-6078.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1035] [PMID: 19789329]
[105]
Cvek, B. Nonprofit drugs as the salvation of the world’s healthcare systems: the case of Antabuse (disulfiram). Drug Discov. Today, 2012, 17(9-10), 409-412.
[http://dx.doi.org/10.1016/j.drudis.2011.12.010] [PMID: 22192884]
[106]
Chen, D.; Cui, Q.C.; Yang, H.; Dou, Q.P. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res., 2006, 66(21), 10425-10433.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2126] [PMID: 17079463]
[107]
Skrott, Z.; Mistrik, M.; Andersen, K.K.; Friis, S.; Majera, D.; Gursky, J.; Ozdian, T.; Bartkova, J.; Turi, Z.; Moudry, P.; Kraus, M.; Michalova, M.; Vaclavkova, J.; Dzubak, P.; Vrobel, I.; Pouckova, P.; Sedlacek, J.; Miklovicova, A.; Kutt, A.; Li, J.; Mattova, J.; Driessen, C.; Dou, Q.P.; Olsen, J.; Hajduch, M.; Cvek, B.; Deshaies, R.J.; Bartek, J. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature, 2017, 552(7684), 194-199.
[http://dx.doi.org/10.1038/nature25016] [PMID: 29211715]
[108]
Skrott, Z.; Majera, D.; Gursky, J.; Buchtova, T.; Hajduch, M.; Mistrik, M.; Bartek, J. Disulfiram’s anti-cancer activity reflects targeting NPL4, not inhibition of aldehyde dehydrogenase. Oncogene, 2019, 38(40), 6711-6722.
[http://dx.doi.org/10.1038/s41388-019-0915-2] [PMID: 31391554]
[109]
Terashima, Y.; Toda, E.; Itakura, M.; Otsuji, M.; Yoshinaga, S.; Okumura, K.; Shand, F.H.W.; Komohara, Y.; Takeda, M.; Kokubo, K.; Chen, M.C.; Yokoi, S.; Rokutan, H.; Kofuku, Y.; Ohnishi, K.; Ohira, M.; Iizasa, T.; Nakano, H.; Okabe, T.; Kojima, H.; Shimizu, A.; Kanegasaki, S.; Zhang, M.R.; Shimada, I.; Nagase, H.; Terasawa, H.; Matsushima, K. Targeting FROUNT with disulfiram suppresses macrophage accumulation and its tumor-promoting properties. Nat. Commun., 2020, 11(1), 609.
[http://dx.doi.org/10.1038/s41467-020-14338-5] [PMID: 32001710]
[110]
Jivan, R.; Peres, J.; Damelin, L.H.; Wadee, R.; Veale, R.B.; Prince, S.; Mavri-Damelin, D. Disulfiram with or without metformin inhibits oesophageal squamous cell carcinoma in vivo. Cancer Lett., 2018, 417, 1-10.
[http://dx.doi.org/10.1016/j.canlet.2017.12.026] [PMID: 29274360]
[111]
Zhang, X.; Hu, P.; Ding, S-Y.; Sun, T.; Liu, L.; Han, S.; DeLeo, A.B.; Sadagopan, A.; Guo, W.; Wang, X. Induction of autophagy-dependent apoptosis in cancer cells through activation of ER stress: an uncovered anti-cancer mechanism by anti-alcoholism drug disulfiram. Am. J. Cancer Res., 2019, 9(6), 1266-1281.
[PMID: 31285958]
[112]
Kreipe, U. [Abnormalities of internal organs in thalidomide embryopathy. A contribution to the determination of the sensitivity phase in thalidomide administration during early pregnancy]. Arch. Kinderheilkd., 1967, 176(1), 33-61.
[PMID: 5595238]
[113]
Bartlett, J.B.; Dredge, K.; Dalgleish, A.G. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat. Rev. Cancer, 2004, 4(4), 314-322.
[http://dx.doi.org/10.1038/nrc1323] [PMID: 15057291]
[114]
Zhou, S.; Wang, F.; Hsieh, T.C.; Wu, J.M.; Wu, E. Thalidomide-a notorious sedative to a wonder anticancer drug. Curr. Med. Chem., 2013, 20(33), 4102-4108.
[http://dx.doi.org/10.2174/09298673113209990198] [PMID: 23931282]
[115]
Shen, Y.; Li, S.; Wang, X.; Wang, M.; Tian, Q.; Yang, J.; Wang, J.; Wang, B.; Liu, P.; Yang, J. Tumor vasculature remolding by thalidomide increases delivery and efficacy of cisplatin. J. Exp. Clin. Cancer Res., 2019, 38(1), 427.
[http://dx.doi.org/10.1186/s13046-019-1366-x] [PMID: 31656203]
[116]
Zhang, X.; Luo, H. Effects of thalidomide on growth and VEGF-A expression in SW480 colon cancer cells. Oncol. Lett., 2018, 15(3), 3313-3320.
[http://dx.doi.org/10.3892/ol.2017.7645]] [PMID: 29435073]
[117]
Wang, J.; Yu, J.; Wang, J.; Ni, X.; Sun, Z.; Sun, W.; Sun, S.; Lu, Y. Thalidomide combined with chemo-radiotherapy for treating esophageal cancer: a randomized controlled study. Oncol. Lett., 2019, 18(1), 804-813.
[http://dx.doi.org/10.3892/ol.2019.10354] [PMID: 31289557]
[118]
Ji, J.; Sundquist, J.; Sundquist, K. Association of tamoxifen with meningioma: a population-based study in Sweden. Eur. J. Cancer Prev., 2016, 25(1), 29-33.
[http://dx.doi.org/10.1097/CEJ.0000000000000133] [PMID: 25642792]
[119]
Li, B.; Lu, L.; Zhong, M.; Tan, X.X.; Liu, C.Y.; Guo, Y.; Yi, X. Terbinafine inhibits KSR1 and suppresses Raf-MEK-ERK signaling in oral squamous cell carcinoma cells. Neoplasma, 2013, 60(4), 406-412.
[http://dx.doi.org/10.4149/neo_2013_052] [PMID: 23581412]
[120]
Lee, W.S.; Chen, R.J.; Wang, Y.J.; Tseng, H.; Jeng, J.H.; Lin, S.Y.; Liang, Y.C.; Chen, C.H.; Lin, C.H.; Lin, J.K.; Ho, P.Y.; Chu, J.S.; Ho, W.L.; Chen, L.C.; Ho, Y.S. In vitro and in vivo studies of the anticancer action of terbinafine in human cancer cell lines: G0/G1 p53-associated cell cycle arrest. Int. J. Cancer, 2003, 106(1), 125-137.
[http://dx.doi.org/10.1002/ijc.11194] [PMID: 12794767]
[121]
Chien, M.H.; Lee, T.S.; Kao, C.; Yang, S.F.; Lee, W.S. Terbinafine inhibits oral squamous cell carcinoma growth through anti-cancer cell proliferation and anti-angiogenesis. Mol. Carcinog., 2012, 51(5), 389-399.
[http://dx.doi.org/10.1002/mc.20800] [PMID: 21563217]
[122]
Ji, J.; Sundquist, J.; Sundquist, K. Use of terbinafine and risk of death in patients with prostate cancer: a population-based cohort study. Int. J. Cancer, 2019, 144(8), 1888-1895.
[http://dx.doi.org/10.1002/ijc.31901] [PMID: 30259971]
[123]
Huang, W.; Sundquist, J.; Sundquist, K.; Ji, J. Use of phosphodiesterase 5 inhibitors is associated with lower risk of colorectal cancer in men with benign colorectal neoplasms. Gastroenterology, 2019, 157(3), 672-681.e4.
[http://dx.doi.org/10.1053/j.gastro.2019.05.012]] [PMID: 31103628 ]
[124]
Pusceddu, S.; Vernieri, C.; Di Maio, M.; Marconcini, R.; Spada, F.; Massironi, S.; Ibrahim, T.; Brizzi, M.P.; Campana, D.; Faggiano, A.; Giuffrida, D.; Rinzivillo, M.; Cingarlini, S.; Aroldi, F.; Antonuzzo, L.; Berardi, R.; Catena, L.; De Divitiis, C.; Ermacora, P.; Perfetti, V.; Fontana, A.; Razzore, P.; Carnaghi, C.; Davi, M.V.; Cauchi, C.; Duro, M.; Ricci, S.; Fazio, N.; Cavalcoli, F.; Bongiovanni, A.; La Salvia, A.; Brighi, N.; Colao, A.; Puliafito, I.; Panzuto, F.; Ortolani, S.; Zaniboni, A.; Di Costanzo, F.; Torniai, M.; Bajetta, E.; Tafuto, S.; Garattini, S.K.; Femia, D.; Prinzi, N.; Concas, L.; Lo Russo, G.; Milione, M.; Giacomelli, L.; Buzzoni, R.; Delle Fave, G.; Mazzaferro, V.; de Braud, F. Metformin use is associated with longer progression-free survival of patients with diabetes and pancreatic neuroendocrine tumors receiving everolimus and/or somatostatin analogues. Gastroenterology, 2018, 155(2), 479-489.e7.
[http://dx.doi.org/10.1053/j.gastro.2018.04.010]] [PMID: 29655834 ]
[125]
Cheung, K.S.; Chan, E.W.; Wong, A.Y.S.; Chen, L.; Seto, W.K.; Wong, I.C.K.; Leung, W.K. Metformin use and gastric cancer risk in diabetic patients after Helicobacter pylori eradication. J. Natl. Cancer Inst., 2019, 111(5), 484-489.
[http://dx.doi.org/10.1093/jnci/djy144] [PMID: 30329127]
[126]
Wang, Q.L.; Santoni, G.; Ness-Jensen, E.; Lagergren, J.; Xie, S.H. Association between metformin use and risk of esophageal squamous cell carcinoma in a population-based Cohort study. Am. J. Gastroenterol., 2020, 115(1), 73-78.
[http://dx.doi.org/10.14309/ajg.0000000000000478] [PMID: 31821177]
[127]
Jackson, S.S.; Pfeiffer, R.M.; Liu, Z.; Anderson, L.A.; Tsai, H.T.; Gadalla, S.M.; Koshiol, J. Association between aspirin use and biliary tract cancer survival. JAMA Oncol., 2019, 5(12), 1802-1804.
[http://dx.doi.org/110.1001/jamaoncol.2019.4328 ] [PMID: 31621809]
[128]
Kim, M.H.; Chang, J.; Kim, W.J.; Banerjee, S.; Park, S.M. Cumulative dose threshold for the chemopreventive effect of aspirin against gastric cancer. Am. J. Gastroenterol., 2018, 113(6), 845-854.
[http://dx.doi.org/10.1038/s41395-018-0097-5] [PMID: 29855546]
[129]
He, Z.; Ding, R.; Zhang, F.; Wu, Z.; Liang, C. Risk Reduction of gastric cancer by aspirin: in the quest of the holy grail. Am. J. Gastroenterol., 2019, 114(3), 533.
[http://dx.doi.org/10.14309/ajg.0000000000000055] [PMID: 30676369]
[130]
Webb, P.M.; Na, R.; Weiderpass, E.; Adami, H.O.; Anderson, K.E.; Bertrand, K.A.; Botteri, E.; Brasky, T.M.; Brinton, L.A.; Chen, C.; Doherty, J.A.; Lu, L.; McCann, S.E.; Moysich, K.B.; Olson, S.; Petruzella, S.; Palmer, J.R.; Prizment, A.E.; Schairer, C.; Setiawan, V.W.; Spurdle, A.B.; Trabert, B.; Wentzensen, N.; Wilkens, L.; Yang, H.P.; Yu, H.; Risch, H.A.; Jordan, S.J. Use of aspirin, other nonsteroidal anti-inflammatory drugs and acetaminophen and risk of endometrial cancer: the epidemiology of endometrial cancer consortium. Ann. Oncol., 2019, 30(2), 310-316.
[http://dx.doi.org/10.1093/annonc/mdy541] [PMID: 30566587]
[131]
Sperling, C.D.; Verdoodt, F.; Aalborg, G.L.; Dehlendorff, C.; Friis, S.; Kjaer, S.K. Low-dose aspirin use and endometrial cancer mortality-a Danish nationwide cohort study. Int. J. Epidemiol., 2020, 49(1), 330-337.
[http://dx.doi.org/10.1093/ije/dyz253] [PMID: 31845990]
[132]
Lee, T.Y.; Hsu, Y.C.; Tseng, H.C.; Yu, S.H.; Lin, J.T.; Wu, M.S.; Wu, C.Y. Association of daily aspirin therapy with risk of hepatocellular carcinoma in patients with chronic hepatitis B. JAMA Intern. Med., 2019, 179(5), 633-640.
[http://dx.doi.org/10.1001/jamainternmed.2018.8342] [PMID: 30882847]
[133]
Rodriguez-Miguel, A.; Garcia-Rodriguez, L.A.; Gil, M.; Montoya, H.; Rodriguez-Martin, S.; de Abajo, F.J. Clopidogrel and low-dose aspirin, alone or together, reduce risk of colorectal cancer. Clin. Gastroenterol. Hepatol., 2019, 17(10), 2024-2033.e2.
[http://dx.doi.org/10.1016/j.cgh.2018.12.012]] [PMID: 30580092]
[134]
Amitay, E.L.; Carr, P.R.; Jansen, L.; Walter, V.; Roth, W.; Herpel, E.; Kloor, M.; Bläker, H.; Chang-Claude, J.; Brenner, H.; Hoffmeister, M. Association of aspirin and nonsteroidal anti-inflammatory drugs with colorectal cancer risk by molecular subtypes. J. Natl. Cancer Inst., 2019, 111(5), 475-483.
[http://dx.doi.org/10.1093/jnci/djy170] [PMID: 30388256]
[135]
Kehm, R.D.; Hopper, J.L.; John, E.M.; Phillips, K.A.; MacInnis, R.J.; Dite, G.S.; Milne, R.L.; Liao, Y.; Zeinomar, N.; Knight, J.A.; Southey, M.C.; Vahdat, L.; Kornhauser, N.; Cigler, T.; Chung, W.K.; Giles, G.G.; McLachlan, S.A.; Friedlander, M.L.; Weideman, P.C.; Glendon, G.; Nesci, S.; Andrulis, I.L.; Buys, S.S.; Daly, M.B.; Terry, M.B. kConFab Investigators. Regular use of aspirin and other non-steroidal anti-inflammatory drugs and breast cancer risk for women at familial or genetic risk: a cohort study. Breast Cancer Res., 2019, 21(1), 52.
[http://dx.doi.org/10.1186/s13058-019-1135-y] [PMID: 30999962]
[136]
Wang, T.; McCullough, L.E.; White, A.J.; Bradshaw, P.T.; Xu, X.; Cho, Y.H.; Terry, M.B.; Teitelbaum, S.L.; Neugut, A.I.; Santella, R.M.; Chen, J.; Gammon, M.D. Prediagnosis aspirin use, DNA methylation, and mortality after breast cancer: A population-based study. Cancer, 2019, 125(21), 3836-3844.
[http://dx.doi.org/10.1002/cncr.32364] [PMID: 31402456]
[137]
van de Wetering, M.; Francies, H.E.; Francis, J.M.; Bounova, G.; Iorio, F.; Pronk, A.; van Houdt, W.; van Gorp, J.; Taylor-Weiner, A.; Kester, L.; McLaren-Douglas, A.; Blokker, J.; Jaksani, S.; Bartfeld, S.; Volckman, R.; van Sluis, P.; Li, V.S.; Seepo, S.; Sekhar Pedamallu, C.; Cibulskis, K.; Carter, S.L.; McKenna, A.; Lawrence, M.S.; Lichtenstein, L.; Stewart, C.; Koster, J.; Versteeg, R.; van Oudenaarden, A.; Saez-Rodriguez, J.; Vries, R.G.; Getz, G.; Wessels, L.; Stratton, M.R.; McDermott, U.; Meyerson, M.; Garnett, M.J.; Clevers, H. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell, 2015, 161(4), 933-945.
[http://dx.doi.org/10.1016/j.cell.2015.03.053] [PMID: 25957691]
[138]
Pauli, C.; Hopkins, B.D.; Prandi, D.; Shaw, R.; Fedrizzi, T.; Sboner, A.; Sailer, V.; Augello, M.; Puca, L.; Rosati, R.; McNary, T.J.; Churakova, Y.; Cheung, C.; Triscott, J.; Pisapia, D.; Rao, R.; Mosquera, J.M.; Robinson, B.; Faltas, B.M.; Emerling, B.E.; Gadi, V.K.; Bernard, B.; Elemento, O.; Beltran, H.; Demichelis, F.; Kemp, C.J.; Grandori, C.; Cantley, L.C.; Rubin, M.A. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov., 2017, 7(5), 462-477.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1154] [PMID: 28331002]
[139]
Nagle, P.W.; Plukker, J.T.M.; Muijs, C.T.; van Luijk, P.; Coppes, R.P. Patient-derived tumor organoids for prediction of cancer treatment response. Semin. Cancer Biol., 2018, 53, 258-264.
[http://dx.doi.org/10.1016/j.semcancer.2018.06.005] [PMID: 29966678]
[140]
Sachs, N.; de Ligt, J.; Kopper, O.; Gogola, E.; Bounova, G.; Weeber, F.; Balgobind, A.V.; Wind, K.; Gracanin, A.; Begthel, H.; Korving, J.; van Boxtel, R.; Duarte, A.A.; Lelieveld, D.; van Hoeck, A.; Ernst, R.F.; Blokzijl, F.; Nijman, I.J.; Hoogstraat, M.; van de Ven, M.; Egan, D.A.; Zinzalla, V.; Moll, J.; Boj, S.F.; Voest, E.E.; Wessels, L.; van Diest, P.J.; Rottenberg, S.; Vries, R.G.J.; Cuppen, E.; Clevers, H. A Living biobank of breast cancer organoids captures disease heterogeneity. Cell, 2018, 172(1-2), 373-386.e10.
[http://dx.doi.org/10.1016/j.cell.2017.11.010] [PMID: 29224780]
[141]
Yin, X.; Mead, B.E.; Safaee, H.; Langer, R.; Karp, J.M.; Levy, O. Engineering stem cell organoids. Cell Stem Cell, 2016, 18(1), 25-38.
[http://dx.doi.org/10.1016/j.stem.2015.12.005] [PMID: 26748754]
[142]
Neal, J.T.; Li, X.; Zhu, J.; Giangarra, V.; Grzeskowiak, C.L.; Ju, J.; Liu, I.H.; Chiou, S.H.; Salahudeen, A.A.; Smith, A.R.; Deutsch, B.C.; Liao, L.; Zemek, A.J.; Zhao, F.; Karlsson, K.; Schultz, L.M.; Metzner, T.J.; Nadauld, L.D.; Tseng, Y.Y.; Alkhairy, S.; Oh, C.; Keskula, P.; Mendoza-Villanueva, D.; De La Vega, F.M.; Kunz, P.L.; Liao, J.C.; Leppert, J.T.; Sunwoo, J.B.; Sabatti, C.; Boehm, J.S.; Hahn, W.C.; Zheng, G.X.Y.; Davis, M.M.; Kuo, C.J. Organoid modeling of the tumor immune microenvironment. Cell, 2018, 175(7), 1972-1988.e16.
[http://dx.doi.org/10.1016/j.cell.2018.11.021] [PMID: 30550791]
[143]
Pantziarka, P.; Verbaanderd, C.; Huys, I.; Bouche, G.; Meheus, L. Repurposing drugs in oncology: From candidate selection to clinical adoption. Semin. Cancer Biol., 2021, 68, 186-191.
[http://dx.doi.org/10.1016/j.semcancer.2020.01.008] [PMID: 31982510]
[144]
Sleire, L.; Førde, H.E.; Netland, I.A.; Leiss, L.; Skeie, B.S.; Enger, P.O. Drug repurposing in cancer. Pharmacol. Res., 2017, 124, 74-91.
[http://dx.doi.org/10.1016/j.phrs.2017.07.013] [PMID: 28712971]
[145]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[146]
Ji, J.; Sundquist, J.; Sundquist, K. Cholera vaccine use is associated with a reduced risk of death in patients with colorectal cancer: a population-based study. Gastroenterology, 2018, 154(1), 86-92.
[http://dx.doi.org/10.1053/j.gastro.2017.09.009]
[147]
Ji, J.; Sundquist, J.; Sundquist, K. Association between post-diagnostic use of cholera vaccine and risk of death in prostate cancer patients. Nat. Commun., 2018, 9(1), 2367.
[http://dx.doi.org/10.1038/s41467-018-04814-4] [PMID: 29915319]
[148]
Walsh, A.J.; Cook, R.S.; Skala, M.C. Functional optical imaging of primary human tumor organoids: development of a personalized drug screen. J. Nucl. Med., 2017, 58(9), 1367-1372.
[http://dx.doi.org/10.2967/jnumed.117.192534] [PMID: 28588148]
[149]
Takahashi, N.; Hoshi, H.; Higa, A.; Hiyama, G.; Tamura, H.; Ogawa, M.; Takagi, K.; Goda, K.; Okabe, N.; Muto, S.; Suzuki, H.; Shimomura, K.; Watanabe, S.; Takagi, M. An in vitro system for evaluating molecular targeted drugs using lung patient-derived tumor organoids. Cells, 2019, 8(5)E481
[http://dx.doi.org/10.3390/cells8050481] [PMID: 31137590]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy