Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Antidepressants and Antipsychotic Agents as Repurposable Oncological Drug Candidates

Author(s): Michał Antoszczak, Anna Markowska, Janina Markowska and Adam Huczyński*

Volume 28, Issue 11, 2021

Published on: 07 September, 2020

Page: [2137 - 2174] Pages: 38

DOI: 10.2174/0929867327666200907141452

Price: $65

Abstract

Drug repurposing, also known as drug repositioning/reprofiling, is a relatively new strategy for the identification of alternative uses of well-known therapeutics that are outside the scope of their original medical indications. Such an approach might entail a number of advantages compared to standard de novo drug development, including less time needed to introduce the drug to the market, and lower costs. The group of compounds that could be considered as promising candidates for repurposing in oncology include the central nervous system drugs, especially selected antidepressant and antipsychotic agents. In this article, we provide an overview of some antidepressants (citalopram, fluoxetine, paroxetine, sertraline) and antipsychotics (chlorpromazine, pimozide, thioridazine, trifluoperazine) that have the potential to be repurposed as novel chemotherapeutics in cancer treatment, as they have been found to exhibit preventive and/or therapeutic action in cancer patients. Nevertheless, although drug repurposing seems to be an attractive strategy to search for oncological drugs, we would like to clearly indicate that it should not replace the search for new lead structures, but only complement de novo drug development.

Keywords: Psychiatric agents, drug development, anticancer activity, in vitro tests, in vivo studies, chemosensitizers.

[1]
Antoszczak, M.; Markowska, A.; Markowska, J.; Huczyński, A. Old wine in new bottles: drug repurposing in oncology. Eur. J. Pharmacol., 2020, 866172784
[http://dx.doi.org/10.1016/j.ejphar.2019.172784] [PMID: 31730760]
[2]
Prasad, V.; Mailankody, S. Research and development spending to bring a single cancer drug to market and revenues after approval. JAMA Intern. Med., 2017, 177(11), 1569-1575.
[http://dx.doi.org/10.1001/jamainternmed.2017.3601] [PMID: 28892524]
[3]
Abdelaleem, M.; Ezzat, H.; Osama, M.; Megahed, A.; Alaa, W.; Gaber, A.; Shafei, A.; Refaat, A. Prospects for repurposing CNS drugs for cancer treatment. Oncol. Rev., 2019, 13(1), 411.
[http://dx.doi.org/10.4081/oncol.2019.411] [PMID: 31044029]
[4]
Niraula, S.; Seruga, B.; Ocana, A.; Shao, T.; Goldstein, R.; Tannock, I.F.; Amir, E. The price we pay for progress: a meta-analysis of harms of newly approved anticancer drugs. J. Clin. Oncol., 2012, 30(24), 3012-3019.
[http://dx.doi.org/10.1200/JCO.2011.40.3824] [PMID: 22802313]
[5]
Huang, J.; Zhao, D.; Liu, Z.; Liu, F. Repurposing psychiatric drugs as anti-cancer agents. Cancer Lett., 2018, 419, 257-265.
[http://dx.doi.org/10.1016/j.canlet.2018.01.058] [PMID: 29414306]
[6]
Mullard, A. 2015 FDA drug approvals. Nat. Rev. Drug Discov., 2016, 15(2), 73-76.
[http://dx.doi.org/10.1038/nrd.2016.15] [PMID: 26837582]
[7]
Jiang, X.; Lu, W.; Shen, X.; Wang, Q.; Lv, J.; Liu, M.; Cheng, F.; Zhao, Z.; Pang, X. Repurposing sertraline sensitizes non-small cell lung cancer cells to erlotinib by inducing autophagy. JCI Insight, 2018, 3(11)e98921
[http://dx.doi.org/10.1172/jci.insight.98921] [PMID: 29875309]
[8]
Ashburn, T.T.; Thor, K.B. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[9]
Chong, C.R.; Sullivan, D.J. Jr. New uses for old drugs. Nature, 2007, 448(7154), 645-646.
[http://dx.doi.org/10.1038/448645a] [PMID: 17687303]
[10]
Dudley, J.T.; Sirota, M.; Shenoy, M.; Pai, R.K.; Roedder, S.; Chiang, A.P.; Morgan, A.A.; Sarwal, M.M.; Pasricha, P.J.; Butte, A.J. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci. Transl. Med., 2011, 3(96)96ra76
[http://dx.doi.org/10.1126/scitranslmed.3002648] [PMID: 21849664]
[11]
Langedijk, J.; Mantel-Teeuwisse, A.K.; Slijkerman, D.S.; Schutjens, M.H. Drug repositioning and repurposing: terminology and definitions in literature. Drug Discov. Today, 2015, 20(8), 1027-1034.
[http://dx.doi.org/10.1016/j.drudis.2015.05.001] [PMID: 25975957]
[12]
Padhy, B.M.; Gupta, Y.K. Drug repositioning: re-investigating existing drugs for new therapeutic indications. J. Postgrad. Med., 2011, 57(2), 153-160.
[http://dx.doi.org/10.4103/0022-3859.81870] [PMID: 21654146]
[13]
Sleigh, S.H.; Barton, C.L. Repurposing strategies for therapeutics. Pharmaceut. Med., 2010, 24, 151-159.
[http://dx.doi.org/10.1007/BF03256811]
[14]
Singh, N.; Halliday, A.C.; Thomas, J.M.; Kuznetsova, O.V.; Baldwin, R.; Woon, E.C.Y.; Aley, P.K.; Antoniadou, I.; Sharp, T.; Vasudevan, S.R.; Churchill, G.C. A safe lithium mimetic for bipolar disorder. Nat. Commun., 2013, 4, 1332.
[http://dx.doi.org/10.1038/ncomms2320] [PMID: 23299882]
[15]
Li, Y.Y.; Jones, S.J. Drug repositioning for personalized medicine. Genome Med., 2012, 4(3), 27.
[http://dx.doi.org/10.1186/gm326] [PMID: 22494857]
[16]
Hernandez, J.J.; Pryszlak, M.; Smith, L.; Yanchus, C.; Kurji, N.; Shahani, V.M.; Molinski, S.V. Giving drugs a second chance: Overcoming regulatory and financial hurdles in repurposing approved drugs as cancer therapeutics. Front. Oncol., 2017, 7, 273.
[http://dx.doi.org/10.3389/fonc.2017.00273] [PMID: 29184849]
[17]
Issa, N.T.; Kruger, J.; Byers, S.W.; Dakshanamurthy, S. Drug repurposing a reality: from computers to the clinic. Expert Rev. Clin. Pharmacol., 2013, 6(2), 95-97.
[http://dx.doi.org/10.1586/ecp.12.79] [PMID: 23473587]
[18]
Franks, M.E.; Macpherson, G.R.; Figg, W.D. Thalidomide. Lancet, 2004, 363(9423), 1802-1811.
[http://dx.doi.org/10.1016/S0140-6736(04)16308-3] [PMID: 15172781]
[19]
Kasznicki, J.; Sliwinska, A.; Drzewoski, J. Metformin in cancer prevention and therapy. Ann. Transl. Med., 2014, 2(6), 57.
[http://dx.doi.org/10.3978/j.issn.2305-5839.2014.06.01]] [PMID: 25333032]
[20]
Colson, P.; Rolain, J.M.; Lagier, J.C.; Brouqui, P.; Raoult, D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int. J. Antimicrob. Agents, 2020, 55(4)105932
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105932] [PMID: 32145363]
[21]
Touret, F.; de Lamballerie, X. Of chloroquine and COVID-19. Antiviral Res., 2020, 177104762
[http://dx.doi.org/10.1016/j.antiviral.2020.104762] [PMID: 32147496]
[22]
Gao, J.; Tian, Z.; Yang, X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 2020, 14(1), 72-73.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[23]
Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178104787
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[24]
Grassi, L.; Nanni, M.G.; Rodin, G.; Li, M.; Caruso, R. The use of antidepressants in oncology: a review and practical tips for oncologists. Ann. Oncol., 2018, 29(1), 101-111.
[http://dx.doi.org/10.1093/annonc/mdx526] [PMID: 29272358]
[25]
Rodin, G.; Katz, M.; Lloyd, N.; Green, E.; Mackay, J.A.; Wong, R.K.S. Treatment of depression in cancer patients. Curr. Oncol., 2007, 14(5), 180-188.
[http://dx.doi.org/10.3747/co.2007.146] [PMID: 17938701]
[26]
Grassi, L.; Nanni, M.G.; Uchitomi, Y.; Riba, M. Pharmacotherapy of depression in people with cancer. Depression and Cancer; Kissane, D.; Maj, M; Sartorius, N., Ed.; Wiley: London, 2011, pp. 151-175.
[http://dx.doi.org/10.1002/9780470972533.ch7 ]
[27]
Li, M.; Fitzgerald, P.; Rodin, G. Evidence-based treatment of depression in patients with cancer. J. Clin. Oncol., 2012, 30(11), 1187-1196.
[http://dx.doi.org/10.1200/JCO.2011.39.7372] [PMID: 22412144]
[28]
Pottegård, A.; García Rodríguez, L.A.; Rasmussen, L.; Damkier, P.; Friis, S.; Gaist, D. Use of tricyclic antidepressants and risk of glioma: a nationwide case-control study. Br. J. Cancer, 2016, 114(11), 1265-1268.
[http://dx.doi.org/10.1038/bjc.2016.109] [PMID: 27115466]
[29]
Lee, W.Y.; Lee, W.T.; Cheng, C.H.; Chen, K.C.; Chou, C.M.; Chung, C.H.; Sun, M.S.; Cheng, H.W.; Ho, M.N.; Lin, C.W. Repositioning antipsychotic chlorpromazine for treating colorectal cancer by inhibiting sirtuin 1. Oncotarget, 2015, 6(29), 27580-27595.
[http://dx.doi.org/10.18632/oncotarget.4768] [PMID: 26363315]
[30]
Jahchan, N.S.; Dudley, J.T.; Mazur, P.K.; Flores, N.; Yang, D.; Palmerton, A.; Zmoos, A.F.; Vaka, D.; Tran, K.Q.; Zhou, M.; Krasinska, K.; Riess, J.W.; Neal, J.W.; Khatri, P.; Park, K.S.; Butte, A.J.; Sage, J. A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. Cancer Discov., 2013, 3(12), 1364-1377.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0183] [PMID: 24078773]
[31]
Pereira, V.S.; Hiroaki-Sato, V.A. A brief history of antidepressant drug development: from tricyclics to beyond ketamine. Acta Neuropsychiatr., 2018, 30(6), 307-322.
[http://dx.doi.org/10.1017/neu.2017.39] [PMID: 29388517]
[32]
López-Muñoz, F.; Alamo, C. Monoaminergic neurotransmission: the history of the discovery of antidepressants from 1950s until today. Curr. Pharm. Des., 2009, 15(14), 1563-1586.
[http://dx.doi.org/10.2174/138161209788168001] [PMID: 19442174]
[33]
Hillhouse, T.M.; Porter, J.H. A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp. Clin. Psychopharmacol., 2015, 23(1), 1-21.
[http://dx.doi.org/10.1037/a0038550] [PMID: 25643025]
[34]
López-Muñoz, F.; Alamo, C.; Juckel, G.; Assion, H.J. Half a century of antidepressant drugs: on the clinical introduction of monoamine oxidase inhibitors, tricyclics, and tetracyclics. Part I: monoamine oxidase inhibitors. J. Clin. Psychopharmacol., 2007, 27(6), 555-559.
[http://dx.doi.org/10.1097/jcp.0b013e3181bb617] [PMID: 18004120]
[35]
Pletscher, A. The discovery of antidepressants: a winding path. Experientia, 1991, 47(1), 4-8.
[http://dx.doi.org/10.1007/BF02041242] [PMID: 1999242]
[36]
Domino, E.F. History of modern psychopharmacology: a personal view with an emphasis on antidepressants. Psychosom. Med., 1999, 61(5), 591-598.
[http://dx.doi.org/10.1097/00006842-199909000-00002] [PMID: 10511010]
[37]
Fangmann, P.; Assion, H.J.; Juckel, G.; González, C.A.; López-Muñoz, F. Half a century of antidepressant drugs: on the clinical introduction of monoamine oxidase inhibitors, tricyclics, and tetracyclics. Part II: tricyclics and tetracyclics. J. Clin. Psychopharmacol., 2008, 28(1), 1-4.
[http://dx.doi.org/10.1097/jcp.0b013e3181627b60] [PMID: 18204333]
[38]
Abbing-Karahagopian, V.; Huerta, C.; Souverein, P.C.; de Abajo, F.; Leufkens, H.G.; Slattery, J.; Alvarez, Y.; Miret, M.; Gil, M.; Oliva, B.; Hesse, U.; Requena, G.; de Vries, F.; Rottenkolber, M.; Schmiedl, S.; Reynolds, R.; Schlienger, R.G.; de Groot, M.C.; Klungel, O.H.; van Staa, T.P.; van Dijk, L.; Egberts, A.C.; Gardarsdottir, H.; De Bruin, M.L. Antidepressant prescribing in five European countries: application of common definitions to assess the prevalence, clinical observations, and methodological implications. Eur. J. Clin. Pharmacol., 2014, 70(7), 849-857.
[http://dx.doi.org/10.1007/s00228-014-1676-z] [PMID: 24793010]
[39]
Shaw, D.M.; Camps, F.E.; Eccleston, E.G. 5-Hydroxytryptamine in the hind-brain of depressive suicides. Br. J. Psychiatry, 1967, 113(505), 1407-1411.
[http://dx.doi.org/10.1192/bjp.113.505.1407] [PMID: 6078496]
[40]
Cowen, P.J.; Browning, M. What has serotonin to do with depression? World Psychiatry, 2015, 14(2), 158-160.
[http://dx.doi.org/10.1002/wps.20229] [PMID: 26043325]
[41]
Blier, P.; El Mansari, M. Serotonin and beyond: therapeutics for major depression. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2013, 368(1615)20120536
[http://dx.doi.org/10.1098/rstb.2012.0536] [PMID: 23440470]
[42]
Wong, D.T.; Bymaster, F.P.; Engleman, E.A. Prozac (fluoxetine, Lilly 110140), the first selective serotonin uptake inhibitor and an antidepressant drug: twenty years since its first publication. Life Sci., 1995, 57(5), 411-441.
[http://dx.doi.org/10.1016/0024-3205(95)00209-O] [PMID: 7623609]
[43]
Wong, D.T.; Perry, K.W.; Bymaster, F.P. Case history: the discovery of fluoxetine hydrochloride (Prozac). Nat. Rev. Drug Discov., 2005, 4(9), 764-774.
[http://dx.doi.org/10.1038/nrd1821] [PMID: 16121130]
[44]
Millan, M.J. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol. Ther., 2006, 110(2), 135-370.
[http://dx.doi.org/10.1016/j.pharmthera.2005.11.006] [PMID: 16522330]
[45]
Ban, T.A. Pharmacotherapy of depression: a historical analysis. J. Neural Transm. (Vienna), 2001, 108(6), 707-716.
[http://dx.doi.org/10.1007/s007020170047] [PMID: 11478422]
[46]
Fava, M.; Rush, A.J.; Thase, M.E.; Clayton, A.; Stahl, S.M.; Pradko, J.F.; Johnston, J.A. 15 years of clinical experience with bupropion HCl: from bupropion to bupropion SR to bupropion XL. Prim. Care Companion J. Clin. Psychiatry, 2005, 7(3), 106-113.
[http://dx.doi.org/10.4088/PCC.v07n0305] [PMID: 16027765]
[47]
Stahl, S.M.; Pradko, J.F.; Haight, B.R.; Modell, J.G.; Rockett, C.B.; Learned-Coughlin, S. A review of the neuropharmacology of bupropion, a dual norepinephrine and dopamine reuptake inhibitor. Prim. Care Companion J. Clin. Psychiatry, 2004, 6(4), 159-166.
[http://dx.doi.org/10.4088/PCC.v06n0403] [PMID: 15361919]
[48]
Papakostas, G.I. Serotonin norepinephrine reuptake inhibitors: spectrum of efficacy in major depressive disorder. Prim. Psychiatry, 2009, 16(5)(Suppl. 4), 16-24.
[49]
Gibb, A.; Deeks, E.D. Vortioxetine: first global approval. Drugs, 2014, 74(1), 135-145.
[http://dx.doi.org/10.1007/s40265-013-0161-9] [PMID: 24311349]
[50]
Hashimoto, K. Rapid-acting antidepressant ketamine, its metabolites and other candidates: A historical overview and future perspective. Psychiatry Clin. Neurosci., 2019, 73(10), 613-627.
[http://dx.doi.org/10.1111/pcn.12902] [PMID: 31215725]
[51]
U.S. Food & Drug Administration. FDA newsroom – press announcements. Available at:. https://www.fda.gov/news-events/press-announcements/fda-approves-new-nasal-spray-medication-treatment-resistant-depression-available-only-certified2020(Accessed date: March 24, 2020.
[52]
Shen, W.W. A history of antipsychotic drug development. Compr. Psychiatry, 1999, 40(6), 407-414.
[http://dx.doi.org/10.1016/S0010-440X(99)90082-2] [PMID: 10579370]
[53]
Reinhardt, C.; Travis, A.S. Heinrich Caro and the creation of modern chemical industry, 1st Ed; Springer: Netherlands, 2000.
[http://dx.doi.org/10.1007/978-94-015-9353-3]
[54]
Müller, O.; Lu, G.; Jahn, A.; Mockenhaupt, F.P. How worthwhile is methylene blue as a treatment of malaria? Expert Rev. Anti Infect. Ther., 2019, 17(7), 471-473.
[http://dx.doi.org/10.1080/14787210.2019.1634545] [PMID: 31237457]
[55]
Okafor, C.O. The chemistry and applications of angular phenothiazine derivatives. Dyes Pigments, 1986, 7, 249-287.
[http://dx.doi.org/10.1016/0143-7208(86)85013-6]
[56]
Cunningham Owens, D.; Johnstone, E.C. The development of antipsychotic drugs. Brain Neurosci. Adv., 2018, 22398212818817498
[http://dx.doi.org/10.1177/2398212818817498 ] [PMID: 32166169]
[57]
Gilman, H.; van Ess, P.R.; Shirley, D.A. The metalation of 10-phenylphenothiazine and of 10-ethylphenothiazine. J. Am. Chem. Soc., 1944, 66(7), 1214-1216.
[http://dx.doi.org/10.1021/ja01235a042]
[58]
Ban, T.A. The role of serendipity in drug discovery.Dialogues Clin. Neurosci., 2006, 8(3), 335-344. http://dx.doi.org/10.31887/DCNS.2006.8.3/tban PMID: 17117615 Healy, D. Chapter 1-The discovery of chlorpomazine and the place of psychopharmacology in the history of psychiatry (Interview of Pichot, P). In: The Psychopharmacologists; Chapman & Hall: New York, NY, 1996, pp. 1-27..
[http://dx.doi.org/10.1017/S0033291797235014]
[59]
Ban, T.A. Fifty years chlorpromazine: a historical perspective. Neuropsychiatr. Dis. Treat., 2007, 3(4), 495-500.
[PMID: 19300578]
[60]
Pöldinger, W.; Wider, F. Index psychopharmacorum; Huber: Canada, 1990.
[http://dx.doi.org/ 10.1002/ardp.19632960920]
[61]
Irtelli, F. Psychosis. Biopsychosocial and relational perspectives; IntechOpen, 2018.
[http://dx.doi.org/10.5772/intechopen.73912 ]
[62]
Abou-Setta, A.M.; Mousavi, S.S.; Spooner, C.; Schouten, J.R.; Pasichnyk, D.; Armijo-Olivo, S.; Beaith, A.; Seida, J.C.; Dursun, S.; Newton, A.S.; Hartling, L. First-generation versus second-generation antipsychotics in adults: comparative effectiveness. Rockville (MD): Agency for Healthcare Research and Quality (US); Comparative Effectiveness Reviews, No. 63. Available at:, https://www.ncbi.nlm. nih.gov/books/NBK107254/2020(Accessed date: March 27, 2020.)..
[63]
Colvin, C.L.; Tankanow, R.M. Pimozide: use in Tourette’s syndrome. Drug Intell. Clin. Pharm., 1985, 19(6), 421-424.
[http://dx.doi.org/10.1177/106002808501900602] [PMID: 3891283]
[64]
Carpenter, W.T., Jr; Davis, J.M. Another view of the history of antipsychotic drug discovery and development. Mol. Psychiatry, 2012, 17(12), 1168-1173.
[http://dx.doi.org/10.1038/mp.2012.121] [PMID: 22889923]
[65]
Steck, H. Le syndrome extrapyramidal et diencephalique au Largactil et au Serpasil. Ann. Med. Psychol. (Paris), 1954, 112, 737-743.
[PMID: 14362101]
[66]
Haase, H.J.; Janssen, P.A.L. The action of neuroleptic drugs: A psychiatric, neurologic, and pharmacological investigation; Chicago: Year Book Medical Publishers, 1965.
[67]
Healy, D. Chapter 8- The founding of the CINP and the discovery of clozapine (Interview of Hippius, H). . In The psychopharmacologists; Chapman & Hall: New York, NY, 1996, pp. 185-213.
[68]
Shen, W.W. Pharmacotherapy of schizophrenia: the American current status. Keio J. Med., 1994, 43(4), 192-200.
[http://dx.doi.org/10.2302/kjm.43.192] [PMID: 7861689]
[69]
Hippius, H. The history of clozapine. Psychopharmacology (Berl.), 1989, 99(Suppl.), S3-S5.
[http://dx.doi.org/10.1007/BF00442551] [PMID: 2682730]
[70]
Gross, H.; Langner, E. Das Wirkungsprofil eines chemisch neuartigen Breitbandneuroleptikums der Dibenzodiazepingruppe. Wien. Med. Wochenschr., 1966, 116(40), 814-816.
[PMID: 5925777]
[71]
Bente, D.; Engelmeier, M.P.; Heinrich, K.; Hippius, H.; Schmitt, W. Klinische Untersuchungen mit einem neuroleptisch wirksamen Dibenzothiazepin-Derivat. Arzneimittelforschung, 1966, 16(2), 314-316.
[PMID: 4861661]
[72]
Angst, J.; Jaenicke, U.; Padrutt, A.; Scharfetter, C. Ergebnisse eines doppelblindversuches von HF 1854 (8-Chlor-11-(4-methyl-1-piperazinyl)-5H-dibenzo(b,e)(1,4)diazepin) im vergleich zu levomepromazin. Pharrnackopsychiatrie, 1971, 4, 192-200.
[http://dx.doi.org/10.1055/s-0028-1094312]
[73]
Kane, J.; Honigfeld, G.; Singer, J.; Meltzer, H. Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch. Gen. Psychiatry, 1988, 45(9), 789-796.
[http://dx.doi.org/10.1001/archpsyc.1988.01800330013001] [PMID: 3046553]
[74]
Munoz-Bellido, J.L.; Munoz-Criado, S.; Garcìa-Rodrìguez, J.A. Antimicrobial activity of psychotropic drugs: selective serotonin reuptake inhibitors. Int. J. Antimicrob. Agents, 2000, 14(3), 177-180.
[http://dx.doi.org/10.1016/S0924-8579(99)00154-5] [PMID: 10773485]
[75]
Macedo, D.; Filho, A.J.M.C.; Soares de Sousa, C.N.; Quevedo, J.; Barichello, T.; Júnior, H.V.N.; Freitas de Lucena, D. Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J. Affect. Disord., 2017, 208, 22-32.
[http://dx.doi.org/10.1016/j.jad.2016.09.012] [PMID: 27744123]
[76]
Ordway, D.; Viveiros, M.; Leandro, C.; Bettencourt, R.; Almeida, J.; Martins, M.; Kristiansen, J.E.; Molnar, J.; Amaral, L. Clinical concentrations of thioridazine kill intracellular multidrug-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2003, 47(3), 917-922.
[http://dx.doi.org/10.1128/AAC.47.3.917-922.2003] [PMID: 12604522]
[77]
Ordway, D.; Viveiros, M.; Leandro, C.; Arroz, M.J.; Amaral, L. Intracellular activity of clinical concentrations of phenothiazines including thioridiazine against phagocytosed Staphylococcus aureus. Int. J. Antimicrob. Agents, 2002, 20(1), 34-43.
[http://dx.doi.org/10.1016/S0924-8579(02)00110-3] [PMID: 12127709]
[78]
Kristiansen, M.M.; Leandro, C.; Ordway, D.; Martins, M.; Viveiros, M.; Pacheco, T.; Kristiansen, J.E.; Amaral, L. Phenothiazines alter resistance of methicillin-resistant strains of Staphylococcus aureus (MRSA) to oxacillin in vitro. Int. J. Antimicrob. Agents, 2003, 22(3), 250-253.
[http://dx.doi.org/10.1016/S0924-8579(03)00200-0] [PMID: 13678829]
[79]
Amaral, L.; Viveiros, M.; Molnár, J. Antimicrobial activity of phenothiazines. In Vivo, 2004, 18(6), 725-731.
[PMID: 15646813]
[80]
Lieb, J. The immunostimulating and antimicrobial properties of lithium and antidepressants. J. Infect., 2004, 49(2), 88-93.
[http://dx.doi.org/10.1016/j.jinf.2004.03.006] [PMID: 15236914]
[81]
Nehme, H.; Saulnier, P.; Ramadan, A.A.; Cassisa, V.; Guillet, C.; Eveillard, M.; Umerska, A. Antibacterial activity of antipsychotic agents, their association with lipid nanocapsules and its impact on the properties of the nanocarriers and on antibacterial activity. PLoS One, 2018, 13(1)e0189950
[http://dx.doi.org/10.1371/journal.pone.0189950] [PMID: 29298353]
[82]
Li, H.; Li, J.; Yu, X.; Zheng, H.; Sun, X.; Lu, Y.; Zhang, Y.; Li, C.; Bi, X. The incidence rate of cancer in patients with schizophrenia: a meta-analysis of cohort studies. Schizophr. Res., 2018, 195, 519-528.
[http://dx.doi.org/10.1016/j.schres.2017.08.065] [PMID: 28943096]
[83]
Chou, F.H.; Tsai, K.Y.; Su, C.Y.; Lee, C.C. The incidence and relative risk factors for developing cancer among patients with schizophrenia: a nine-year follow-up study. Schizophr. Res., 2011, 129(2-3), 97-103.
[http://dx.doi.org/10.1016/j.schres.2011.02.018] [PMID: 21458957]
[84]
Grinshpoon, A.; Barchana, M.; Ponizovsky, A.; Lipshitz, I.; Nahon, D.; Tal, O.; Weizman, A.; Levav, I. Cancer in schizophrenia: is the risk higher or lower? Schizophr. Res., 2005, 73(2-3), 333-341.
[http://dx.doi.org/10.1016/j.schres.2004.06.016] [PMID: 15653279]
[85]
Barak, Y.; Achiron, A.; Mandel, M.; Mirecki, I.; Aizenberg, D. Reduced cancer incidence among patients with schizophrenia. Cancer, 2005, 104(12), 2817-2821.
[http://dx.doi.org/10.1002/cncr.21574] [PMID: 16288491]
[86]
Cohen, M.; Dembling, B.; Schorling, J. The association between schizophrenia and cancer: a population-based mortality study. Schizophr. Res., 2002, 57(2-3), 139-146.
[http://dx.doi.org/10.1016/S0920-9964(01)00308-5] [PMID: 12223244]
[87]
Spengler, G.; Csonka, Á.; Molnár, J.; Amaral, L. The anticancer activity of the old neuroleptic phenothiazine-type drug thioridazine. Anticancer Res., 2016, 36(11), 5701-5706.
[http://dx.doi.org/10.21873/anticanres.11153] [PMID: 27793891]
[88]
Chen, J.J.; Cai, N.; Chen, G.Z.; Jia, C.C.; Qiu, D.B.; Du, C.; Liu, W.; Yang, Y.; Long, Z.J.; Zhang, Q. The neuroleptic drug pimozide inhibits stem-like cell maintenance and tumorigenicity in hepatocellular carcinoma. Oncotarget, 2017, 8(11), 17593-17609.
[http://dx.doi.org/10.18632/oncotarget.4307] [PMID: 26061710]
[89]
Duenas-Gonzalez, A.; Candelaria, M.; Perez-Plascencia, C.; Perez-Cardenas, E.; de la Cruz-Hernandez, E.; Herrera, L.A. Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat. Rev., 2008, 34(3), 206-222.
[http://dx.doi.org/10.1016/j.ctrv.2007.11.003] [PMID: 18226465]
[90]
Caruso, R.; Grassi, L.; Nanni, M.G.; Riba, M. Psychopharmacology in psycho-oncology. Curr. Psychiatry Rep., 2013, 15(9), 393.
[http://dx.doi.org/10.1007/s11920-013-0393-0] [PMID: 23949568]
[91]
Thekdi, S.M.; Trinidad, A.; Roth, A. Psychopharmacology in cancer. Curr. Psychiatry Rep., 2015, 17(1), 529.
[http://dx.doi.org/10.1007/s11920-014-0529-x] [PMID: 25417593]
[92]
Grassi, L.; Caruso, R.; Hammelef, K.; Nanni, M.G.; Riba, M. Efficacy and safety of pharmacotherapy in cancer-related psychiatric disorders across the trajectory of cancer care: a review. Int. Rev. Psychiatry, 2014, 26(1), 44-62.
[http://dx.doi.org/10.3109/09540261.2013.842542] [PMID: 24716500]
[93]
Chang, S.C.; Shen, W.W. Antidepressant therapy in patients with cancer: a clinical review. Taiwan. J. Psychiatry, 2019, 33, 13-19.
[http://dx.doi.org/10.4103/TPSY.TPSY_3_19]
[94]
Bielecka, A.M.; Obuchowicz, E. Antidepressant drugs as a complementary therapeutic strategy in cancer. Exp. Biol. Med. (Maywood), 2013, 238(8), 849-858.
[http://dx.doi.org/10.1177/1535370213493721] [PMID: 23970405]
[95]
Cipriani, A.; Purgato, M.; Furukawa, T.A.; Trespidi, C.; Imperadore, G.; Signoretti, A.; Churchill, R.; Watanabe, N.; Barbui, C. Citalopram versus other anti-depressive agents for depression. Cochrane Database Syst. Rev., 2012, 7(7)CD006534
[http://dx.doi.org/10.1002/14651858.CD006534.pub2] [PMID: 22786497]
[96]
Nemeroff, C.B. Overview of the safety of citalopram. Psychopharmacol. Bull., 2003, 37(1), 96-121.
[PMID: 14561952]
[97]
Keller, M.B. Citalopram therapy for depression: a review of 10 years of European experience and data from U.S. clinical trials. J. Clin. Psychiatry, 2000, 61(12), 896-908.
[http://dx.doi.org/10.4088/JCP.v61n1202] [PMID: 11206593]
[98]
McCarrell, J.L.; Bailey, T.A.; Duncan, N.A.; Covington, L.P.; Clifford, K.M.; Hall, R.G.; Blaszczyk, A.T. A review of citalopram dose restrictions in the treatment of neuropsychiatric disorders in older adults. Ment. Health Clin., 2019, 9(4), 280-286.
[http://dx.doi.org/10.9740/mhc.2019.07.280] [PMID: 31293848]
[99]
Ahmed, E. Antidepressants in patients with advanced cancer: When they’re warranted and how to choose therapy. Oncology (Williston Park), 2019, 33(2), 62-68.
[PMID: 30784031]
[100]
Nguyen, T.; Vallejo, R.; Benyamin, R.; Kramer, J.; Vogel, L.A. A potential role for Citalopram as an immunoenhancer on morphine-induced immunosuppression. J. Immunol., 2007, 178, S202.
[101]
Xu, W.; Tamim, H.; Shapiro, S.; Stang, M.R.; Collet, J.P. Use of antidepressants and risk of colorectal cancer: a nested case-control study. Lancet Oncol., 2006, 7(4), 301-308.
[http://dx.doi.org/10.1016/S1470-2045(06)70622-2] [PMID: 16574545]
[102]
Coogan, P.F.; Strom, B.L.; Rosenberg, L. Antidepressant use and colorectal cancer risk. Pharmacoepidemiol. Drug Saf., 2009, 18(11), 1111-1114.
[http://dx.doi.org/10.1002/pds.1808] [PMID: 19623565]
[103]
Chubak, J.; Boudreau, D.M.; Rulyak, S.J.; Mandelson, M.T. Colorectal cancer risk in relation to antidepressant medication use. Int. J. Cancer, 2011, 128(1), 227-232.
[http://dx.doi.org/10.1002/ijc.25322] [PMID: 20232382]
[104]
Iskar, M.; Bork, P.; van Noort, V. Discovery and validation of the antimetastatic activity of citalopram in colorectal cancer. Mol. Cell. Oncol., 2015, 2(2)e975080
[http://dx.doi.org/10.4161/23723556.2014.975080] [PMID: 27308430]
[105]
van Noort, V.; Schölch, S.; Iskar, M.; Zeller, G.; Ostertag, K.; Schweitzer, C.; Werner, K.; Weitz, J.; Koch, M.; Bork, P. Novel drug candidates for the treatment of metastatic colorectal cancer through global inverse gene-expression profiling. Cancer Res., 2014, 74(20), 5690-5699.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3540] [PMID: 25038229]
[106]
Tutton, P.J.; Barkla, D.H. Influence of inhibitors of serotonin uptake on intestinal epithelium and colorectal carcinomas. Br. J. Cancer, 1982, 46(2), 260-265.
[http://dx.doi.org/10.1038/bjc.1982.191] [PMID: 6983886]
[107]
Tutton, P.J.; Steel, G.G. Influence of biogenic amines on the growth of xenografted human colorectal carcinomas. Br. J. Cancer, 1979, 40(5), 743-749.
[http://dx.doi.org/10.1038/bjc.1979.255] [PMID: 41563]
[108]
Barkla, D.H.; Tutton, P.J. Influence of histamine and serotonin antagonists on the growth of xenografted human colorectal tumors. J. Natl. Cancer Inst., 1981, 67(6), 1207-1211.
[PMID: 6947106]
[109]
Ahmadian, E.; Eftekhari, A.; Babaei, H.; Nayebi, A.M.; Eghbal, M.A. Anti-cancer effects of citalopram on hepatocellular carcinoma cells occur via cytochrome C release and the activation of NF-κB. Anticancer. Agents Med. Chem., 2017, 17(11), 1570-1577.
[http://dx.doi.org/10.2174/1871520617666170327155930] [PMID: 28356024]
[110]
Chen, V.C.H.; Lin, C.F.; Hsieh, Y.H.; Liang, H.Y.; Huang, K.Y.; Chiu, W.C.; Lee, Y.; McIntyre, R.S.; Chan, H.L. Hepatocellular carcinoma and antidepressants: a nationwide population-based study. Oncotarget, 2017, 8(18), 30464-30470.
[http://dx.doi.org/10.18632/oncotarget.12826] [PMID: 27783998]
[111]
Chan, H.L.; Chiu, W.C.; Chen, V.C.H.; Huang, K.Y.; Wang, T.N.; Lee, Y.; McIntyre, R.S.; Hsu, T.C.; Lee, C.T.; Tzang, B.S. SSRIs associated with decreased risk of hepatocellular carcinoma: a population-based case-control study. Psychooncology, 2018, 27(1), 187-192.
[http://dx.doi.org/10.1002/pon.4493] [PMID: 28666060]
[112]
Sakka, L.; Delétage, N.; Chalus, M.; Aissouni, Y.; Sylvain-Vidal, V.; Gobron, S.; Coll, G. Assessment of citalopram and escitalopram on neuroblastoma cell lines. Cell toxicity and gene modulation. Oncotarget, 2017, 8(26), 42789-42807.
[http://dx.doi.org/10.18632/oncotarget.17050] [PMID: 28467792]
[113]
Louis, C.U.; Shohet, J.M. Neuroblastoma: molecular pathogenesis and therapy. Annu. Rev. Med., 2015, 66, 49-63.
[http://dx.doi.org/10.1146/annurev-med-011514-023121] [PMID: 25386934]
[114]
Xia, Z.; Bergstrand, A.; DePierre, J.W.; Nässberger, L. The antidepressants imipramine, clomipramine, and citalopram induce apoptosis in human acute myeloid leukemia HL-60 cells via caspase-3 activation. J. Biochem. Mol. Toxicol., 1999, 13(6), 338-347.
[http://dx.doi.org/10.1002/(SICI)1099-0461(1999)13:6<338: AID-JBT8>3.0.CO;2-7] [PMID: 10487422]
[115]
Xia, Z.; Lundgren, B.; Bergstrand, A.; DePierre, J.W.; Nässberger, L. Changes in the generation of reactive oxygen species and in mitochondrial membrane potential during apoptosis induced by the antidepressants imipramine, clomipramine, and citalopram and the effects on these changes by Bcl-2 and Bcl-X(L). Biochem. Pharmacol., 1999, 57(10), 1199-1208.
[http://dx.doi.org/10.1016/S0006-2952(99)00009-X] [PMID: 11230808]
[116]
Liou, G.Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res., 2010, 44(5), 479-496.
[http://dx.doi.org/10.3109/10715761003667554] [PMID: 20370557]
[117]
Serafeim, A.; Holder, M.J.; Grafton, G.; Chamba, A.; Drayson, M.T.; Luong, Q.T.; Bunce, C.M.; Gregory, C.D.; Barnes, N.M.; Gordon, J. Selective serotonin reuptake inhibitors directly signal for apoptosis in biopsy-like Burkitt lymphoma cells. Blood, 2003, 101(8), 3212-3219.
[http://dx.doi.org/10.1182/blood-2002-07-2044] [PMID: 12515726]
[118]
Kabolizadeh, P.; Engelmann, B.J.; Pullen, N.; Stewart, J.K.; Ryan, J.J.; Farrell, N.P. Platinum anticancer agents and antidepressants: desipramine enhances platinum-based cytotoxicity in human colon cancer cells. J. Biol. Inorg. Chem., 2012, 17(1), 123-132.
[http://dx.doi.org/10.1007/s00775-011-0836-1] [PMID: 21918844]
[119]
Engelmann, B.J.; Ryan, J.J.; Farrell, N.P. Antidepressants and platinum drugs. Anticancer Res., 2014, 34(1), 509-516.
[PMID: 24403509]
[120]
Sommi, R.W.; Crismon, M.L.; Bowden, C.L. Fluoxetine: a serotonin-specific, second-generation antidepressant. Pharmacotherapy, 1987, 7(1), 1-15.
[http://dx.doi.org/10.1002/j.1875-9114.1987.tb03496.x] [PMID: 3554156]
[121]
Rossi, A.; Barraco, A.; Donda, P. Fluoxetine: a review on evidence based medicine. Ann. Gen. Hosp. Psychiatry, 2004, 3(1), 2.
[http://dx.doi.org/10.1186/1475-2832-3-2] [PMID: 14962351]
[122]
Wenthur, C.J.; Bennett, M.R.; Lindsley, C.W. Classics in chemical neuroscience: Fluoxetine (Prozac). ACS Chem. Neurosci., 2014, 5, 14-23.
[http://dx.doi.org/10.1021/cn400186j]
[123]
Ferguson, J.M. SSRI antidepressant medications: adverse effects and tolerability. Prim. Care Companion J. Clin. Psychiatry, 2001, 3(1), 22-27.
[http://dx.doi.org/10.4088/PCC.v03n0105] [PMID: 15014625]
[124]
The Guardian – social care. Available at:. https://www.theguardian.com/society/2007/may/13/socialcare.medicineandhealth2020(Accessed date: April 03,2020).
[125]
Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219.
[http://dx.doi.org/10.2147/vhrm.2006.2.3.213] [PMID: 17326328]
[126]
Guba, M.; Yezhelyev, M.; Eichhorn, M.E.; Schmid, G.; Ischenko, I.; Papyan, A.; Graeb, C.; Seeliger, H.; Geissler, E.K.; Jauch, K.W.; Bruns, C.J. Rapamycin induces tumor-specific thrombosis via tissue factor in the presence of VEGF. Blood, 2005, 105(11), 4463-4469.
[http://dx.doi.org/10.1182/blood-2004-09-3540] [PMID: 15671443]
[127]
Kannen, V.; Hintzsche, H.; Zanette, D.L.; Silva, W.A. Jr.; Garcia, S.B.; Waaga-Gasser, A.M.; Stopper, H. Antiproliferative effects of fluoxetine on colon cancer cells and in a colonic carcinogen mouse model. PLoS One, 2012, 7(11)e50043
[http://dx.doi.org/10.1371/journal.pone.0050043] [PMID: 23209640]
[128]
Kannen, V.; Marini, T.; Turatti, A.; Carvalho, M.C.; Brandão, M.L.; Jabor, V.A.; Bonato, P.S.; Ferreira, F.R.; Zanette, D.L.; Silva, W.A. Jr.; Garcia, S.B. Fluoxetine induces preventive and complex effects against colon cancer development in epithelial and stromal areas in rats. Toxicol. Lett., 2011, 204(2-3), 134-140.
[http://dx.doi.org/10.1016/j.toxlet.2011.04.024] [PMID: 21554931]
[129]
Kannen, V.; Garcia, S.B.; Silva, W.A. Jr.; Gasser, M.; Mönch, R.; Alho, E.J.; Heinsen, H.; Scholz, C.J.; Friedrich, M.; Heinze, K.G.; Waaga-Gasser, A.M.; Stopper, H. Oncostatic effects of fluoxetine in experimental colon cancer models. Cell. Signal., 2015, 27(9), 1781-1788.
[http://dx.doi.org/10.1016/j.cellsig.2015.05.008] [PMID: 26004136]
[130]
Bai, J.; Li, Y.; Zhang, G. Cell cycle regulation and anticancer drug discovery. Cancer Biol. Med., 2017, 14(4), 348-362.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0033] [PMID: 29372101]
[131]
Vazquez, A.; Bond, E.E.; Levine, A.J.; Bond, G.L. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat. Rev. Drug Discov., 2008, 7(12), 979-987.
[http://dx.doi.org/10.1038/nrd2656] [PMID: 19043449]
[132]
Stepulak, A.; Rzeski, W.; Sifringer, M.; Brocke, K.; Gratopp, A.; Kupisz, K.; Turski, L.; Ikonomidou, C. Fluoxetine inhibits the extracellular signal regulated kinase pathway and suppresses growth of cancer cells. Cancer Biol. Ther., 2008, 7(10), 1685-1693.
[http://dx.doi.org/10.4161/cbt.7.10.6664] [PMID: 18836303]
[133]
Marcinkute, M.; Afshinjavid, S.; Fatokun, A.A.; Javid, F.A. Fluoxetine selectively induces p53-independent apoptosis in human colorectal cancer cells. Eur. J. Pharmacol., 2019.857172441
[http://dx.doi.org/10.1016/j.ejphar.2019.172441] [PMID: 31181210]
[134]
Mun, A-R.; Lee, S.J.; Kim, G.B.; Kang, H.S.; Kim, J.S.; Kim, S.J. Fluoxetine-induced apoptosis in hepatocellular carcinoma cells. Anticancer Res., 2013, 33(9), 3691-3697.
[PMID: 24023297]
[135]
Hsu, L.C.; Tu, H.F.; Hsu, F.T.; Yueh, P.F.; Chiang, I.T. Beneficial effect of fluoxetine on anti-tumor progression on hepatocellular carcinoma and non-small cell lung cancer bearing animal model. Biomed. Pharmacother., 2020, 126110054
[http://dx.doi.org/10.1016/j.biopha.2020.110054] [PMID: 32145588]
[136]
Kirkova, M.; Tzvetanova, E.; Vircheva, S.; Zamfirova, R.; Grygier, B.; Kubera, M. Antioxidant activity of fluoxetine: studies in mice melanoma model. Cell Biochem. Funct., 2010, 28(6), 497-502.
[http://dx.doi.org/10.1002/cbf.1682] [PMID: 20803706]
[137]
Qi, H.; Ma, J.; Liu, Y.M.; Yang, L.; Peng, L.; Wang, H.; Chen, H.Z. Allostatic tumor-burden induces depression-associated changes in hepatoma-bearing mice. J. Neurooncol., 2009, 94(3), 367-372.
[http://dx.doi.org/10.1007/s11060-009-9887-3] [PMID: 19381448]
[138]
Lee, C.S.; Kim, Y.J.; Jang, E.R.; Kim, W.; Myung, S.C. Fluoxetine induces apoptosis in ovarian carcinoma cell line OVCAR-3 through reactive oxygen species-dependent activation of nuclear factor-kappaB. Basic Clin. Pharmacol. Toxicol., 2010, 106(6), 446-453.
[http://dx.doi.org/10.1111/j.1742-7843.2009.00509.x] [PMID: 20050848]
[139]
Ereshefsky, L.; Riesenman, C.; Lam, Y.W. Antidepressant drug interactions and the cytochrome P450 system. The role of cytochrome P450 2D6. Clin. Pharmacokinet., 1995, 29(Suppl. 1), 10-18.
[http://dx.doi.org/10.2165/00003088-199500291-00004] [PMID: 8846618]
[140]
Weiner, S.A.; Alberts, D.S.; Surwit, E.A.; Davis, J.; Grosso, D. Tamoxifen therapy in recurrent epithelial ovarian carcinoma. Gynecol. Oncol., 1987, 27(2), 208-213.
[http://dx.doi.org/10.1016/0090-8258(87)90294-0] [PMID: 3570058]
[141]
Markman, M.; Iseminger, K.A.; Hatch, K.D.; Creasman, W.T.; Barnes, W.; Dubeshter, B. Tamoxifen in platinum-refractory ovarian cancer: a Gynecologic Oncology Group Ancillary Report. Gynecol. Oncol., 1996, 62(1), 4-6.
[http://dx.doi.org/10.1006/gyno.1996.0181] [PMID: 8690289]
[142]
Sukasem, C.; Sirachainan, E.; Chamnanphon, M.; Pechatanan, K.; Sirisinha, T.; Ativitavas, T.; Panvichian, R.; Ratanatharathorn, V.; Trachu, N.; Chantratita, W. Impact of CYP2D6 polymorphisms on tamoxifen responses of women with breast cancer: a microarray-based study in Thailand. Asian Pac. J. Cancer Prev., 2012, 13(9), 4549-4553.
[http://dx.doi.org/10.7314/APJCP.2012.13.9.4549] [PMID: 23167378]
[143]
Christensen, D.K.; Armaiz-Pena, G.N.; Ramirez, E.; Matsuo, K.; Zimmerman, B.; Zand, B.; Shinn, E.; Goodheart, M.J.; Bender, D.; Thaker, P.H.; Ahmed, A.; Penedo, F.J.; DeGeest, K.; Mendez, L.; Domann, F.; Sood, A.K.; Lutgendorf, S.K. SSRI use and clinical outcomes in epithelial ovarian cancer. Oncotarget, 2016, 7(22), 33179-33191.
[http://dx.doi.org/10.18632/oncotarget.8891] [PMID: 27121207]
[144]
Brandes, L.J.; Arron, R.J.; Bogdanovic, R.P.; Tong, J.; Zaborniak, C.L.; Hogg, G.R.; Warrington, R.C.; Fang, W.; LaBella, F.S. Stimulation of malignant growth in rodents by antidepressant drugs at clinically relevant doses. Cancer Res., 1992, 52(13), 3796-3800.
[PMID: 1617649]
[145]
Steingart, A.; Cotterchio, M.; Kreiger, N.; Sloan, M. Antidepressant medication use and breast cancer risk: a case-control study. Int. J. Epidemiol., 2003, 32(6), 961-966.
[http://dx.doi.org/10.1093/ije/dyg155] [PMID: 14681256]
[146]
Cloonan, S.M.; Williams, D.C. The antidepressants maprotiline and fluoxetine induce Type II autophagic cell death in drug-resistant Burkitt’s lymphoma. Int. J. Cancer, 2011, 128(7), 1712-1723.
[http://dx.doi.org/10.1002/ijc.25477] [PMID: 20503272]
[147]
Abdul, M.; Logothetis, C.J.; Hoosein, N.M. Growth-inhibitory effects of serotonin uptake inhibitors on human prostate carcinoma cell lines. J. Urol., 1995, 154(1), 247-250.
[http://dx.doi.org/10.1016/S0022-5347(01)67288-4] [PMID: 7776439]
[148]
Bowie, M.; Pilie, P.; Wulfkuhle, J.; Lem, S.; Hoffman, A.; Desai, S.; Petricoin, E.; Carter, A.; Ambrose, A.; Seewaldt, V.; Yu, D.; Ibarra Drendall, C. Fluoxetine induces cytotoxic endoplasmic reticulum stress and autophagy in triple negative breast cancer. World J. Clin. Oncol., 2015, 6(6), 299-311.
[http://dx.doi.org/10.5306/wjco.v6.i6.299] [PMID: 26677444]
[149]
Levkovitz, Y.; Gil-Ad, I.; Zeldich, E.; Dayag, M.; Weizman, A. Differential induction of apoptosis by antidepressants in glioma and neuroblastoma cell lines: evidence for p-c-Jun, cytochrome c, and caspase-3 involvement. J. Mol. Neurosci., 2005, 27(1), 29-42.
[http://dx.doi.org/10.1385/JMN:27:1:029] [PMID: 16055945]
[150]
Choi, J.H.; Jeong, Y.J.; Yu, A.R.; Yoon, K.S.; Choe, W.; Ha, J.; Kim, S.S.; Yeo, E.J.; Kang, I. Fluoxetine induces apoptosis through endoplasmic reticulum stress via mitogen-activated protein kinase activation and histone hyperacetylation in SK-N-BE(2)-M17 human neuroblastoma cells. Apoptosis, 2017, 22(9), 1079-1097.
[http://dx.doi.org/10.1007/s10495-017-1390-2] [PMID: 28647884]
[151]
Liu, Y.; Li, T.; Xu, M.; Che, X.; Jiang, X. Fluoxetine enhances cellular chemosensitivity to cisplatin in cervical cancer. Int. J. Clin. Exp. Med., 2017, 10, 10521-10527.
[152]
Pae, C.U.; Patkar, A.A. Paroxetine: current status in psychiatry. Expert Rev. Neurother., 2007, 7(2), 107-120.
[http://dx.doi.org/10.1586/14737175.7.2.107] [PMID: 17286545]
[153]
Grimsley, S.R.; Jann, M.W. Paroxetine, sertraline, and fluvoxamine: new selective serotonin reuptake inhibitors. Clin. Pharm., 1992, 11(11), 930-957.
[PMID: 1464219]
[154]
Johnson, A.M. Paroxetine: a pharmacological review. Int. Clin. Psychopharmacol., 1992, 6(Suppl. 4), 15-24.
[http://dx.doi.org/10.1097/00004850-199206004-00005] [PMID: 1331230]
[155]
Foster, R.H.; Goa, K.L. Paroxetine: a review of its pharmacology and therapeutic potential in the management of panic disorder. CNS Drugs, 1997, 8(2), 163-188.
[http://dx.doi.org/10.2165/00023210-199708020-00010] [PMID: 23338224]
[156]
Sanchez, C.; Reines, E.H.; Montgomery, S.A. A comparative review of escitalopram, paroxetine, and sertraline: Are they all alike? Int. Clin. Psychopharmacol., 2014, 29(4), 185-196.
[http://dx.doi.org/10.1097/YIC.0000000000000023] [PMID: 24424469]
[157]
Nevels, R.M.; Gontkovsky, S.T.; Williams, B.E. Paroxetine – The antidepressant from hell? Probably not, but caution required. Psychopharmacol. Bull., 2016, 46(1), 77-104.
[PMID: 27738376]
[158]
Purgato, M.; Papola, D.; Gastaldon, C.; Trespidi, C.; Magni, L.R.; Rizzo, C.; Furukawa, T.A.; Watanabe, N.; Cipriani, A.; Barbui, C. Paroxetine versus other anti-depressive agents for depression. Cochrane Database Syst. Rev., 2014, 4(4)CD006531
[http://dx.doi.org/10.1002/14651858.CD006531.pub2] [PMID: 24696195]
[159]
Gil-Ad, I.; Zolokov, A.; Lomnitski, L.; Taler, M.; Bar, M.; Luria, D.; Ram, E.; Weizman, A. Evaluation of the potential anti-cancer activity of the antidepressant sertraline in human colon cancer cell lines and in colorectal cancer-xenografted mice. Int. J. Oncol., 2008, 33(2), 277-286.
[PMID: 18636148]
[160]
Jang, W.J.; Jung, S.K.; Vo, T.T.L.; Jeong, C.H. Anticancer activity of paroxetine in human colon cancer cells: involvement of MET and ERBB3. J. Cell. Mol. Med., 2019, 23(2), 1106-1115.
[http://dx.doi.org/10.1111/jcmm.14011] [PMID: 30421568]
[161]
Shibuya, T. Paroxetine, a selective serotonin re-uptake inhibitor, induces growth inhibition and apoptosis in prostate cancer cells. Cancer Res., 2011, 71, 2152.
[http://dx.doi.org/10.1158/1538-7445.AM2011-2152 ]
[162]
an. C.C.; Kuo, D.H.; Shieh, P.; Chen, F.A.; Kuo, C.C.; Jan, C.R. Effect of the antidepressant paroxetine on Ca2+ movement in PC3 human prostate cancer cells. Drug Dev. Res., 2010, 71, 120-126.
[http://dx.doi.org/10.1002/ddr.20377]
[163]
Cho, Y.W.; Kim, E.J.; Nyiramana, M.M.; Shin, E.J.; Jin, H.; Ryu, J.H.; Kang, K.R.; Lee, G.W.; Kim, H.J.; Han, J.; Kang, D. Paroxetine induces apoptosis of human breast cancer MCF-7 cells through Ca2+ and p38 MAP kinase-dependent ROS generation. Cancers (Basel), 2019, 11(1), 64.
[http://dx.doi.org/10.3390/cancers11010064] [PMID: 30634506]
[164]
Fang, Y.C.; Chou, C.T.; Pan, C.C.; Hsieh, Y.D.; Liang, W.Z.; Chao, D.; Tsai, J.Y.; Liao, W.C.; Kuo, D.H.; Shieh, P.; Kuo, C.C.; Jan, C.R.; Shaw, C.F. Paroxetine-induced Ca2+ movement and death in OC2 human oral cancer cells. Chin. J. Physiol., 2011, 54(5), 310-317.
[PMID: 22135909]
[165]
Chou, C.T.; He, S.; Jan, C.R. Paroxetine-induced apoptosis in human osteosarcoma cells: activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca2+]i elevation. Toxicol. Appl. Pharmacol., 2007, 218(3), 265-273.
[http://dx.doi.org/10.1016/j.taap.2006.11.012] [PMID: 17174998]
[166]
Muijsers, R.B.; Plosker, G.L.; Noble, S. Sertraline: a review of its use in the management of major depressive disorder in elderly patients. Drugs Aging, 2002, 19(5), 377-392.
[http://dx.doi.org/10.2165/00002512-200219050-00006] [PMID: 12093324]
[167]
McRae, A.L.; Brady, K.T. Review of sertraline and its clinical applications in psychiatric disorders. Expert Opin. Pharmacother., 2001, 2(5), 883-892.
[http://dx.doi.org/10.1517/14656566.2.5.883] [PMID: 11336629]
[168]
Richelson, E. Pharmacology of antidepressants. Mayo Clin. Proc., 2001, 76(5), 511-527.
[http://dx.doi.org/10.4065/76.5.511] [PMID: 11357798]
[169]
Cipriani, A.; La Ferla, T.; Furukawa, T.A.; Signoretti, A.; Nakagawa, A.; Churchill, R.; McGuire, H.; Barbui, C. Sertraline versus other antidepressive agents for depression. Cochrane Database Syst. Rev., 2009, 2(2)CD006117
[http://dx.doi.org/10.1002/14651858.CD006117.pub2] [PMID: 19370626]
[170]
Chen, S.; Xuan, J.; Wan, L.; Lin, H.; Couch, L.; Mei, N.; Dobrovolsky, V.N.; Guo, L. Sertraline, an antidepressant, induces apoptosis in hepatic cells through the mitogen-activated protein kinase pathway. Toxicol. Sci., 2014, 137(2), 404-415.
[http://dx.doi.org/10.1093/toxsci/kft254] [PMID: 24194395]
[171]
Unterecker, S.; Riederer, P.; Proft, F.; Maloney, J.; Deckert, J.; Pfuhlmann, B. Effects of gender and age on serum concentrations of antidepressants under naturalistic conditions. J. Neural Transm. (Vienna), 2013, 120(8), 1237-1246.
[http://dx.doi.org/10.1007/s00702-012-0952-2] [PMID: 23254926]
[172]
Yasui-Furukori, N.; Tsuchimine, S.; Nakagami, T.; Fujii, A.; Sato, Y.; Tomita, T.; Yoshizawa, K.; Inoue, Y.; Kaneko, S. Association between plasma paroxetine concentration and changes in plasma brain‐derived neurotrophic factor levels in patients with major depressive disorder. Hum. Psychopharmacol., 2011, 26(3), 194-200.
[http://dx.doi.org/10.1002/hup.1192] [PMID: 21638327]
[173]
Kuwahara, J.; Yamada, T.; Egashira, N.; Ueda, M.; Zukeyama, N.; Ushio, S.; Masuda, S. Comparison of the anti-tumor effects of selective serotonin reuptake inhibitors as well as serotonin and norepinephrine reuptake inhibitors in human hepatocellular carcinoma cells. Biol. Pharm. Bull., 2015, 38(9), 1410-1414.
[http://dx.doi.org/10.1248/bpb.b15-00128] [PMID: 26328498]
[174]
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[175]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[176]
Kasap, C.; Elemento, O.; Kapoor, T.M. DrugTargetSeqR: a genomics- and CRISPR-Cas9-based method to analyze drug targets. Nat. Chem. Biol., 2014, 10(8), 626-628.
[http://dx.doi.org/10.1038/nchembio.1551] [PMID: 24929528]
[177]
Levine, B.; Jenkins, A.J.; Smialek, J.E. Distribution of sertraline in postmortem cases. J. Anal. Toxicol., 1994, 18(5), 272-274.
[http://dx.doi.org/10.1093/jat/18.5.272] [PMID: 7990446]
[178]
Lewis, R.J.; Angier, M.K.; Williamson, K.S.; Johnson, R.D. Analysis of sertraline in postmortem fluids and tissues in 11 aviation accident victims. J. Anal. Toxicol., 2013, 37(4), 208-216.
[http://dx.doi.org/10.1093/jat/bkt014] [PMID: 23511306]
[179]
Johansen, L.M.; DeWald, L.E.; Shoemaker, C.J.; Hoffstrom, B.G.; Lear-Rooney, C.M.; Stossel, A.; Nelson, E.; Delos, S.E.; Simmons, J.A.; Grenier, J.M.; Pierce, L.T.; Pajouhesh, H.; Lehár, J.; Hensley, L.E.; Glass, P.J.; White, J.M.; Olinger, G.G. A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity. Sci. Transl. Med., 2015, 7(290)290ra89
[http://dx.doi.org/10.1126/scitranslmed.aaa5597] [PMID: 26041706]
[180]
Juurlink, D. Revisiting the drug interaction between tamoxifen and SSRI antidepressants. BMJ, 2016, 354, i5309.
[http://dx.doi.org/10.1136/bmj.i5309] [PMID: 27694573]
[181]
Lin, C.J.; Robert, F.; Sukarieh, R.; Michnick, S.; Pelletier, J. The antidepressant sertraline inhibits translation initiation by curtailing mammalian target of rapamycin signaling. Cancer Res., 2010, 70(8), 3199-3208.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4072] [PMID: 20354178]
[182]
Bavadekar, S.; Panchal, P.; Hanbashi, A.; Vansal, S. .Cytotoxic effects of selective serotonin- and serotoninnorepinephrine reuptake inhibitors on human metastatic breast cancer cell line, MCF-7 (842.3). FASEB, 2014, 28(S1), 842.3..
[http://dx.doi.org/10.1096/fasebj.28.1_supplement.842.3]
[183]
Tzadok, S.; Beery, E.; Israeli, M.; Uziel, O.; Lahav, M.; Fenig, E.; Gil-Ad, I.; Weizman, A.; Nordenberg, J. In vitro novel combinations of psychotropics and anti-cancer modalities in U87 human glioblastoma cells. Int. J. Oncol., 2010, 37(4), 1043-1051.
[http://dx.doi.org/10.3892/ijo_00000756]] [PMID: 20811727]
[184]
Amit, B.H.; Gil-Ad, I.; Taler, M.; Bar, M.; Zolokov, A.; Weizman, A. Proapoptotic and chemosensitizing effects of selective serotonin reuptake inhibitors on T cell lymphoma/leukemia (Jurkat) in vitro. Eur. Neuropsychopharmacol., 2009, 19(10), 726-734.
[http://dx.doi.org/10.1016/j.euroneuro.2009.06.003] [PMID: 19631512]
[185]
Boia-Ferreira, M.; Basílio, A.B.; Hamasaki, A.E.; Matsubara, F.H.; Appel, M.H.; Da Costa, C.R.V.; Amson, R.; Telerman, A.; Chaim, O.M.; Veiga, S.S.; Senff-Ribeiro, A. TCTP as a therapeutic target in melanoma treatment. Br. J. Cancer, 2017, 117(5), 656-665.
[http://dx.doi.org/10.1038/bjc.2017.230] [PMID: 28751755]
[186]
Reddy, K.K.; Lefkove, B.; Chen, L.B.; Govindarajan, B.; Carracedo, A.; Velasco, G.; Carrillo, C.O.; Bhandarkar, S.S.; Owens, M.J.; Mechta-Grigoriou, F.; Arbiser, J.L. The antidepressant sertraline downregulates Akt and has activity against melanoma cells. Pigment Cell Melanoma Res., 2008, 21(4), 451-456.
[http://dx.doi.org/10.1111/j.1755-148X.2008.00481.x] [PMID: 18710373]
[187]
Chien, J.M.; Chou, C.T.; Pan, C.C.; Kuo, C.C.; Tsai, J.Y.; Liao, W.C.; Kuo, D.H.; Shieh, P.; Ho, C.M.; Chu, S.T.; Su, H.H.; Chi, C.C.; Jan, C.R. The mechanism of sertraline-induced [Ca2+]i rise in human OC2 oral cancer cells. Hum. Exp. Toxicol., 2011, 30(10), 1635-1643.
[http://dx.doi.org/10.1177/0960327110396523] [PMID: 21247994]
[188]
Drinberg, V.; Bitcover, R.; Rajchenbach, W.; Peer, D. Modulating cancer multidrug resistance by sertraline in combination with a nanomedicine. Cancer Lett., 2014, 354(2), 290-298.
[http://dx.doi.org/10.1016/j.canlet.2014.08.026] [PMID: 25173796]
[189]
Huang, J.K.; Chang, H.T.; Chou, C.T.; Shu, S.S.; Kuo, C.C.; Tsai, J.Y.; Liao, W.C.; Wang, J.L.; Lin, K.L.; Lu, Y.C.; Chen, I.S.; Liu, S.I.; Ho, C.M.; Jan, C.R. The mechanism of sertraline-induced [Ca(2+) ](i) rise in human PC3 prostate cancer cells. Basic Clin. Pharmacol. Toxicol., 2011, 109(2), 103-110.
[http://dx.doi.org/10.1111/j.1742-7843.2011.00690.x] [PMID: 21371263]
[190]
Saha, K.B.; Bo, L.; Zhao, S.; Xia, J.; Sampson, S.; Zaman, R.U. Chlorpromazine versus atypical antipsychotic drugs for schizophrenia. Cochrane Database Syst. Rev., 2016, 4CD010631
[http://dx.doi.org/10.1002/14651858.CD010631.pub2] [PMID: 27045703]
[191]
López-Muñoz, F.; Alamo, C.; Cuenca, E.; Shen, W.W.; Clervoy, P.; Rubio, G. History of the discovery and clinical introduction of chlorpromazine. Ann. Clin. Psychiatry, 2005, 17(3), 113-135.
[http://dx.doi.org/10.1080/10401230591002002] [PMID: 16433053]
[192]
Dudley, K.; Liu, X.; De Haan, S. Chlorpromazine dose for people with schizophrenia. Cochrane Database Syst. Rev., 2017, 4CD007778
[http://dx.doi.org/10.1002/14651858.CD007778.pub2]] [PMID: 28407198]
[193]
Leucht, C.; Kitzmantel, M.; Chua, L.; Kane, J.; Leucht, S. Haloperidol versus chlorpromazine for schizophrenia. Cochrane Database Syst. Rev., 2008, 1(1)CD004278
[http://dx.doi.org/10.1002/14651858.CD004278.pub2]] [PMID: 18254045]
[194]
Baumeister, A.A. The chlorpromazine enigma. J. Hist. Neurosci., 2013, 22(1), 14-29.
[http://dx.doi.org/10.1080/0964704X.2012.664087] [PMID: 23323529]
[195]
Howanitz, E.; Pardo, M.; Smelson, D.A.; Engelhart, C.; Eisenstein, N.; Stern, R.G.; Losonczy, M.F. The efficacy and safety of clozapine versus chlorpromazine in geriatric schizophrenia. J. Clin. Psychiatry, 1999, 60(1), 41-44.
[http://dx.doi.org/10.4088/JCP.v60n0109] [PMID: 10074877]
[196]
Shin, S.Y.; Kim, C.G.; Kim, S.H.; Kim, Y.S.; Lim, Y.; Lee, Y.H. Chlorpromazine activates p21Waf1/Cip1 gene transcription via early growth response-1 (Egr-1) in C6 glioma cells. Exp. Mol. Med., 2010, 42(5), 395-405.
[http://dx.doi.org/10.3858/emm.2010.42.5.041] [PMID: 20368687]
[197]
Shin, S.Y.; Lee, K.S.; Choi, Y.K.; Lim, H.J.; Lee, H.G.; Lim, Y.; Lee, Y.H. The antipsychotic agent chlorpromazine induces autophagic cell death by inhibiting the Akt/mTOR pathway in human U-87MG glioma cells. Carcinogenesis, 2013, 34(9), 2080-2089.
[http://dx.doi.org/10.1093/carcin/bgt169] [PMID: 23689352]
[198]
Oliva, C.R.; Zhang, W.; Langford, C.; Suto, M.J.; Griguer, C.E. Repositioning chlorpromazine for treating chemoresistant glioma through the inhibition of cytochrome C oxidase bearing the COX4-1 regulatory subunit. Oncotarget, 2017, 8(23), 37568-37583.
[http://dx.doi.org/10.18632/oncotarget.17247] [PMID: 28455961]
[199]
Chen, M.H.; Yang, W.L.; Lin, K.T.; Liu, C.H.; Liu, Y.W.; Huang, K.W.; Chang, P.M.; Lai, J.M.; Hsu, C.N.; Chao, K.M.; Kao, C.Y.; Huang, C.Y. Gene expression-based chemical genomics identifies potential therapeutic drugs in hepatocellular carcinoma. PLoS One, 2011, 6(11)e27186
[http://dx.doi.org/10.1371/journal.pone.0027186] [PMID: 22087264]
[200]
Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.P.; Subramanian, A.; Ross, K.N.; Reich, M.; Hieronymus, H.; Wei, G.; Armstrong, S.A.; Haggarty, S.J.; Clemons, P.A.; Wei, R.; Carr, S.A.; Lander, E.S.; Golub, T.R. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 2006, 313(5795), 1929-1935.
[http://dx.doi.org/10.1126/science.1132939] [PMID: 17008526]
[201]
Wiklund, E.D.; Catts, V.S.; Catts, S.V.; Ng, T.F.; Whitaker, N.J.; Brown, A.J.; Lutze-Mann, L.H. Cytotoxic effects of antipsychotic drugs implicate cholesterol homeostasis as a novel chemotherapeutic target. Int. J. Cancer, 2010, 126(1), 28-40.
[http://dx.doi.org/10.1002/ijc.24813] [PMID: 19662652]
[202]
Yde, C.W.; Clausen, M.P.; Bennetzen, M.V.; Lykkesfeldt, A.E.; Mouritsen, O.G.; Guerra, B. The antipsychotic drug chlorpromazine enhances the cytotoxic effect of tamoxifen in tamoxifen-sensitive and tamoxifen-resistant human breast cancer cells. Anticancer Drugs, 2009, 20(8), 723-735.
[http://dx.doi.org/10.1097/CAD.0b013e32832ec041] [PMID: 19584708]
[203]
Van Woert, M.H.; Palmer, S.H. Inhibition of the growth of mouse melanoma by chlorpromazine. Cancer Res., 1969, 29(11), 1952-1955.
[PMID: 4982549]
[204]
Jones, G.R.N.; Frohn, M.J.N. An injurious effect of chlorpromazine in the murine S180 sarcoma (var. CB) and its relevance to cancer treatment. Biochem. Soc. Trans., 1984, 12, 679-680.
[http://dx.doi.org/10.1042/bst0120679]
[205]
Akiyama, S.; Shiraishi, N.; Kuratomi, Y.; Nakagawa, M.; Kuwano, M. Circumvention of multiple-drug resistance in human cancer cells by thioridazine, trifluoperazine, and chlorpromazine. J. Natl. Cancer Inst., 1986, 76(5), 839-844.
[PMID: 3457971]
[206]
Lialiaris, T.S.; Papachristou, F.; Mourelatos, C.; Simopoulou, M. Antineoplastic and cytogenetic effects of chlorpromazine on human lymphocytes in vitro and on Ehrlich ascites tumor cells in vivo. Anticancer Drugs, 2009, 20(8), 746-751.
[http://dx.doi.org/10.1097/CAD.0b013e32832f567b] [PMID: 19584706]
[207]
Hait, W.N.; Lazo, J.S.; Chen, D.L.; Gallichio, V.S.; Filderman, A.E. Antitumor and toxic effects of combination chemotherapy with bleomycin and a phenothiazine anticalmodulin agent. J. Natl. Cancer Inst., 1988, 80(4), 246-250.
[http://dx.doi.org/10.1093/jnci/80.4.246] [PMID: 2451030]
[208]
Lee, M.S.; Johansen, L.; Zhang, Y.; Wilson, A.; Keegan, M.; Avery, W.; Elliott, P.; Borisy, A.A.; Keith, C.T. The novel combination of chlorpromazine and pentamidine exerts synergistic antiproliferative effects through dual mitotic action. Cancer Res., 2007, 67(23), 11359-11367.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2235] [PMID: 18056463]
[209]
Pinder, R.M.; Brogden, R.N.; Swayer, R.; Speight, T.M.; Spencer, R.; Avery, G.S. Pimozide: a review of its pharmacological properties and therapeutic uses in psychiatry. Drugs, 1976, 12(1), 1-40.
[http://dx.doi.org/10.2165/00003495-197612010-00001] [PMID: 824116]
[210]
Tueth, M.J.; Cheong, J.A. Clinical uses of pimozide. South. Med. J., 1993, 86(3), 344-349.
[http://dx.doi.org/10.1097/00007611-199303000-00019] [PMID: 8451677]
[211]
Naguy, A. Pimozide: an old wine in a new bottle! Indian J. Psychol. Med., 2017, 39(3), 382-383.
[http://dx.doi.org/10.4103/IJPSYM.IJPSYM_400_16] [PMID: 28615787]
[212]
Gonçalves, J.M.; Silva, C.A.B.; Rivero, E.R.C.; Cordeiro, M.M.R. Inhibition of cancer stem cells promoted by Pimozide. Clin. Exp. Pharmacol. Physiol., 2019, 46(2), 116-125.
[http://dx.doi.org/10.1111/1440-1681.13049] [PMID: 30383889]
[213]
Dakir, E.H.; Pickard, A.; Srivastava, K.; McCrudden, C.M.; Gross, S.R.; Lloyd, S.; Zhang, S.D.; Margariti, A.; Morgan, R.; Rudland, P.S.; El-Tanani, M. The anti-psychotic drug pimozide is a novel chemotherapeutic for breast cancer. Oncotarget, 2018, 9(79), 34889-34910.
[http://dx.doi.org/10.18632/oncotarget.26175] [PMID: 30405882]
[214]
Shaw, V.; Srivastava, S.; Srivastava, S.K. Repurposing antipsychotics of the diphenylbutylpiperidine class for cancer therapy. Semin. Cancer Biol., 2021, 68, 75-83.
[http://dx.doi.org/10.1016/j.semcancer.2019.10.007] [PMID: 31618686]
[215]
Weissenrieder, J.S.; Reed, J.L.; Green, M.V.; Moldovan, G.L.; Koubek, E.J.; Neighbors, J.D.; Hohl, R.J. The dopamine D2 receptor contributes to the spheroid formation behavior of U87 glioblastoma cells. Pharmacology, 2020, 105(1-2), 19-27.
[http://dx.doi.org/10.1159/000502562] [PMID: 31645049]
[216]
Xu, X.; Li, S.; Cui, X.; Han, K.; Wang, J.; Hou, X.; Cui, L.; He, S.; Xiao, J.; Yang, Y. Inhibition of ubiquitin specific protease 1 sensitizes colorectal cancer cells to DNA-damaging chemotherapeutics. Front. Oncol., 2019, 9, 1406.
[http://dx.doi.org/10.3389/fonc.2019.01406] [PMID: 31921663]
[217]
Dees, S.; Pontiggia, L.; Jasmin, J.F.; Mercier, I. Phosphorylated STAT3 (Tyr705) as a biomarker of response to pimozide treatment in triple-negative breast cancer. Cancer Biol. Ther., 2020, 21(6), 506-521.
[http://dx.doi.org/10.1080/15384047.2020.1726718] [PMID: 32164483]
[218]
Strobl, J.S.; Kirkwood, K.L.; Lantz, T.K.; Lewine, M.A.; Peterson, V.A.; Worley, J.F. III. Inhibition of human breast cancer cell proliferation in tissue culture by the neuroleptic agents pimozide and thioridazine. Cancer Res., 1990, 50(17), 5399-5405.
[PMID: 2386945M]
[219]
Strobl, J.S.; Peterson, V.A. Tamoxifen-resistant human breast cancer cell growth: inhibition by thioridazine, pimozide and the calmodulin antagonist, W-13. J. Pharmacol. Exp. Ther., 1992, 263(1), 186-193.
[PMID: 1403784]
[220]
Strobl, J.S.; Melkoumian, Z.; Peterson, V.A.; Hylton, H. The cell death response to gamma-radiation in MCF-7 cells is enhanced by a neuroleptic drug, pimozide. Breast Cancer Res. Treat., 1998, 51(1), 83-95.
[http://dx.doi.org/10.1023/A:1006046604062] [PMID: 9877031]
[221]
Lee, E.; Yong, R.L.; Paddison, P.; Zhu, J. Comparison of glioblastoma (GBM) molecular classification methods. Semin. Cancer Biol., 2018, 53, 201-211.
[http://dx.doi.org/10.1016/j.semcancer.2018.07.006] [PMID: 30031763]
[222]
Elmaci, I.; Altinoz, M.A. Targeting the cellular schizophrenia. Likely employment of the antipsychotic agent pimozide in treatment of refractory cancers and glioblastoma. Crit. Rev. Oncol. Hematol., 2018, 128, 96-109.
[http://dx.doi.org/10.1016/j.critrevonc.2018.06.004] [PMID: 29958636]
[223]
Sachdeva, R.; Wu, M.; Smiljanic, S.; Kaskun, O.; Ghannad-Zadeh, K.; Celebre, A.; Isaev, K.; Morrissy, A.S.; Guan, J.; Tong, J.; Chan, J.; Wilson, T.M.; Al-Omaishi, S.; Munoz, D.G.; Dirks, P.B.; Moran, M.F.; Taylor, M.D.; Reimand, J.; Das, S. ID1 is critical for tumorigenesis and regulates chemoresistance in glioblastoma. Cancer Res., 2019, 79(16), 4057-4071.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1357] [PMID: 31292163]
[224]
Perk, J.; Iavarone, A.; Benezra, R. Id family of helix-loop-helix proteins in cancer. Nat. Rev. Cancer, 2005, 5(8), 603-614.
[http://dx.doi.org/10.1038/nrc1673] [PMID: 16034366]
[225]
Liang, Q.; Dexheimer, T.S.; Zhang, P.; Rosenthal, A.S.; Villamil, M.A.; You, C.; Zhang, Q.; Chen, J.; Ott, C.A.; Sun, H.; Luci, D.K.; Yuan, B.; Simeonov, A.; Jadhav, A.; Xiao, H.; Wang, Y.; Maloney, D.J.; Zhuang, Z. A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses. Nat. Chem. Biol., 2014, 10(4), 298-304.
[http://dx.doi.org/10.1038/nchembio.1455] [PMID: 24531842]
[226]
Zhou, W.; Chen, M.K.; Yu, H.T.; Zhong, Z.H.; Cai, N.; Chen, G.Z.; Zhang, P.; Chen, J.J. The antipsychotic drug pimozide inhibits cell growth in prostate cancer through suppression of STAT3 activation. Int. J. Oncol., 2016, 48(1), 322-328.
[http://dx.doi.org/10.3892/ijo.2015.3229] [PMID: 26549437]
[227]
Kim, U.; Kim, C-Y.; Lee, J.M.; Ryu, B.; Kim, J.; Shin, C.; Park, J-H. Pimozide inhibits the human prostate cancer cells through the generation of reactive oxygen species. Front. Pharmacol., 2020, 10, 1517.
[http://dx.doi.org/10.3389/fphar.2019.01517] [PMID: 32009948]
[228]
Fako, V.; Yu, Z.; Henrich, C.J.; Ransom, T.; Budhu, A.S.; Wang, X.W. Inhibition of Wnt/β-catenin signaling in hepatocellular carcinoma by an antipsychotic drug pimozide. Int. J. Biol. Sci., 2016, 12(7), 768-775.
[http://dx.doi.org/10.7150/ijbs.14718] [PMID: 27313491]
[229]
Cai, N.; Zhou, W.; Ye, L-L.; Chen, J.; Liang, Q-N.; Chang, G.; Chen, J-J. The STAT3 inhibitor pimozide impedes cell proliferation and induces ROS generation in human osteosarcoma by suppressing catalase expression. Am. J. Transl. Res., 2017, 9(8), 3853-3866.
[PMID: 28861175]
[230]
Jia, H.; Ren, W.; Feng, Y.; Wei, T.; Guo, M.; Guo, J.; Zhao, J.; Song, X.; Wang, M.; Zhao, T.; Wang, H.; Feng, Z.; Tian, Z. The enhanced antitumour response of pimozide combined with the IDO inhibitor L MT in melanoma. Int. J. Oncol., 2018, 53(3), 949-960.
[http://dx.doi.org/10.3892/ijo.2018.4473] [PMID: 30015838]
[231]
Thanacoody, R.H. Thioridazine: the good and the bad. Recent Pat. Antiinfect. Drug Discov, 2011, 6(2), 92-98.
[http://dx.doi.org/10.2174/157489111796064588] [PMID: 21548877]
[232]
Sultana, A.; Reilly, J.; Fenton, M. Thioridazine for schizophrenia. Cochrane Database Syst. Rev., 2000, 3(3)CD001944
[http://dx.doi.org/10.1002/14651858.CD001944]] [PMID: 10908517]
[233]
Dean, L. Thioridazine therapy and CYP2D6 genotypes.In: Medical Genetics Summaries; Pratt, V.M.; McLeod, H.L.; Rubinstein, W.S.; Scott, S.A.; Dean, L.C.; Kattman, B.L.; Malheiro, A.J., Eds.; National Center for Biotechnology Information (US): Bethesda, MD, 2012..
[PMID: 28520378]
[234]
Serafin, M.B.; Bottega, A.; da Rosa, T.F.; Machado, C.S.; Foletto, V.S.; Coelho, S.S.; da Mota, A.D.; Hörner, R. Drug repositioning in oncology. Am. J. Ther., 2021, 28(1), e111-e117.
[http://dx.doi.org/10.1097/MJT.0000000000000906] [PMID: 31033488]
[235]
Yong, M.; Yu, T.; Tian, S.; Liu, S.; Xu, J.; Hu, J.; Hu, L. DR2 blocker thioridazine: a promising drug for ovarian cancer therapy. Oncol. Lett., 2017, 14(6), 8171-8177.
[http://dx.doi.org/10.3892/ol.2017.7184] [PMID: 29344260]
[236]
Yue, H.; Huang, D.; Qin, L.; Zheng, Z.; Hua, L.; Wang, G.; Huang, J.; Huang, H. Targeting lung cancer stem cells with antipsychological drug thioridazine. BioMed Res. Int., 2016.20166709828
[http://dx.doi.org/10.1155/2016/6709828] [PMID: 27556038]
[237]
Kang, S.; Dong, S.M.; Kim, B.R.; Park, M.S.; Trink, B.; Byun, H.J.; Rho, S.B. Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells. Apoptosis, 2012, 17(9), 989-997.
[http://dx.doi.org/10.1007/s10495-012-0717-2] [PMID: 22460505]
[238]
Rho, S.B.; Kim, B.R.; Kang, S. A gene signature-based approach identifies thioridazine as an inhibitor of phosphatidylinositol-3′-kinase (PI3K)/AKT pathway in ovarian cancer cells. Gynecol. Oncol., 2011, 120(1), 121-127.
[http://dx.doi.org/10.1016/j.ygyno.2010.10.003] [PMID: 21035837]
[239]
Qian, G.; Dai, L.; Yu, T. Thioridazine sensitizes cisplatin against chemoresistant human lung and ovary cancer cells. DNA Cell Biol., 2019, 38(7), 718-724.
[http://dx.doi.org/10.1089/dna.2019.4715] [PMID: 31188023]
[240]
Park, M.S.; Dong, S.M.; Kim, B.R.; Seo, S.H.; Kang, S.; Lee, E.J.; Lee, S.H.; Rho, S.B. Thioridazine inhibits angiogenesis and tumor growth by targeting the VEGFR-2/PI3K/mTOR pathway in ovarian cancer xenografts. Oncotarget, 2014, 5(13), 4929-4934.
[http://dx.doi.org/10.18632/oncotarget.2063] [PMID: 24952635]
[241]
Byun, H.J.; Lee, J.H.; Kim, B.R.; Kang, S.; Dong, S.M.; Park, M.S.; Lee, S.H.; Park, S.H.; Rho, S.B. Anti-angiogenic effects of thioridazine involving the FAK-mTOR pathway. Microvasc. Res., 2012, 84(3), 227-234.
[http://dx.doi.org/10.1016/j.mvr.2012.09.006] [PMID: 23022044]
[242]
Chu, C.W.; Ko, H.J.; Chou, C.H.; Cheng, T.S.; Cheng, H.W.; Liang, Y.H.; Lai, Y.L.; Lin, C.Y.; Wang, C.; Loh, J.K.; Cheng, J.T.; Chiou, S.J.; Su, C.L.; Huang, C.F.; Hong, Y.R. Thioridazine enhances P62-mediated autophagy and apoptosis through Wnt/β-catenin signaling pathway in glioma cells. Int. J. Mol. Sci., 2019, 20(3)E473
[http://dx.doi.org/10.3390/ijms20030473] [PMID: 30678307]
[243]
Sachlos, E.; Risueño, R.M.; Laronde, S.; Shapovalova, Z.; Lee, J.H.; Russell, J.; Malig, M.; McNicol, J.D.; Fiebig-Comyn, A.; Graham, M.; Levadoux-Martin, M.; Lee, J.B.; Giacomelli, A.O.; Hassell, J.A.; Fischer-Russell, D.; Trus, M.R.; Foley, R.; Leber, B.; Xenocostas, A.; Brown, E.D.; Collins, T.J.; Bhatia, M. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell, 2012, 149(6), 1284-1297.
[http://dx.doi.org/10.1016/j.cell.2012.03.049] [PMID: 22632761]
[244]
Batash, R.; Asna, N.; Schaffer, P.; Francis, N.; Schaffer, M. Glioblastoma multiforme, diagnosis and treatment; Recent literature review. Curr. Med. Chem., 2017, 24(27), 3002-3009.
[http://dx.doi.org/10.2174/0929867324666170516123206] [PMID: 28521700]
[245]
Johannessen, T.C.; Hasan-Olive, M.M.; Zhu, H.; Denisova, O.; Grudic, A.; Latif, M.A.; Saed, H.; Varughese, J.K.; Røsland, G.V.; Yang, N.; Sundstrøm, T.; Nordal, A.; Tronstad, K.J.; Wang, J.; Lund-Johansen, M.; Simonsen, A.; Janji, B.; Westermarck, J.; Bjerkvig, R.; Prestegarden, L. Thioridazine inhibits autophagy and sensitizes glioblastoma cells to temozolomide. Int. J. Cancer, 2019, 144(7), 1735-1745.
[http://dx.doi.org/10.1002/ijc.31912] [PMID: 30289977]
[246]
Cheng, H.W.; Liang, Y.H.; Kuo, Y.L.; Chuu, C.P.; Lin, C.Y.; Lee, M.H.; Wu, A.T.; Yeh, C.T.; Chen, E.I.; Whang-Peng, J.; Su, C.L.; Huang, C.Y. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis., 2015, 6(5)e1753
[http://dx.doi.org/10.1038/cddis.2015.77] [PMID: 25950483]
[247]
Zhao, Y.; Bao, Q.; Renner, A.; Camaj, P.; Eichhorn, M.; Ischenko, I.; Angele, M.; Kleespies, A.; Jauch, K.W.; Bruns, C. Cancer stem cells and angiogenesis. Int. J. Dev. Biol., 2011, 55(4-5), 477-482.
[http://dx.doi.org/10.1387/ijdb.103225yz] [PMID: 21732274]
[248]
Rich, J.N. Cancer stem cells in radiation resistance. Cancer Res., 2007, 67(19), 8980-8984.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0895] [PMID: 17908997]
[249]
Massard, C.; Deutsch, E.; Soria, J.C. Tumour stem cell-targeted treatment: elimination or differentiation. Ann. Oncol., 2006, 17(11), 1620-1624.
[http://dx.doi.org/10.1093/annonc/mdl074] [PMID: 16600978]
[250]
Shen, J.; Ma, B.; Zhang, X.; Sun, X.; Han, J.; Wang, Y.; Chu, L.; Xu, H.; Yang, Y. Thioridazine has potent antitumor effects on lung cancer stem-like cells. Oncol. Lett., 2017, 13(3), 1563-1568.
[http://dx.doi.org/10.3892/ol.2017.5651] [PMID: 28454291]
[251]
Torre, L.A.; Trabert, B.; DeSantis, C.E.; Miller, K.D.; Samimi, G.; Runowicz, C.D.; Gaudet, M.M.; Jemal, A.; Siegel, R.L. Ovarian cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(4), 284-296.
[http://dx.doi.org/10.3322/caac.21456] [PMID: 29809280]
[252]
Liu, J.K.; Hao, Y.J.; Huang, J.W.; Li, X.; Cai, H.B.; Peng, [Mechanism of thioridazine-induced apoptosis of human colorectal cancer SW480 cells]. Nan Fang Yi Ke Da Xue Xue Bao , 2015, 35(4), 511-515.
[PMID: 25907934]
[253]
Mu, J.; Xu, H.; Yang, Y.; Huang, W.; Xiao, J.; Li, M.; Tan, Z.; Ding, Q.; Zhang, L.; Lu, J.; Wu, X.; Liu, Y. Thioridazine, an antipsychotic drug, elicits potent antitumor effects in gastric cancer. Oncol. Rep., 2014, 31(5), 2107-2114.
[http://dx.doi.org/10.3892/or.2014.3068] [PMID: 24604290]
[254]
Tegowski, M.; Fan, C.; Baldwin, A.S. Thioridazine inhibits self-renewal in breast cancer cells via DRD2-dependent STAT3 inhibition, but induces a G1 arrest independent of DRD2. J. Biol. Chem., 2018, 293(41), 15977-15990.
[http://dx.doi.org/10.1074/jbc.RA118.003719] [PMID: 30131338]
[255]
Seo, S.U.; Cho, H.K.; Min, K.J.; Woo, S.M.; Kim, S.; Park, J.W.; Kim, S.H.; Choi, Y.H.; Keum, Y.S.; Hyun, J.W.; Park, H.H.; Lee, S.H.; Kim, D.E.; Kwon, T.K. Thioridazine enhances sensitivity to carboplatin in human head and neck cancer cells through downregulation of c-FLIP and Mcl-1 expression. Cell Death Dis., 2017, 8(2)e2599
[http://dx.doi.org/10.1038/cddis.2017.8] [PMID: 28182008]
[256]
Min, K.J.; Seo, B.R.; Bae, Y.C.; Yoo, Y.H.; Kwon, T.K. Antipsychotic agent thioridazine sensitizes renal carcinoma Caki cells to TRAIL-induced apoptosis through reactive oxygen species-mediated inhibition of Akt signaling and downregulation of Mcl-1 and c-FLIP(L). Cell Death Dis., 2014, 5(2)e1063
[http://dx.doi.org/10.1038/cddis.2014.35] [PMID: 24556678]
[257]
Meng, Q.; Sun, X.; Wang, J.; Wang, Y. [Mechanism of thioridazine plus medroxyprogesterone in the treatment of endometrial cancer]. Zhonghua Yi Xue Za Zhi i, 2015, 95(19), 1540-1543.
[PMID: 26178512]
[258]
Chen, T.; Hu, Y.; Liu, B.; Huang, X.; Li, Q.; Gao, N.; Jin, Z.; Jia, T.; Guo, D.; Jin, G. Combining thioridazine and loratadine for the treatment of gastrointestinal tumor. Oncol. Lett., 2017, 14(4), 4573-4580.
[http://dx.doi.org/10.3892/ol.2017.6815] [PMID: 29085455]
[259]
Seo, S.U.; Kim, T.H.; Kim, D.E.; Min, K.J.; Kwon, T.K. NOX4-mediated ROS production induces apoptotic cell death via down-regulation of c-FLIP and Mcl-1 expression in combined treatment with thioridazine and curcumin. Redox Biol., 2017, 13, 608-622.
[http://dx.doi.org/10.1016/j.redox.2017.07.017] [PMID: 28806703]
[260]
Ke, X.Y.; Lin Ng, V.W.; Gao, S.J.; Tong, Y.W.; Hedrick, J.L.; Yang, Y.Y. Co-delivery of thioridazine and doxorubicin using polymeric micelles for targeting both cancer cells and cancer stem cells. Biomaterials, 2014, 35(3), 1096-1108.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.049] [PMID: 24183698]
[261]
Jin, X.; Zou, B.; Luo, L.; Zhong, C.; Zhang, P.; Cheng, H.; Guo, Y.; Gou, M. Codelivery of thioridazine and doxorubicin using nanoparticles for effective breast cancer therapy. Int. J. Nanomedicine, 2016, 11, 4545-4552.
[http://dx.doi.org/10.2147/IJN.S104635] [PMID: 27660446]
[262]
Koch, K.; Mansi, K.; Haynes, E.; Adams, C.E.; Sampson, S.; Furtado, V.A. Trifluoperazine versus placebo for schizophrenia. Cochrane Database Syst. Rev., 2014, 2014(1)CD010226
[http://dx.doi.org/10.1002/14651858.CD010226.pub2]] [PMID: 24414883]
[263]
Marques, L.O.; Lima, M.S.; Soares, B.G. Trifluoperazine for schizophrenia. Cochrane Database Syst. Rev., 2004, 2004(1)CD003545
[http://dx.doi.org/10.1002/14651858.CD003545.pub2]] [PMID: 14974020]
[264]
Howland, R.H. Trifluoperazine: a sprightly old drug. J. Psychosoc. Nurs. Ment. Health Serv., 2016, 54(1), 20-22.
[http://dx.doi.org/10.3928/02793695-20151223-01] [PMID: 26760133]
[265]
Tardy, M.; Dold, M.; Engel, R.R.; Leucht, S. Trifluoperazine versus low-potency first-generation antipsychotic drugs for schizophrenia. Cochrane Database Syst. Rev., 2014, 7(7)CD009396
[http://dx.doi.org/10.1002/14651858.CD009396.pub2] [PMID: 25003310]
[266]
Kang, S.; Hong, J.; Lee, J.M.; Moon, H.E.; Jeon, B.; Choi, J.; Yoon, N.A.; Paek, S.H.; Roh, E.J.; Lee, C.J.; Kang, S.S. Trifluoperazine, a well-known antipsychotic, inhibits glioblastoma invasion by binding to calmodulin and disinhibiting calcium release channel IP3R. Mol. Cancer Ther., 2017, 16(1), 217-227.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0169-T] [PMID: 28062709]
[267]
Feng, Z.; Xia, Y.; Gao, T.; Xu, F.; Lei, Q.; Peng, C.; Yang, Y.; Xue, Q.; Hu, X.; Wang, Q.; Wang, R.; Ran, Z.; Zeng, Z.; Yang, N.; Xie, Z.; Yu, L. The antipsychotic agent trifluoperazine hydrochloride suppresses triple-negative breast cancer tumor growth and brain metastasis by inducing G0/G1 arrest and apoptosis. Cell Death Dis., 2018, 9(10), 1006.
[http://dx.doi.org/10.1038/s41419-018-1046-3] [PMID: 30258182]
[268]
Gao, Y.; Sun, T.Y.; Bai, W.F.; Bai, C.G. Design, synthesis and evaluation of novel phenothiazine derivatives as inhibitors of breast cancer stem cells. Eur. J. Med. Chem., 2019, 183111692
[http://dx.doi.org/10.1016/j.ejmech.2019.111692] [PMID: 31541872]
[269]
Goyette, M.A.; Cusseddu, R.; Elkholi, I.; Abu-Thuraia, A.; El-Hachem, N.; Haibe-Kains, B.; Gratton, J.P.; Côté, J.F. AXL knockdown gene signature reveals a drug repurposing opportunity for a class of antipsychotics to reduce growth and metastasis of triple-negative breast cancer. Oncotarget, 2019, 10(21), 2055-2067.
[http://dx.doi.org/10.18632/oncotarget.26725] [PMID: 31007848]
[270]
Pulkoski-Gross, A.; Li, J.; Zheng, C.; Li, Y.; Ouyang, N.; Rigas, B.; Zucker, S.; Cao, J. Repurposing the antipsychotic trifluoperazine as an antimetastasis agent. Mol. Pharmacol., 2015, 87(3), 501-512.
[http://dx.doi.org/10.1124/mol.114.096941] [PMID: 25552486]
[271]
Park, S.H.; Chung, Y.M.; Ma, J.; Yang, Q.; Berek, J.S.; Hu, M.C. Pharmacological activation of FOXO3 suppresses triple-negative breast cancer in vitro and in vivo. Oncotarget, 2016, 7(27), 42110-42125.
[http://dx.doi.org/10.18632/oncotarget.9881] [PMID: 27283899]
[272]
O’Sullivan, C.C.; Davarpanah, N.N.; Abraham, J.; Bates, S.E. Current challenges in the management of breast cancer brain metastases. Semin. Oncol., 2017, 44(2), 85-100.
[http://dx.doi.org/10.1053/j.seminoncol.2017.06.006] [PMID: 28923217]
[273]
Pinheiro, T.; Otrocka, M.; Seashore-Ludlow, B.; Rraklli, V.; Holmberg, J.; Forsberg-Nilsson, K.; Simon, A.; Kirkham, M. A chemical screen identifies trifluoperazine as an inhibitor of glioblastoma growth. Biochem. Biophys. Res. Commun., 2017, 494(3-4), 477-483.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.106] [PMID: 29066348]
[274]
Zhang, X.; Xu, R.; Zhang, C.; Xu, Y.; Han, M.; Huang, B.; Chen, A.; Qiu, C.; Thorsen, F.; Prestegarden, L.; Bjerkvig, R.; Wang, J.; Li, X. Trifluoperazine, a novel autophagy inhibitor, increases radiosensitivity in glioblastoma by impairing homologous recombination. J. Exp. Clin. Cancer Res., 2017, 36(1), 118.
[http://dx.doi.org/10.1186/s13046-017-0588-z] [PMID: 28870216]
[275]
Wen, Y.; Zhang, Y.; Li, J.; Luo, F.; Huang, Z.; Liu, K. Low concentration trifluoperazine promotes proliferation and reduces calcium-dependent apoptosis in glioma cells. Sci. Rep., 2018, 8(1), 1147.
[http://dx.doi.org/10.1038/s41598-018-19413-y] [PMID: 29348654]
[276]
Qian, K.; Sun, L.; Zhou, G.; Ge, H.; Meng, Y.; Li, J.; Li, X.; Fang, X. Trifluoperazine as an alternative strategy for the inhibition of tumor growth of colorectal cancer. J. Cell. Biochem., 2019, 120(9), 15756-15765.
[http://dx.doi.org/10.1002/jcb.28845] [PMID: 31081173]
[277]
Jiang, J.; Huang, Z.; Chen, X.; Luo, R.; Cai, H.; Wang, H.; Zhang, H.; Sun, T.; Zhang, Y. Trifluoperazine activates FOXO1-related signals to inhibit tumor growth in hepatocellular carcinoma. DNA Cell Biol., 2017, 36(10), 813-821.
[http://dx.doi.org/10.1089/dna.2017.3790] [PMID: 28876084]
[278]
Yeh, C.T.; Wu, A.T.; Chang, P.M.; Chen, K.Y.; Yang, C.N.; Yang, S.C.; Ho, C.C.; Chen, C.C.; Kuo, Y.L.; Lee, P.Y.; Liu, Y.W.; Yen, C.C.; Hsiao, M.; Lu, P.J.; Lai, J.M.; Wang, L.S.; Wu, C.H.; Chiou, J.F.; Yang, P.C.; Huang, C.Y. Trifluoperazine, an antipsychotic agent, inhibits cancer stem cell growth and overcomes drug resistance of lung cancer. Am. J. Respir. Crit. Care Med., 2012, 186(11), 1180-1188.
[http://dx.doi.org/10.1164/rccm.201207-1180OC] [PMID: 23024022]
[279]
Chen, Q.Y.; Wu, L.J.; Wu, Y.Q.; Lu, G.H.; Jiang, Z.Y.; Zhan, J.W.; Jie, Y.; Zhou, J.Y. Molecular mechanism of trifluoperazine induces apoptosis in human A549 lung adenocarcinoma cell lines. Mol. Med. Rep., 2009, 2(5), 811-817.
[http://dx.doi.org/10.3892/mmr_00000177] [PMID: 21475906]
[280]
Polischouk, A.G.; Holgersson, A.; Zong, D.; Stenerlöw, B.; Karlsson, H.L.; Möller, L.; Viktorsson, K.; Lewensohn, R. The antipsychotic drug trifluoperazine inhibits DNA repair and sensitizes non small cell lung carcinoma cells to DNA double-strand break induced cell death. Mol. Cancer Ther., 2007, 6(8), 2303-2309.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0402] [PMID: 17699725]
[281]
Perez, R.P.; Handel, L.M.; Hamilton, T.C. Potentiation of cisplatin cytotoxicity in human ovarian carcinoma cell lines by trifluoperazine, a calmodulin inhibitor. Gynecol. Oncol., 1992, 46(1), 82-87.
[http://dx.doi.org/10.1016/0090-8258(92)90201-S] [PMID: 1634144]
[282]
Naftalovich, S.; Yefenof, E.; Eilam, Y. Antitumor effects of ketoconazole and trifluoperazine in murine T-cell lymphomas. Cancer Chemother. Pharmacol., 1991, 28(5), 384-390.
[http://dx.doi.org/10.1007/BF00685694] [PMID: 1914083]
[283]
Kamath, N.; Grabowski, D.; Ford, J.; Ganapathi, R. Calmodulin inhibitor trifluoperazine in combination with doxorubicin induces the selection of tumour cells with the multidrug resistant phenotype. Br. J. Cancer, 1993, 67(6), 1203-1208.
[http://dx.doi.org/10.1038/bjc.1993.226] [PMID: 8099806]
[284]
Abad, A.; Masuti, B.; Camps, C.; Font, A.; Balañá, C.; Vicent, J.M.; Sánchez, J.J. Epirubicin plus a calmodulin inhibitor (trifluoperazine) activity in advanced pancreatic adenocarcinoma. Eur. J. Cancer, 1994, 30A(7), 1043.
[http://dx.doi.org/10.1016/0959-8049(94)90155-4] [PMID: 7946573]
[285]
Mørch, L.S.; Dehlendorff, C.; Baandrup, L.; Friis, S.; Kjaer, S.K. Use of antidepressants and risk of epithelial ovarian cancer. Int. J. Cancer, 2017, 141(11), 2197-2203.
[http://dx.doi.org/10.1002/ijc.30919] [PMID: 28791695]
[286]
Rahman, T.; Clevenger, C.V.; Kaklamani, V.; Lauriello, J.; Campbell, A.; Malwitz, K.; Kirkland, R.S. Antipsychotic treatment in breast cancer patients. Am. J. Psychiatry, 2014, 171(6), 616-621.
[http://dx.doi.org/10.1176/appi.ajp.2013.13050650] [PMID: 24880509]
[287]
Tworoger, S.S.; Hankinson, S.E. Prolactin and breast cancer risk. Cancer Lett., 2006, 243(2), 160-169.
[http://dx.doi.org/10.1016/j.canlet.2006.01.032] [PMID: 16530327]
[288]
Fond, G.; Macgregor, A.; Attal, J.; Larue, A.; Brittner, M.; Ducasse, D.; Capdevielle, D. Antipsychotic drugs: pro-cancer or anti-cancer? A systematic review. Med. Hypotheses, 2012, 79(1), 38-42.
[http://dx.doi.org/10.1016/j.mehy.2012.03.026] [PMID: 22543071]
[289]
Rajagopal, S. Clozapine, agranulocytosis, and benign ethnic neutropenia. Postgrad. Med. J., 2005, 81(959), 545-546.
[http://dx.doi.org/10.1136/pgmj.2004.031161] [PMID: 16143678]
[290]
Nielsen, J.; Boysen, A. Clozapine treatment associated with increased risk of acute myeloid leukemia (AML). Schizophr. Res., 2010, 123(2-3), 270-272.
[http://dx.doi.org/10.1016/j.schres.2010.08.035] [PMID: 20850952]
[291]
Miguel, C.; Albuquerque, E. Drug interaction in psycho-oncology: antidepressants and antineoplastics. Pharmacology, 2011, 88(5-6), 333-339.
[http://dx.doi.org/10.1159/000334738] [PMID: 22123153]
[292]
Kalash, G.R. Psychotropic drug metabolism in the cancer patient: clinical aspects of management of potential drug interactions. Psychooncology, 1998, 7(4), 307-320.
[http://dx.doi.org/10.1002/(SICI)1099-1611(199807/08)7: 4<307:AID-PON366>3.0.CO;2-3] [PMID: 9741070]
[293]
Ciraulo, D.A.; Shader, R.I.; Greenblatt, D.J.; Creelman, W.L. Drug Interactions in Psychiatry, 3rd ed; Lippincott Williams & Wilkins: Philadelphia, 2006.
[294]
Kelly, C.M.; Juurlink, D.N.; Gomes, T.; Duong-Hua, M.; Pritchard, K.I.; Austin, P.C.; Paszat, L.F. Selective serotonin reuptake inhibitors and breast cancer mortality in women receiving tamoxifen: a population based cohort study., BMJ, 2010, 340, c693.81..
[http://dx.doi.org/10.1136/bmj.c693 ] [PMID: 20142325]
[295]
Chubak, J.; Bowles, E.J.; Yu, O.; Buist, D.S.; Fujii, M.; Boudreau, D.M. Breast cancer recurrence in relation to antidepressant use. Cancer Causes Control, 2016, 27(1), 125-136.
[http://dx.doi.org/10.1007/s10552-015-0689-y] [PMID: 26518198]
[296]
Damodaran, S.E.; Pradhan, S.C.; Umamaheswaran, G.; Kadambari, D.; Reddy, K.S.; Adithan, C. Genetic polymorphisms of CYP2D6 increase the risk for recurrence of breast cancer in patients receiving tamoxifen as an adjuvant therapy. Cancer Chemother. Pharmacol., 2012, 70(1), 75-81.
[http://dx.doi.org/10.1007/s00280-012-1891-1] [PMID: 22623212]
[297]
Valachis, A.; Garmo, H.; Weinman, J.; Fredriksson, I.; Ahlgren, J.; Sund, M.; Holmberg, L. Effect of selective serotonin reuptake inhibitors use on endocrine therapy adherence and breast cancer mortality: a population-based study. Breast Cancer Res. Treat., 2016, 159(2), 293-303.
[http://dx.doi.org/10.1007/s10549-016-3928-3] [PMID: 27492739]
[298]
Haque, R.; Shi, J.; Schottinger, J.E.; Ahmed, S.A.; Cheetham, T.C.; Chung, J.; Avila, C.; Kleinman, K.; Habel, L.A.; Fletcher, S.W.; Kwan, M.L. Tamoxifen and antidepressant drug interaction in a cohort of 16,887 breast cancer survivors. J. Natl. Cancer Inst., 2015, 108(3)djv337
[http://dx.doi.org/10.1093/jnci/djv337] [PMID: 26631176]
[299]
Grond, S.; Sablotzki, A. Clinical pharmacology of tramadol. Clin. Pharmacokinet., 2004, 43(13), 879-923.
[http://dx.doi.org/10.2165/00003088-200443130-00004] [PMID: 15509185]
[300]
Yap, K.Y.; Ho, Y.X.; Chui, W.K.; Chan, A. Harnessing the internet cloud for managing drug interactions with chemotherapy regimens in patients with cancer suffering from depression. Acta Oncol., 2010, 49(8), 1235-1245.
[http://dx.doi.org/10.3109/02841861003801130] [PMID: 20515422]
[301]
Tomita, T.; Yasui-Furukori, N.; Nakagami, T.; Tsuchimine, S.; Ishioka, M.; Kaneda, A.; Nakamura, K.; Kaneko, S. Therapeutic reference range for plasma concentrations of paroxetine in patients with major depressive disorders. Ther. Drug Monit., 2014, 36(4), 480-485.
[http://dx.doi.org/10.1097/FTD.0000000000000036] [PMID: 25014076]
[302]
Voican, C.S.; Corruble, E.; Naveau, S.; Perlemuter, G. Antidepressant-induced liver injury: a review for clinicians. Am. J. Psychiatry, 2014, 171(4), 404-415.
[http://dx.doi.org/10.1176/appi.ajp.2013.13050709] [PMID: 24362450]
[303]
McIntyre, R.S.; Panjwani, Z.D.; Nguyen, H.T.; Woldeyohannes, H.O.; Alsuwaidan, M.; Soczynska, J.K.; Lourenco, M.T.; Konarski, J.Z.; Kennedy, S.H. The hepatic safety profile of duloxetine: a review. Expert Opin. Drug Metab. Toxicol., 2008, 4(3), 281-285.
[http://dx.doi.org/10.1517/17425255.4.3.281] [PMID: 18363543]
[304]
Leucht, S.; Corves, C.; Arbter, D.; Engel, R.R.; Li, C.; Davis, J.M. Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet, 2009, 373(9657), 31-41.
[http://dx.doi.org/10.1016/S0140-6736(08)61764-X] [PMID: 19058842]
[305]
Leucht, S.; Cipriani, A.; Spineli, L.; Mavridis, D.; Orey, D.; Richter, F.; Samara, M.; Barbui, C.; Engel, R.R.; Geddes, J.R.; Kissling, W.; Stapf, M.P.; Lässig, B.; Salanti, G.; Davis, J.M. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet, 2013, 382(9896), 951-962.
[http://dx.doi.org/10.1016/S0140-6736(13)60733-3] [PMID: 23810019]
[306]
Aslostovar, L.; Boyd, A.L.; Almakadi, M.; Collins, T.J.; Leong, D.P.; Tirona, R.G.; Kim, R.B.; Julian, J.A.; Xenocostas, A.; Leber, B.; Levine, M.N.; Foley, R.; Bhatia, M. A phase 1 trial evaluating thioridazine in combination with cytarabine in patients with acute myeloid leukemia. Blood Adv., 2018, 2(15), 1935-1945.
[http://dx.doi.org/10.1182/bloodadvances.2018015677] [PMID: 30093531]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy