Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Transfersomes: The Ultra-Deformable Carrier System for Non-Invasive Delivery of Drug

Author(s): Ritika Gupta* and Amrish Kumar

Volume 18, Issue 4, 2021

Published on: 03 August, 2020

Page: [408 - 420] Pages: 13

DOI: 10.2174/1567201817666200804105416

Price: $65

Abstract

Vesicular systems have many advantages like prolonging the existence of the drug in the systemic circulation, minimizing the undesirable side-effects and helping the active moieties to reach their target sites using the carriers. However, the main drawback related to transdermal delivery is to cross stratum corneum, which can be overcome by the utilization of novel carrier systems e.g., transfersomes, which are ultra-deformable carrier systems composed of phospholipid (phosphatidylcholine) and edge activators (surfactants). Edge activators are responsible for the flexibility of the bilayer membranes of transfersomes. Different edge activators used in transfersomes include tween, span, bile salts (sodium cholate and sodium deoxycholate) and dipotassium glycyrrhizinate. These activators decrease the interfacial tension, thereby, increasing the deformability of the carrier system. Transfersomes can encapsulate both hydrophilic and hydrophobic drugs into a vesicular structure, which consists of one or more concentric bilayers. Due to the elastic nature of transfersomes, they can easily cross the natural physiological barriers i.e., skin and deliver the drug to its active site. The main benefit of using transfersomes as a carrier is the delivery of macromolecules through the skin by non-invasive route thereby increasing the patient’s compliance. The transfersomal formulations can be used in the treatment of ocular diseases, alopecia, vulvovaginal candidiasis, osteoporosis, atopic dermatitis, tumor, leishmaniasis. It is also used in the delivery of growth hormones, anaesthesia, insulin, proteins, and herbal drugs. This review also focuses on the patents and clinical studies for various transfersomal products.

Keywords: Transfersomes, components, edge activators, applications, patents, clinical studies.

Graphical Abstract

[1]
El Maghraby, GM.; Arafa, M.F.; Essa, E.A. Vesicular nanostructures for transdermal delivery. Applicat. Nanocomposite Mat. Drug Deliv., 2018, 469-490.
[2]
Biju, S.S.; Talegaonkar, S.; Mishra, P.R.; Khar, R.K. Vesicular systems: an overview. Indian J. Pharm. Sci., 2006, 68, 141-153.
[http://dx.doi.org/10.4103/0250-474X.25707]
[3]
El Maghraby, G.M.; Williams, A.C. Vesicular systems for delivering conventional small organic molecules and larger macromolecules to and through human skin. Expert Opin. Drug Deliv., 2009, 6(2), 149-163.
[http://dx.doi.org/10.1517/17425240802691059] [PMID: 19239387]
[4]
Romero, EL.; Morilla, MJ. Ultradeformable phospholipid vesicles as a drug delivery system: a review. Res. Rep. Transdermal Drug Deliv., 2015, 4, 55-69.
[http://dx.doi.org/10.2147/RRTD.S50370]
[5]
Patel, R.B.; Parikh, R.H. Preparation and formulation of transferosomes containing an antifungal agent for transdermal delivery: application of Plackett-Burman design to identify significant factors influencing vesicle size. J. Pharm. Bioallied Sci., 2012, 4(Suppl. 1), S60-S61.
[http://dx.doi.org/10.4103/0975-7406.94140] [PMID: 23066209]
[6]
Garg, V.; Singh, H.; Bimbrawh, S.; Singh, S.K.; Gulati, M.; Vaidya, Y.; Kaur, P. Ethosomes and transfersomes: principles, perspectives and practices. Curr. Drug Deliv., 2017, 14(5), 613-633.
[http://dx.doi.org/10.2174/1567201813666160520114436] [PMID: 27199229]
[7]
Chaurasiya, P.; Ganju, E.; Upmanyu, N.; Ray, S.K.; Jain, P. Transfersomes: a novel technique for transdermal drug delivery. J. Drug Deliv. Ther., 2019, 9, 279-285.
[http://dx.doi.org/10.22270/jddt.v9i1.2198]
[8]
Khan, I.; Elhissi, A.; Shah, M.; Alhnan, M.A.; Ahmed, W. Liposome-based carrier systems and devices used for pulmonary drug delivery. Biomat. Med. Tribol., 2013, 395-443.
[http://dx.doi.org/10.1533/9780857092205.395]
[9]
Vinod, K.R.; Kumar, M.S.; Anbazhagan, S.; Sandhya, S.; Saikumar, P.; Rohit, R.T.; Banji, D. Critical issues related to transfersomes - novel vesicular system. Acta Sci. Pol. Technol. Aliment., 2012, 11(1), 67-82.
[PMID: 22230977]
[10]
Mouez, M.A.; Nasr, M.; Abdel-Mottaleb, M.; Geneidi, A.S.; Mansour, S. Composite chitosan-transfersomal vesicles for improved transnasal permeation and bioavailability of verapamil. Int. J. Biol. Macromol., 2016, 93(Pt A), 591-599.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.027] [PMID: 27620464]
[11]
Ananthapadmanabhan, K.P.; Yu, K.K.; Meyers, C.L.; Aronson, M.P. Binding of surfactants to stratum corneum. J. Soc. Cosmet. Chem., 1996, 47, 185-200.
[12]
Walters, K.A.; Bialik, W.; Brain, K.R. The effects of surfactants on penetration across the skin. Int. J. Cosmet. Sci., 1993, 15(6), 260-271.
[http://dx.doi.org/10.1111/j.1467-2494.1993.tb00572.x] [PMID: 19281616]
[13]
Subuddhi, U.; Mishra, A.K. Micellization of bile salts in aqueous medium: a fluorescence study. Colloids Surf. B Biointerfaces, 2007, 57(1), 102-107.
[http://dx.doi.org/10.1016/j.colsurfb.2007.01.009] [PMID: 17336505]
[14]
Benson, H.A. Transfersomes for transdermal drug delivery. Expert Opin. Drug Deliv., 2006, 3(6), 727-737.
[http://dx.doi.org/10.1517/17425247.3.6.727] [PMID: 17076595]
[15]
Cirin, D.M.; Posa, M.M.; Krstonosic, V.S. Interactions between sodium cholate or sodium deoxycholate and nonionic surfactant (Tween 20 or Tween 60) in aqueous solution. Ind. Eng. Chem. Res., 2012, 51, 3670-3676.
[http://dx.doi.org/10.1021/ie202373z]
[16]
Jain, S.; Jain, P.; Umamaheshwari, R.B.; Jain, N.K. Transfersomes-a novel vesicular carrier for enhanced transdermal delivery: development, characterization, and performance evaluation. Drug Dev. Ind. Pharm., 2003, 29(9), 1013-1026.
[http://dx.doi.org/10.1081/DDC-120025458] [PMID: 14606665]
[17]
Lu, D.; Rhodes, D.G. Mixed composition films of spans and tween 80 at the air-water interface. Langmuir, 2000, 16, 8107-8112.
[http://dx.doi.org/10.1021/la000396s]
[18]
Ahad, A.; Aqil, M.; Kohli, K.; Sultana, Y.; Mujeeb, M.; Ali, A. Formulation and optimization of nanotransfersomes using experimental design technique for accentuated transdermal delivery of valsartan. Nanomedicine (Lond.), 2012, 8(2), 237-249.
[http://dx.doi.org/10.1016/j.nano.2011.06.004] [PMID: 21704600]
[19]
Tamagaki, S.; Koide, M.; Takahashi, M.; Mizushima, T.; Ukawa, J.; Tagaki, W. Inhibitory effects of cyclodextrins by inclusion on the catalytic activity of glycyrrhizinate for the hydrolysis of a nonionic ester surfactant. J. Chem. Soc., Perkin Trans. 2, 1996, 6, 1257-1260.
[http://dx.doi.org/10.1039/p29960001257]
[20]
Trotta, M.; Peira, E.; Debernardi, F.; Gallarate, M. Elastic liposomes for skin delivery of dipotassium glycyrrhizinate. Int. J. Pharm., 2002, 241(2), 319-327.
[http://dx.doi.org/10.1016/S0378-5173(02)00266-1] [PMID: 12100859]
[21]
Moawad, F.A.; Ali, A.A.; Salem, H.F. Nanotransfersomes-loaded thermosensitive in situ gel as a rectal delivery system of tizanidine HCl: preparation, in vitro and in vivo performance. Drug Deliv., 2017, 24(1), 252-260.
[http://dx.doi.org/10.1080/10717544.2016.1245369] [PMID: 28156169]
[22]
El Zaafarany, G.M.; Awad, G.A.; Holayel, S.M.; Mortada, N.D. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int. J. Pharm., 2010, 397(1-2), 164-172.
[http://dx.doi.org/10.1016/j.ijpharm.2010.06.034] [PMID: 20599487]
[23]
Lee, E.H.; Kim, A.; Oh, Y.K.; Kim, C.K. Effect of edge activators on the formation and transfection efficiency of ultradeformable liposomes. Biomaterials, 2005, 26(2), 205-210.
[http://dx.doi.org/10.1016/j.biomaterials.2004.02.020] [PMID: 15207467]
[24]
Omar, M.M.; Hasan, O.A.; El Sisi, A.M. Preparation and optimization of lidocaine transferosomal gel containing permeation enhancers: a promising approach for enhancement of skin permeation. Int. J. Nanomedicine, 2019, 14, 1551-1562.
[http://dx.doi.org/10.2147/IJN.S201356] [PMID: 30880964]
[25]
Gregor, C. Preparation for the application of agents in mini droplets. U.S. Patent 00616500A, December 26;2000
[26]
Singh, D. Ultradeformable system: a carrier for transdermal drug delivery. Int. J. Pharma Sci., 2013, 4, 4098.
[27]
Batzri, S.; Korn, E.D. Single bilayer liposomes prepared without sonication. Biochim. Biophys. Acta, 1973, 298(4), 1015-1019.
[http://dx.doi.org/10.1016/0005-2736(73)90408-2] [PMID: 4738145]
[28]
Raahulan, S.; Sanapalli, B.K.; Pindiprolu, S.K.; Karri, V.V. Transfersome vs liposomes as drug delivery vehicle for the treatment of skin cancers. Int. J. Pharm. Sci. Rev. Res., 2019, 10, 1795-1807.
[29]
Tiwari, G.; Tiwari, R.; Singh, R.; Rai, A.K. Ultra-deformable liposomes as flexible nanovesicular carrier to penetrate versatile drugs transdermally. Nanosci. Nanotechnol. Asia, 2020, 10, 12-20.
[http://dx.doi.org/10.2174/2210681208666180820145327]
[30]
Varun, G.; Singh, H.; Bimbrawh, S.; Singh, S.K.; Gulati, M.; Vaidya, Y.; Kaur, P. Ethosomes and transferosomes: principles, perspectives and practices. Curr. Drug Deliv., 2016, 13, 1-21.
[31]
Bhardwaj, V.; Shukla, V.; Singh, A.; Malviya, R.; Sharma, P.K. Transfersomes ultra flexible vesicles for transdermal delivery. Int. J. Pharma Sci., 2010, 1, 12-20.
[32]
Cristiano, M.C.; Froiio, F.; Spaccapelo, R.; Mancuso, A.; Nisticò, S.P.; Udongo, B.P.; Fresta, M.; Paolino, D. Sulforaphane-loaded ultradeformable vesicles as a potential natural nanomedicine for the treatment of skin cancer diseases. Pharmaceutics, 2019, 12(1), 1-13.
[http://dx.doi.org/10.3390/pharmaceutics12010006] [PMID: 31861672]
[33]
Ali, M.; Byrne, M.E. Challenges and solutions in topical ocular drug-delivery systems. Expert Rev. Clin. Pharmacol., 2008, 1(1), 145-161.
[http://dx.doi.org/10.1586/17512433.1.1.145] [PMID: 24410518]
[34]
Basha, M.; Abd El-Alim, S.H.; Shamma, R.N.; Awad, G.E. Design and optimization of surfactant-based nanovesicles for ocular delivery of Clotrimazole. J. Liposome Res., 2013, 23(3), 203-210.
[http://dx.doi.org/10.3109/08982104.2013.788025] [PMID: 23607316]
[35]
Janga, K.Y.; Tatke, A.; Dudhipala, N.; Balguri, S.P.; Ibrahim, M.M.; Maria, D.N.; Jablonski, M.M.; Majumdar, S. Gellan gum based sol-to-gel transforming system of natamycin transfersomes improves topical ocular delivery. J. Pharmacol. Exp. Ther., 2019, 370(3), 814-822.
[http://dx.doi.org/10.1124/jpet.119.256446] [PMID: 30872389]
[36]
Shipton, E.A. Advances in delivery systems and routes for local anaesthetics. Trends Anaesthesia Critical Care, 2012, 2, 228-233.
[http://dx.doi.org/10.1016/j.tacc.2012.07.004]
[37]
Bnyan, R.; Khan, I.; Ehtezazi, T.; Saleem, I.; Gordon, S.; O’Neill, F.; Roberts, M. Formulation and optimisation of novel transfersomes for sustained release of local anaesthetic. J. Pharm. Pharmacol., 2019, 71(10), 1508-1519.
[http://dx.doi.org/10.1111/jphp.13149] [PMID: 31373700]
[38]
Varothai, S.; Bergfeld, W.F. Androgenetic alopecia: an evidence-based treatment update. Am. J. Clin. Dermatol., 2014, 15(3), 217-230.
[http://dx.doi.org/10.1007/s40257-014-0077-5] [PMID: 24848508]
[39]
Ahmed, O.A.; Rizq, W.Y. Finasteride nano-transferosomal gel formula for management of androgenetic alopecia: ex vivo investigational approach. Drug Des. Devel. Ther., 2018, 12, 2259-2265.
[http://dx.doi.org/10.2147/DDDT.S171888] [PMID: 30104862]
[40]
Ramezani, V.; Honarvar, M.; Seyedabadi, M.; Karimollah, A.; Ranjbar, A.M.; Hashemi, M. Formulation and optimization of transfersome containing minoxidil and caffeine. J. Drug Deliv. Sci. Technol., 2018, 44, 129-135.
[http://dx.doi.org/10.1016/j.jddst.2017.12.003]
[41]
Andrews, J. Vulvovaginal disease: an evidence-based approach to medical management. J. Clin. Outcomes Manag., 2009, 16, 281-293.
[42]
Sobel, J.D.; Faro, S.; Force, R.W.; Foxman, B.; Ledger, W.J.; Nyirjesy, P.R.; Reed, B.D.; Summers, P.R. Vulvovaginal candidiasis: epidemiologic, diagnostic, and therapeutic considerations. Am. J. Obstet. Gynecol., 1998, 178(2), 203-211.
[http://dx.doi.org/10.1016/S0002-9378(98)80001-X] [PMID: 9500475]
[43]
Vanić, Ž.; Hurler, J.; Ferderber, K.; Golja Gašparović, P.; Škalko-Basnet, N.; Filipović-Grčić, J. Novel vaginal drug delivery system: deformable propylene glycol liposomes-in-hydrogel. J. Liposome Res., 2014, 24(1), 27-36.
[http://dx.doi.org/10.3109/08982104.2013.826242] [PMID: 23931627]
[44]
Singh, S.; Verma, D.; Mirza, M.A.; Das, A.K.; Anwer, M.K.; Sultana, Y.; Talegaonkar, S.; Iqbal, Z. Development and optimization of ketoconazole loaded nano-transfersomal gel for vaginal delivery using Box-Behnken design: in vitro, ex vivo characterization and antimicrobial evaluation. J. Drug Deliv. Sci. Technol., 2017, 39, 95-103.
[http://dx.doi.org/10.1016/j.jddst.2017.03.007]
[45]
Brixen, K.; Abrahamsen, B.; Kassem, M. Prevention and treatment of osteoporosis in women. Curr. Obstet. Gynaecol., 2005, 15, 251-258.
[http://dx.doi.org/10.1016/j.curobgyn.2005.05.003]
[46]
Lee, W.L.; Chao, H.T.; Cheng, M.H.; Wang, P.H. Rationale for using raloxifene to prevent both osteoporosis and breast cancer in postmenopausal women. Maturitas, 2008, 60(2), 92-107.
[http://dx.doi.org/10.1016/j.maturitas.2008.04.009] [PMID: 18534794]
[47]
Pandit, A.P.; Omase, S.B.; Mute, V.M. A chitosan film containing quercetin-loaded transfersomes for treatment of secondary osteoporosis. Drug Deliv Transl Res., 2020, 1-12.
[http://dx.doi.org/10.1007/s13346-020-00708-5]
[48]
Joshi, A.; Kaur, J.; Kulkarni, R.; Chaudhari, R. In-vitro and ex- vivo evaluation of raloxifene hydrochloride delivery using nano- transfersome based formulations. J. Drug Deliv. Sci. Technol., 2018, 45, 151-158.
[http://dx.doi.org/10.1016/j.jddst.2018.02.006]
[49]
Waheed, A.; Aqil, M.; Ahad, A.; Imam, S.S.; Moolakkadath, T.; Iqbal, Z.; Ali, A. Improved bioavailability of raloxifene hydrochloride using limonene containing transdermal nano-sized vesicles. J. Drug Deliv. Sci. Technol., 2019, 52, 468-476.
[http://dx.doi.org/10.1016/j.jddst.2019.05.019]
[50]
Cevc, G. Transdermal drug delivery of insulin with ultradeformable carriers. Clin. Pharmacokinet., 2003, 42(5), 461-474.
[http://dx.doi.org/10.2165/00003088-200342050-00004] [PMID: 12739984]
[51]
Owens, D.R.; Zinman, B.; Bolli, G. Alternative routes of insulin delivery. Diabet. Med., 2003, 20(11), 886-898.
[http://dx.doi.org/10.1046/j.1464-5491.2003.01076.x] [PMID: 14632713]
[52]
Baghban Taraghdari, Z.; Imani, R.; Mohabatpour, F. A review on bioengineering approaches to insulin delivery: a pharmaceutical and engineering perspective. Macromol. Biosci., 2019, 19(4), e1800458.
[http://dx.doi.org/10.1002/mabi.201800458] [PMID: 30614193]
[53]
Malakar, J.; Sen, S.O.; Nayak, A.K.; Sen, K.K. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm. J., 2012, 20(4), 355-363.
[http://dx.doi.org/10.1016/j.jsps.2012.02.001] [PMID: 23960810]
[54]
Ruiz, S.; Bernad Bernad, M.J.; Arellano, R.L.; Torres, R.D.; Del Carmen, C.C.; Estrada, D.V. In vitro and in vivo profiles and characterization of insulin nanocarriers based in flexible liposomes designed for oral administration. Lett. Drug Des. Discov., 2019, 16, 948-960.
[http://dx.doi.org/10.2174/1570180816666190110112929]
[55]
Brown, S.; Reynolds, N.J. Clinical review article: atopic and non-atopic eczema and its management. J. Clin. Invest., 2004, 113, 651-657.
[56]
Lei, W.; Yu, C.; Lin, H.; Zhou, X. Development of tacrolimus-loaded transfersomes for deeper skin penetration enhancement and therapeutic effect improvement in vivo. Asian J. Pharm. Sci., 2013, 8, 336-345.
[http://dx.doi.org/10.1016/j.ajps.2013.09.005]
[57]
Chauhan, S.; Gulati, N.; Nagaich, U. Fabrication and evaluation of ultra deformable vesicles for atopic dermatitis as topical delivery. Int. J. Polym. Mater., 2019, 68, 266-277.
[http://dx.doi.org/10.1080/00914037.2018.1443932]
[58]
Ibaraki, H.; Kanazawa, T.; Kurano, T.; Oogi, C.; Takashima, Y.; Seta, Y. Anti-rela sirna-encapsulated flexible liposome with tight junction-opening peptide as a non-invasive topical therapeutic for atopic dermatitis. Biol. Pharm. Bull., 2019, 42(7), 1216-1225.
[http://dx.doi.org/10.1248/bpb.b19-00259] [PMID: 31257297]
[59]
Dao, L.N.; Lippe, B.; Laird, M.; Beierle, I. Human growth hormone. Pharm. Biotechnol., 2019, 437-449.
[60]
Azimi, M.; Khodabandeh, M.; Deezagi, A.; Rahimi, F. Impact of the transfersome delivered human growth hormone on the dermal fibroblast cells. Curr. Pharm. Biotechnol., 2019, 20, 1194-1202.
[http://dx.doi.org/10.2174/1389201020666190809120333]
[61]
Kateh-Shamshiri, M.; Momtazi-Borojeni, A.A.; Khodabandeh Shahraky, M.; Rahimi, F. Lecithin soybean phospholipid nano- transfersomes as potential carriers for transdermal delivery of the human growth hormone. J. Cell. Biochem., 2019, 120(6), 9023-9033.
[http://dx.doi.org/10.1002/jcb.28176] [PMID: 30506803]
[62]
Oladipo, A.O.; Oluwafemi, O.S.; Songca, S.P.; Sukhbaatar, A.; Mori, S.; Okajima, J.; Komiya, A.; Maruyama, S.; Kodama, T. A novel treatment for metastatic lymph nodes using lymphatic delivery and photothermal therapy. Sci. Rep., 2017, 7, 45459.
[http://dx.doi.org/10.1038/srep45459] [PMID: 28368042]
[63]
Kong, M.; Hou, L.; Wang, J.; Feng, C.; Liu, Y.; Cheng, X.; Chen, X. Enhanced transdermal lymphatic drug delivery of hyaluronic acid modified transfersomes for tumor metastasis therapy. Chem. Commun. (Camb.), 2015, 51(8), 1453-1456.
[http://dx.doi.org/10.1039/C4CC08746A] [PMID: 25493296]
[64]
Yang, H.; Wu, X.; Zhou, Z.; Chen, X.; Kong, M. Enhanced transdermal lymphatic delivery of doxorubicin via hyaluronic acid based transfersomes/microneedle complex for tumor metastasis therapy. Int. J. Biol. Macromol., 2019, 125, 9-16.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.230] [PMID: 30500513]
[65]
Wu, X.; Li, Y.; Chen, X.; Zhou, Z.; Pang, J.; Luo, X.; Kong, M. A surface charge dependent enhanced Th1 antigen-specific immune response in lymph nodes by transfersome-based nanovaccine-loaded dissolving microneedle-assisted transdermal immunization. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(31), 4854-4866.
[http://dx.doi.org/10.1039/C9TB00448C] [PMID: 31389952]
[66]
Gungor, S.; Erdal, M.S. Nanocarriers of antifungal agents. In: Recent Trends Antifungal Agents Antifungal Therapy; , 2016; pp. 175-190.
[67]
Qushawy, M.; Nasr, A.; Abd-Alhaseeb, M.; Swidan, S. Design, optimization and characterization of a transfersomal gel using miconazole nitrate for the treatment of candida skin infections. Pharmaceutics, 2018, 10(1), 1-22.
[http://dx.doi.org/10.3390/pharmaceutics10010026] [PMID: 29473897]
[68]
David, C.V.; Craft, N. Cutaneous and mucocutaneous leishmaniasis. Dermatol. Ther., 2009, 22(6), 491-502.
[http://dx.doi.org/10.1111/j.1529-8019.2009.01272.x] [PMID: 19889134]
[69]
Bavarsad, N.; Fazly-Bazzaz, B.S.; Khamesipour, A.; Jaafari, M.R. Colloidal, in vitro and in vivo anti-leishmanial properties of transfersomes containing paromomycin sulfate in susceptible BALB/c mice. Acta Trop., 2012, 124(1), 33-41.
[http://dx.doi.org/10.1016/j.actatropica.2012.06.004] [PMID: 22750480]
[70]
Dar, M.J.; Din, F.U.; Khan, G.M. Sodium stibogluconate loaded nano-deformable liposomes for topical treatment of leishmaniasis: macrophage as a target cell. Drug Deliv., 2018, 25(1), 1595-1606.
[http://dx.doi.org/10.1080/10717544.2018.1494222] [PMID: 30105918]
[71]
Marwah, M.; Perrie, Y.; Badhan, R.K.; Lowry, D. Intracellular uptake of EGCG-loaded deformable controlled release liposomes for skin cancer. J. Liposome Res., 2019, 7, 1-42.
[PMID: 31010367]
[72]
Chauhan, P.; Tyagi, B.K. Herbal novel drug delivery systems and transfersomes. J. Drug Deliv. Ther., 2018, 8, 162-168.
[http://dx.doi.org/10.22270/jddt.v8i3.1772]
[73]
Sarwa, K.K.; Mazumder, B.; Rudrapal, M.; Verma, V.K. Potential of capsaicin-loaded transfersomes in arthritic rats. Drug Deliv., 2015, 22(5), 638-646.
[http://dx.doi.org/10.3109/10717544.2013.871601] [PMID: 24471764]
[74]
Rauf, A.; Imran, M.; Butt, M.S.; Nadeem, M.; Peters, D.G.; Mubarak, M.S. Resveratrol as an anti-cancer agent: a review. Crit. Rev. Food Sci. Nutr., 2018, 58(9), 1428-1447.
[http://dx.doi.org/10.1080/10408398.2016.1263597] [PMID: 28001084]
[75]
Wu, P.S.; Li, Y.S.; Kuo, Y.C.; Tsai, S.J.J.; Lin, C.C. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol. Molecules., 2019, 24, 1-12.7.
[http://dx.doi.org/10.3390/molecules24030600]
[76]
Verma, S.; Utreja, P. Vesicular nanocarrier based treatment of skin fungal infections: potential and emerging trends in nanoscale pharmacotherapy. Asian J. Pharm. Sci., 2019, 14(2), 117-129.
[http://dx.doi.org/10.1016/j.ajps.2018.05.007] [PMID: 32104444]
[77]
Wolf, R.G.; William, H. Vesicles. W02015014965A1, May 2, ;2015
[78]
Gregor, C. Preparation for the application of agents in mini-droplets. Google patents CA2067754A1, July 5, ;2000
[79]
Gregor, C. Formulation for topical non-invasive application in- vivo. U.S. Patent 7175850 B2, 2007.
[80]
Pankaj, M. Stabilized and solubilized drug formulation for topical application and transidermal efficacy for cosmetic improvement and methods of formulation. U.S. Patent 20150157728A1, 2015.
[81]
Gregor, C.; Amla, Chopra. Non-invasive vaccination through skin. U.S. Patent 7867480 B1, 2011.
[82]
Henry, William.; Henk Andre, Linda. Methods of reducing the proliferation and viability of microbial agents. W2010090654 A1, 2010.
[83]
Gregor, C.; Holger, Richardsen.; Andrea Weiland, Waibel. Method for the improvement of transport across adaptable semi-permeable barriers. U.S. Patent 7591949 B2, 2009.
[84]
Nicholas, V. Perricone. Topical drug delivery using phosphatidylcholine. U.S. Patent 20060105955 A1, 2006.
[85]
Gregor, C. Prparation for the transport of an active substance across barriers. U.S. Patent 20020048596 A1, 2002.
[86]
Gregor, C.; Ulrich, Vierl. NSAID formulations, based on highly adaptable aggregates, for improved transport through barriers and topical drug delivery. U.S. Patent 20040071767A1, 2004.
[87]
Gregory, H. Polynucleotide agents targeting Insulin-like Growth Factor binding protein, acid labile subunit (IGFALS) and method of use thereof. WO2017172356 A1, 2017.
[88]
Letizia, M.M.; Maria, M.; Anna, M. Phospholipid three-dimensional vesicular aggregates scattered in alcoholic mixtures with no or low water content, their preparation and use in formulations for topical application. EP3381517A1, 2018.
[89]
Kevin, Fitzgerald; Gregory, Hinkle. Serum Amyloid P Component (APCS) iRNA compositions and methods of use thereof. WO2019100039 A1, 2019.
[90]
Sigurgeirsson, B.; Ghannoum, M. Therapeutic potential of TDT 067 (terbinafine in Transfersome): a carrier-based dosage form of terbinafine for onychomycosis. Expert Opin. Investig. Drugs, 2012, 21(10), 1549-1562.
[http://dx.doi.org/10.1517/13543784.2012.711315] [PMID: 22876754]
[91]
Fesq, H.; Lehmann, J.; Kontny, A.; Erdmann, I.; Theiling, K.; Rother, M.; Ring, J.; Cevc, G.; Abeck, D. Improved risk-benefit ratio for topical triamcinolone acetonide in Transfersome in comparison with equipotent cream and ointment: a randomized controlled trial. Br. J. Dermatol., 2003, 149(3), 611-619.
[http://dx.doi.org/10.1046/j.1365-2133.2003.05475.x] [PMID: 14510997]
[92]
Seidel, E.J.; Rother, M.; Regenspurger, K.; Rother, I. A randomised trial comparing the efficacy and safety of topical ketoprofen in Transfersome(®) gel (IDEA-033) with oral ketoprofen and drug-free ultra-deformable SequessomeTM vesicles (TDT 064) for the treatment of muscle soreness following exercise. J. Sports Sci., 2016, 34(1), 88-95.
[http://dx.doi.org/10.1080/02640414.2015.1035667] [PMID: 25893979]
[93]
Conaghan, P.G.; Bijlsma, J.W.; Kneer, W.; Wise, E.; Kvien, T.K.; Rother, M. Drug-free gel containing ultra-deformable phospholipid vesicles (TDT 064) as topical therapy for the treatment of pain associated with osteoarthritis: a review of clinical efficacy and safety. Curr. Med. Res. Opin., 2014, 30(4), 599-611.
[http://dx.doi.org/10.1185/03007995.2013.860018] [PMID: 24164189]
[94]
Multiple-dose, randomized, subject and observer blinded, placebo-controlled, double-dummy study of epicutaneously applied ketoprofen transfersome® gel with or without combination with oral celecoxib for the treatment of muscle pain induced by eccentric exercise. NCT01020279, 2019. https://clinicaltrials.gov/ct2/show/NCT01020279#studydesc
[95]
Rother, M.; Conaghan, P.G. A randomized, double-blind, phase III trial in moderate osteoarthritis knee pain comparing topical ketoprofen gel with ketoprofen-free gel. J. Rheumatol., 2013, 40(10), 1742-1748.
[http://dx.doi.org/10.3899/jrheum.130192] [PMID: 23996292]
[96]
Questions and answers on the withdrawal of the marketing application for Diracti. Euro. Med. Agency, 2008. https://www.ema.europa.eu/en/documents/medicine-qa/questions-answers-withdrawal- marketing-application-diractin_en.pdf [23/12/19].

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy