Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

General Review Article

Green Chemistry and Green Solvents: An Overview

Author(s): Barla Karuna Devi*, Swathi Naraparaju, Chaganti Soujanya and Sayan Dutta Gupta

Volume 7, Issue 3, 2020

Page: [314 - 325] Pages: 12

DOI: 10.2174/2213346107999200709132815

Price: $65

Abstract

Green chemistry emphasizes designing novel routes to overcome health and environmental problems that occur during a chemical reaction. Green solvents are used in place of conventional solvents that are hazardous to both human and the environment. Solvents like water, ionic liquids, supercritical CO2, biosolvents, organic carbonates, and deep eutectic mixtures can be used as green solvents. The review focuses on the properties, applications, and limitations of these solvents.

Keywords: Green chemistry, green solvents, biosolvents, ionic solvents, supercritical fluid, deep eutectic mixtures.

Graphical Abstract

[1]
Himaja, M.; Poppy, D.; Asif, K. Green technique- solvent free synthesis and its advantages. Int. J. Res. Ayurveda Pharm., 2011, 2(4), 1079-1086.
[2]
Abdussalam, M.W.; Qasem, A.; Errayes, A.O. Review article green chemistry : Principles, applications, and disadvantages. Chem. Methodol., 2020, 4, 408-423.
[http://dx.doi.org/10.33945/SAMI/CHEMM.2020.4.4]
[3]
Anastas, P.T.; Warner, J.C. Green Chemistry Theory and Practice; Oxford university, 1998.
[4]
Anastas, P.T. Green chemistry as applied to solvents. Clean Solv., 2002, 4, 1-9.
[5]
Capello, C.; Fisher, U.; Hungerbutyhler, K. What is a green solvent? a comprehensive frame work for environmental assessment of solvents. Green Chem., 2007, 9, 927-934.
[http://dx.doi.org/10.1039/b617536h]
[6]
Nelson, W.M. Green Solvents for Chemistry: Perspectives and Practice; Oxford university, 2003.
[7]
Massimiliano, L.; Andrea, M.; Guido, G.; Lucia, T. Sonochemistry in non-conventional, green solvents or solvent –free reactions. Tetrahedron, 2017, 73, 609-653.
[http://dx.doi.org/10.1016/j.tet.2016.12.014]
[8]
Zimmerman, J.B.; Anastas, P.T.; Erythropel, H.C.; Leitner, W. Designing for a green chemistry future. Science, 2020, 367(6476), 397-400.
[http://dx.doi.org/10.1126/science.aay3060] [PMID: 31974246]
[9]
Jiang, S.; Ladewig, B.P. Green synthesis of polymeric membranes: Recent advances and future prospects. Curr. Opin. Green Sustain. Chem., 2020, 21, 1-8.
[http://dx.doi.org/10.1016/j.cogsc.2019.07.002]
[10]
Melnikov, F.; Kostal, J.; Kostal, V.; Zimmermam, J.B.; Anastas, P.T. Assessment of predictive models for estimating acute aquatic toxicity of organic chemicals. Green Chem., 2016, 18, 4432-4445.
[http://dx.doi.org/10.1039/C6GC00720A]
[11]
Hiren, M.; Kaumil, N.M.; Dhrubo, J.S. Greener reactions under solvent free conditions. Int. J. Drug Dev. Res., 2011, 3(2), 42-51.
[12]
James, H. Clark.; Stewart, J. Alternative solvents: shades of green. Org. Process Res. Dev., 2007, 11, 149-155.
[http://dx.doi.org/10.1021/op060160g]
[13]
Folic, M.; Gani, R.; Jimenez-Gonzalez, C.; Constable, D.J.C. Systematic selection of green solvents for organic reacting systems. Chin. J. Chem. Eng., 2008, 16(3), 376-383.
[http://dx.doi.org/10.1016/S1004-9541(08)60092-0]
[14]
Welton, T. Solvents and sustainable chemistry: a mathematical, physical and engineering sciences. Proc. R. Soc., 2015, pp. 471-2183.
[15]
Tobiszewski, M.; Namieśnik, J. Scoring of solvents used in analytical laboratories by their toxicological and exposure hazards. Ecotoxicol. Environ. Saf., 2015, 120, 169-173.
[http://dx.doi.org/10.1016/j.ecoenv.2015.05.043] [PMID: 26074309]
[16]
Ramos, L.; Kristenson, E.M.; Brinkman, U.A. Current use of pressurised liquid extraction and subcritical water extraction in envi-ronmental analysis. J. Chromatogr. A, 2002, 975(1), 3-29.
[http://dx.doi.org/10.1016/S0021-9673(02)01336-5] [PMID: 12458746]
[17]
Brunner, G. Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. J. Supercrit. Fluids, 2009, 47, 373-381.
[http://dx.doi.org/10.1016/j.supflu.2008.09.002]
[18]
Brunner, G. Hydrothermal and supercritical water properties.Supercritical fluid science and technology series; Kiran, E., Ed.; Elsevier, 2014, Vol. 5, pp. 65-86.
[19]
Kartharina, H.; Werner, K. Some aspects of green solvents. C. R. Chim., 2018, 21, 572-580.
[http://dx.doi.org/10.1016/j.crci.2018.03.010]
[20]
Hikaru, Y.; Akio, S.; Takeo, T. Intramolecular Diels –Alder reaction of 1,7,9 dectrienoates catalyzed by indium (III) trifluromethane sulfonate in aqueous medium. Tetrahedron, 2005, 61, 7087-7093.
[http://dx.doi.org/10.1016/j.tet.2005.05.062]
[21]
Sartori, G.; Ballini, R.; Bigi, F.; Bosica, G.; Maggi, R.; Righi, P. Protection (and deprotection) of functional groups in organic synthesis by heterogeneous catalysis. Chem. Rev., 2004, 104(1), 199-250.
[http://dx.doi.org/10.1021/cr0200769] [PMID: 14719975]
[22]
Dambacher, J.; Zhao, W.; Batta, A.; Anness, R.; Jiang, C.; Bergdahl, M. Water is an efficient medium for Wittig reactions employing stabilized ylides and aldehydes. Tetrahedron Lett., 2005, 46(26), 4473-4477.
[http://dx.doi.org/10.1016/j.tetlet.2005.04.105]
[23]
Kobayashi, S.; Hamada, T.; Manabe, K. The catalytic asymmetric Mannich-type reactions in aqueous media. J. Am. Chem. Soc., 2002, 124(20), 5640-5641.
[http://dx.doi.org/10.1021/ja026094p] [PMID: 12010028]
[24]
Hamada, T.; Manabe, K.; Kobayashi, S. Enantio- and diastereoselective, stereospecific mannich-type reactions in water. J. Am. Chem. Soc., 2004, 126(25), 7768-7769.
[http://dx.doi.org/10.1021/ja048607t] [PMID: 15212511]
[25]
Botella, L.; Nájera, C. Mono- and β, β-double-Heck reactions of α,β-unsaturated carbonyl compounds in aqueous media. J. Org. Chem., 2005, 70(11), 4360-4369.
[http://dx.doi.org/10.1021/jo0502551] [PMID: 15903312]
[26]
Guillaume, S.; Gerald, E.; Gwenaelle, H.; Christophe, L. Highly effective synthesis of C-5-substituted 2′ –Deoxyuridine using Suzuki-Miyaura cross- coupling in water. Synthesis, 2012, 44, 767-772.
[http://dx.doi.org/10.1055/s-0031-1289709]
[27]
Decottignies, A.; Fihri, A.; Azemar, G.; Djedaini-Pilard, F.; Len, C. Ligandless Suzuki-Miyaura reaction in neat water with or without native β-cyclodextrin as additive. Catal. Commun., 2013, 32, 101-107.
[http://dx.doi.org/10.1016/j.catcom.2012.12.004]
[28]
Gallagher-Duval, S.; Herve, G.; Sartori, G.; Enderlin, G.; Len, C. Improved microwave-assisted ligand-free Suzuki-Miyaura cross-coupling of 5-iodo-2′-deoxyuridine in pure water. New J. Chem., 2013, 37(7), 1989-1995.
[http://dx.doi.org/10.1039/c3nj00174a]
[29]
Herve, G.; Sartori, G.; Enderlin, G.; MacKenzie, G.; Len, C. Palladium-catalyzed Suzuki reaction in aqueous solvents applied to unprotected nucleosides and nucleotides. RSC Advances, 2014, 4(36), 18558-18594.
[http://dx.doi.org/10.1039/C3RA47911K]
[30]
Lussier, T.; Herve, G.; Enderlin, G.; Len, C. Original access to 5-aryluracils from 5-iodo-2′-deoxyuridine via a microwave assisted Suzuki-Miyaura cross-coupling/deglycosylation sequence in pure water. RSC Advances, 2014, 4(86), 46218-46223.
[http://dx.doi.org/10.1039/C4RA04814H]
[31]
Shanab, K.; Neudorefr, C.; Schirmer, E.; Spreitzer, H. Green solvents in organic synthesis: an overview. Curr. Org. Chem., 2013, 17, 1179-1187.
[http://dx.doi.org/10.2174/1385272811317110005]
[32]
Mortiniz, C.A.; Hu, S.; Drumond, Y.; Tao, J.; Kelleher, P.; Tully, L. Development of a chemoenzymatic manufacturing process of pregabalin. Org. Process Res. Dev., 2008, 12, 392-398.
[http://dx.doi.org/10.1021/op7002248]
[33]
Yamada, H.; Kobayashi, M. Nitrile hydratase and its application to industrial production of acrylamide. Biosci. Biotechnol. Biochem., 1996, 60(9), 1391-1400.
[http://dx.doi.org/10.1271/bbb.60.1391] [PMID: 8987584]
[34]
Stahmann, K.P.; Revuelta, J.L.; Seulberger, H. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl. Microbiol. Biotechnol., 2000, 53(5), 509-516.
[http://dx.doi.org/10.1007/s002530051649] [PMID: 10855708]
[35]
Maria, C.; Maria, L.; Merichel, P. Water as green extraction solvent: principles and reasons for its uses. Curr. Opin. Green Sustain. Chem., 2017, 5, 31-36.
[http://dx.doi.org/10.1016/j.cogsc.2017.03.009]
[36]
Galy, N.; Nguyen, R.; Yalgin, H.; Thiebault, N.; Luart, D.; Len, C. Glycerol in subcritical and supercritical solvents. J. Chem. Tech. Biotec., 2017, 92(1), 14-26.
[http://dx.doi.org/10.1002/jctb.5101]
[37]
Buhler, W.; Dinjus, E.; Ederer, H.J.; Kruse, A.; Mas, C. Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near and supercritical H2O. J. Supercrit. Fluids, 2002, 22, 37-53.
[http://dx.doi.org/10.1016/S0896-8446(01)00105-X]
[38]
Ramayya, S.; Brittian, A.; De Almeida, C.; Mok, W.; Antal, J. Acid catalyzed dehydration of alcohol in supercritical H2O. Fuel, 1987, 66, 1364-1371.
[http://dx.doi.org/10.1016/0016-2361(87)90183-9]
[39]
Watanabe, M.; Iida, T.; Aizawa, Y.; Aida, T.M.; Inomata, H. Acrolein synthesis from glycerol in hot-compressed water. Bioresour. Technol., 2007, 98(6), 1285-1290.
[http://dx.doi.org/10.1016/j.biortech.2006.05.007] [PMID: 16797980]
[40]
Yamaguchi, A.; Hiyoshi, N.; Sato, O.; Rade, C.V.; Shirai, M. Enhancement of glycerol conversion to Acetol in high temperature liquid by high pressure CO2. Chem. Lett., 2008, 37, 926-927.
[http://dx.doi.org/10.1246/cl.2008.926]
[41]
Yamaguchi, A.; Hiyoshi, N.; Sato, O.; Rade, C.V.; Shirai, M. Dehydration of triol comounds in high temperature liquids H2O under high pressure CO2. Top. Catal., 2010, 53, 487-491.
[http://dx.doi.org/10.1007/s11244-010-9476-x]
[42]
Kishida, H.; Jin, F.; Zhou, Z.; Moriya, T.; Enomoto, H. Conversion of glycerin into lactic acid by alkaline hydrothermal reaction. Chem. Lett., 2005, 34, 1560-1561.
[http://dx.doi.org/10.1246/cl.2005.1560]
[43]
Zhang, Y.L.; Zhong, M.; Shen, Z.; Zhou, J.F.; Zhou, X.F. Formation of formic acid from glycerin using a Hydrothermal reaction. J. Chem. Technol. Biotechnol., 2013, 88, 829-833.
[http://dx.doi.org/10.1002/jctb.3908]
[44]
Yuan, Z.; Wang, J.; Wang, L.; Xie, W.; Chen, P.; Hou, Z.; Zheng, X. Biodiesel derived glycerol hydrogenolysis to 1, 2-proponol on Cu and Mgo catalyst. Bioresour. Technol., 2010, 101, 7088-7092.
[http://dx.doi.org/10.1016/j.biortech.2010.04.016]
[45]
Bibi, S.; Yasin, T.; Hassan, S.; Riaz, M.; Nawaz, M. Chitosan/CNTs green nanocomposite membrane: synthesis, swelling and polyaromatic hydrocarbons removal. Mater. Sci. Eng. C, 2015, 46, 359-365.
[http://dx.doi.org/10.1016/j.msec.2014.10.057] [PMID: 25491998]
[46]
He, L.; Zhang, X.; Xu, H.; Xu, C.; Yuan, F.; Knez, Z.; Novak, Z.; Gao, Y. Subcritical water extraction of phenolic compounds from pomegranate (Punica granatum L.) seed residues and investigation into their antioxidant activities with HPLC-ABTS + assay. Food Bioprod. Process., 2012, 90(2), 215-223.
[http://dx.doi.org/10.1016/j.fbp.2011.03.003]
[47]
Naffati, A.; Vladic, J.; Pavlic, B.; Radosavljevic, R.; Gavaric, A.; Vidovic, S. Recycling of filter tea industry by-products: application of subcritical water extraction for recovery of bioactive compounds from A. uva-ursi herbal dust. J. Supercrit. Fluids, 2017, 121, 1-9.
[http://dx.doi.org/10.1016/j.supflu.2016.11.010]
[48]
Pedras, B.; Salema-Oom, M.; Nogueira, I.; Simoes, P.; Paiva, A.; Barreiros, S. Valorization of white wine grape pomace through application of subcritical water: analysis of extraction, hydrolysis, and biological activity of the extracts obtained. J. Supercrit. Fluids, 2017, 128, 138-144.
[http://dx.doi.org/10.1016/j.supflu.2017.05.020]
[49]
Xu, H.; Wang, W.; Liu, X.; Yuan, F.; Gao, Y. Antioxidative phenolics obtained from spent coffee grounds (Coffea arabica L.) by subcritical water extraction. Ind. Crops Prod., 2015, 76, 946-954.
[http://dx.doi.org/10.1016/j.indcrop.2015.07.054]
[50]
Ozel, M.Z.; Gogus, F.; Lewis, A.C. Subcritical water extraction of essential oils from Thymbra spicata. Food Chem., 2003, 82, 381-386.
[http://dx.doi.org/10.1016/S0308-8146(02)00558-7]
[51]
Khajenoori, M.; Haghighi, A.; Asl, A.; Noori Bidgoli, H. Subcritical water extraction of essential oils from Matricaria chamomilla L. Int. J. Eng. Trans. B: Appl., 2013, 26, 489-494.
[http://dx.doi.org/10.5829/idosi.ije.2013.26.05b.04]
[52]
Kubatova, A.; Lagadec, A.J.M.; Miller, D.J.; Hawthorne, S.B. Selective extraction of oxygenates from savory and peppermint using subcritical water. Flav. Frag. J., 2001, 16, 64-73.
[http://dx.doi.org/10.1002/1099-1026(200101/02)16:1<64:AID-FFJ949>3.0.CO;2-D]
[53]
Norsyabilah, R.; Hanim, S.S.; Norsuhaila, M.H.; Noraishah, A.K.; Siti, K. Subcritical water extraction of monosaccharides from oil palm fronds hemicelluloses. Malays. J. Anal. Sci., 2013, 17, 272-275.
[54]
Matsunaga, Y.; Machmudah, S.; Wahyudiono, K.H.; Sasaki, M.; Goto, M. Subcritical water extraction and direct formation of microparticulate polysaccharide powders from Ganoderma lucidum. Int. J. Tech., 2014, 1, 1-11.
[http://dx.doi.org/10.14716/ijtech.v5i1.152]
[55]
Wang, X.; Chen, Q.; Lu, X. Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocoll., 2014, 38, 129-137.
[http://dx.doi.org/10.1016/j.foodhyd.2013.12.003]
[56]
Tadrent, S.; Luart, D.; Bals, O.; Khelfa, A.; Luque, R.; Len, C. Metal-free reduction of nitrobenzene to aniline in subcritical water. J. Org. Chem., 2018, 83(14), 7431-7437.
[http://dx.doi.org/10.1021/acs.joc.8b00406] [PMID: 29888915]
[57]
Zhen, Y.; Wubin, P. Ionic Liquids: green solvents for non-aqueous bio catalysis. Enzyme Microb. Technol., 2005, 37, 19-28.
[http://dx.doi.org/10.1016/j.enzmictec.2005.02.014]
[58]
Marty, N.; Earle, J.; Kenneth, R. Ionic Liquids: green solvents for the future. Pure Appl. Chem., 2000, 72(7), 1391-1398.
[http://dx.doi.org/10.1351/pac200072071391]
[59]
Priya, A.T.; Bassy, B.M. Room temperature ionic liquids as green solvents alternative in the metathesis of oleochemical feed stocks. Molecules, 2016, 21, 184.
[http://dx.doi.org/10.3390/molecules21020184]
[60]
Chancelier, L.; Diallo, A.O.; Santini, C.C.; Marlair, G.; Gutel, T.; Mailley, S.; Len, C. Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage. Phys. Chem. Chem. Phys., 2014, 16(5), 1967-1976.
[http://dx.doi.org/10.1039/C3CP54225D] [PMID: 24336832]
[61]
Cull, S.G.; Holbley, J.D.; Vargas, V.; Seddon, K.R.; Lye, G.J. Room temperrature ionic liquids as replacement for organic solvents in multiphase bioprocess operations. Biotechnol. Bioeng., 2000, 69, 227-233.
[62]
Martyn, J.; Paul, S.; Seddon, R. Diels-Alder reactions in ionic liquids.a safe recyclable alternative to lithium perchlorate diethyether mixture. Green Chem., 1999, 1, 23-25.
[63]
Fisher, T.; Sethi, A.; Welton, T.; Woolf, J. Diels- Alder reaction in room-temperature ionic liquids. Tetrahedron Lett., 1999, 40, 793-795.
[http://dx.doi.org/10.1016/S0040-4039(98)02415-0]
[64]
Carmichael, A.J.; Earle, M.J.; Holfrey, J.D.; Seddon, K.R.; McCormoc, P.B. The Heck reaction in ionic liquids. A Multiphaisc Catalyst System. Org. Lett., 1999, 1, 997-999.
[http://dx.doi.org/10.1021/ol9907771]
[65]
Christopher, J.; Martyn, J.; Seddon, R. Catalytic cracking reactions of polyethylene to light alkanes in ionic liquids. Green Chem., 2000, 2, 21-24.
[http://dx.doi.org/10.1039/a908167d]
[66]
Catarina, I.; Rafal, B.L.; Manuel, N.; Ewa, B.L. Ammonium ionic liquids as green solvents for drugs. Fluid Phase Equilib., 2013, 338, 209-216.
[http://dx.doi.org/10.1016/j.fluid.2012.11.029]
[67]
Fockink, D.H.; Andreaus, J.; Ramos, L.P.; Łukasik, R.M. Pretreatment of cotton spinning residues for optimal enzymatic hydrolysis: a case study using green solvents. Renew. Energy, 2020, 145, 490-499.
[http://dx.doi.org/10.1016/j.renene.2019.06.042]
[68]
Abushammala, H.; Mao, J. A review on the partial and complete dissolution and fractionation of wood and lignocelluloses using im-idazolium ionic liquids. Polymers (Basel), 2020, 12(1), 195.
[http://dx.doi.org/10.3390/polym12010195] [PMID: 31940847]
[69]
Diallo, A.O.; Len, C.; Morgan, A.B.; Marlair, G. Revisiting physico-chemical hazards of ionic liquids. Separ. Purif. Tech., 2012, 97, 228-234.
[http://dx.doi.org/10.1016/j.seppur.2012.02.016]
[70]
Anouti, M.; Caillon-Caravanier, M.; Dridi, Y.; Galiano, H.; Lemordant, D. Synthesis and characterization of new pyrrolidinium based protic ionic liquids. Good and superionic liquids. J. Phys. Chem. B, 2008, 112(42), 13335-13343.
[http://dx.doi.org/10.1021/jp805992b] [PMID: 18826270]
[71]
Wellens, S.; Thijs, B.; Binnemans, K. How safe are protic ionic liquids? Explosion of pyrrolidinium nitrate. Green Chem., 2013, 15(12), 3484-3485.
[http://dx.doi.org/10.1039/c3gc41328d]
[72]
Conn, C.E.; Panchagnula, V.; Weerawardena, A.; Waddington, L.J.; Kennedy, D.F.; Drummond, C.J. Lanthanide phytanates: liquid-crystalline phase behavior, colloidal particle dispersions, and potential as medical imaging agents. Langmuir, 2010, 26(9), 6240-6249.
[http://dx.doi.org/10.1021/la904006q] [PMID: 20039652]
[73]
Schneider, S.; Hawkins, T.; Rosanaer, M.; Vaghjiani, G.; Chanbereu, S.; Drake, G. Ionic liquids as hypergolic fuels. Energy Fuels, 2008, 22, 2871-2872.
[http://dx.doi.org/10.1021/ef800286b]
[74]
Diallo, A.O.; Fayet, G.; Len, C.; Marlair, G. Evaluation of heats of combustion of ionic liquids through use of existing and purpose-built models. Ind. Eng. Chem. Res., 2012, 51(7), 3149-3156.
[http://dx.doi.org/10.1021/ie2023788]
[75]
Diallo, A.O.; Morgan, A.B.; Len, C.; Marlair, G. An innovative experimental approach aiming to understand and quantify the actual fire hazards of ionic liquids. Energy Environ. Sci., 2013, 6(3), 699-710.
[http://dx.doi.org/10.1039/c2ee23926d]
[76]
Bado-Nilles, A.; Diallo, A.O.; Marlair, G.; Pandard, P.; Chabot, L.; Geffard, A.; Len, C.; Porcher, J.M.; Sanchez, W. Coupling of OECD standardized test and immunomarkers to select the most environmentally benign ionic liquids option--towards an innovative “safety by design” approach. J. Hazard. Mater., 2015, 283, 202-210.
[http://dx.doi.org/10.1016/j.jhazmat.2014.09.023] [PMID: 25278158]
[77]
Abramenko, N.; Kustov, L.; Metelytsia, L.; Kovalishyn, V.; Tetko, I.; Peijnenburg, W. A review of recent advances towards the development of QSAR models for toxicity assessment of ionic liquids. J. Hazard. Mater., 2020.384121429
[http://dx.doi.org/10.1016/j.jhazmat.2019.121429] [PMID: 31732345]
[78]
Mohamed, R.S.; Saldana, M.D.A.; Mazzafera, P. Extraction of caffeine, theobromine, and cocoa butter from brazilian cocoa beans using supercritical CO2 and ethane. Ind. Eng. Chem. Res., 2002, 41, 6751-6758.
[http://dx.doi.org/10.1021/ie0203936]
[79]
Subra, P.; Castellani, S.; Jestin, P.; Aouf, A. Extraction of β-carotene with supercritical fluids: experiments and modelling. J. Supercrit. Fluids, 1998, 12, 261-269.
[http://dx.doi.org/10.1016/S0896-8446(98)00085-0]
[80]
Baysal, T.; Starmans, D.A.J. Supercritical carbon dioxide extraction of carvone and limonene from caraway seed. J. Supercrit. Fluids, 1999, 14, 225-234.
[http://dx.doi.org/10.1016/S0896-8446(98)00099-0]
[81]
Daood, H.G.; Illes, V.; Gnayfeed, M.H.; Meszaros, B.; Horvath, G.; Biacs, P.A. Extraction of pungent spice paprika by supercritical carbon dioxide and subcritical propane. J. Supercrit. Fluids, 2002, 23, 143-152.
[http://dx.doi.org/10.1016/S0896-8446(02)00022-0]
[82]
Cavero, S.; Garcίa-Risco, M.R.; Marίn, F.R.; Jaime, L.; Santoyo, S.; Senorans, F.J.; Reglero, G.; Ibanez, E. Supercritical fluid extraction of antioxidant compounds from oregano. Chemical and functional characterization via LC–MS and in vitro assays. J. Supercrit. Fluids, 2006, 38, 62-69.
[http://dx.doi.org/10.1016/j.supflu.2005.01.003]
[83]
Seabra, I.J.; Braga, M.E.M.; Batista, M.T.; Herminio, C.S. Effect of solvent (CO2/ethanol/H2O) on the fractionated enhanced solvent extraction of anthocyanins from elderberry pomace. J. Supercrit. Fluids, 2010, 54, 145-152.
[http://dx.doi.org/10.1016/j.supflu.2010.05.001]
[84]
Hu, Q.; Hu, Y.; Xu, J. Free radical-scavenging activity of Aloe vera (Aloe barbadensis Miller) extracts by supercritical carbon dioxide extraction. Food Chem., 2005, 91, 85-90.
[http://dx.doi.org/10.1016/j.foodchem.2004.05.052]
[85]
Golmakani, M.T.; Mendiola, J.A.; Rezaei, K. Greener solvents for old challenges.,
[86]
Blowers, P.; Titus, M. Use of life-cycle inventory as screening tool for environmental performance: supercritical carbondioxide as in the semiconductor industry. Environ. Prog., 2004, 23(4), 284-290.
[http://dx.doi.org/10.1002/ep.10047]
[87]
Shekunor, B.Y.; Edwards, A.D.; York, P. The Synchrotron Radiation Sources and annual ReportsHandbook of X-ray Spectrometry; Newyork, 1998, p. 67.
[88]
Pruthu, K. Organic solvents –health hazards. J. Chem. Pharm. Sci., 2014, 3, 83-86.
[89]
Maryline, V.; Cassandra, B.; Vernes, L. Chaabani. Green solvents for sample preparation in analytical chemistry. Curr. Opin. Green Sustain. Chem., 2017, 5, 44-48.
[http://dx.doi.org/10.1016/j.cogsc.2017.03.010]
[90]
Marek, T.; Jacek, N. Greener organic solvents in analytical chemistry. Curr. Opin. Green Sustain. Chem., 2017, 5, 1-4.
[http://dx.doi.org/10.1016/j.cogsc.2017.03.002]
[91]
Rasool, M.A.; Van Goethem, C.; Vankelecom, I.F.J. Green preparation process using methyl lactate for cellulose-acetate-based nanofiltration membranes. Separ. Purif. Tech., 2020, •••232115903
[http://dx.doi.org/10.1016/j.seppur.2019.115903]
[92]
Matthieu, B.; Pascale, M.; Sophie, T.; Marie, E. Green synthesis of bio based solvents. C. R. Chim., 2011, 14, 636-646.
[http://dx.doi.org/10.1016/j.crci.2010.07.008]
[93]
Inayat, A.; Van Assche, A.; Clark, J.H.; Farmer, T.J. Greening the esterification between isosorbide and acetic acid. Sustain. Chem. Pharm., 2018, 7, 41-49.
[http://dx.doi.org/10.1016/j.scp.2017.10.004]
[94]
Tundo, P.; Musolino, M.; Aricò, F. Dialkyl carbonates in green synthesis of heterocycles. Front Chem., 2019, 7, 300.
[http://dx.doi.org/10.3389/fchem.2019.00300] [PMID: 31134180]
[95]
Pietro, T.; Arico, F.; Rosamilia, A.; Grego, L. Dimethyl Carbonate: Green Solvent and Ambient Reagent.Green Chemical Reactions; Springer, 2005, pp. 213-232.
[96]
Sudip, D.; Anirbani, M.; Sundaram, B. Recent advances in modeling green solvents. Curr. Opin. Green Sustain. Chem., 2017, 5, 37-43.
[http://dx.doi.org/10.1016/j.cogsc.2017.03.006]
[97]
Sharma, S. Green chemistry, green solvents and alternative techniques on organic synthesis. Int. J. Chem. Phy. Sci., 2015, 4, 516-519.
[98]
Luciana, N.; Vanessa, B.; Wanderson, S. Deep eutectic solvents for the production and applications of new materials. Appl. Mater. Today., 2018, 10, 30-50.
[http://dx.doi.org/10.1016/j.apmt.2017.11.005]
[99]
Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural deep eutectic solvents - solvents for the 21st century. Sustain.Chem. Eng., 2014, 2(5), 1063-1071.
[http://dx.doi.org/10.1021/sc500096j]
[100]
Dai, Y.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L. Anal. Chem., 2013, 85(13), 6272-6278.
[http://dx.doi.org/10.1021/ac400432p] [PMID: 23710664]
[101]
He, X.; Yang, J.; Huang, Y.; Zhang, Y.; Wan, H.; Li, C. Green and effcient ultrasonic-assisted extraction of bioactive components from Salvia miltiorrhiza by natural deep eutectic solvents. Molecules, 2020, 25(1)
[http://dx.doi.org/10.3390/molecules25010140]
[102]
Gonzalez, C.G.; Choi, Y.H.; Verpoorte, R. Preanalytical treatments: Extraction with Deep Eutectic Solvents.Liquid-Phase Extraction; Elsevier Inc, , 2019; pp. (Issue Il )565-590.
[103]
Cvjetko Bubalo, M.; Vidovic, S.; Radojcic Redovnikovic, I.; Jokic, S. New perspective in extraction of plant biologically active compounds by green solvents. Food Bioprod. Process., 2018, 109, 52-73.
[http://dx.doi.org/10.1016/j.fbp.2018.03.001]
[104]
Kaltsa, O.; Lakka, A.; Grigorakis, S.; Karageorgou, I.; Batra, G.; Bozinou, E.; Lalas, S.; Makris, D.P. A green extraction process for polyphenols from elderberry (Sambucus nigra) flowers using deep eutectic solvent and ultrasound-assisted pretreatment. Molecules, 2020, 25(4), 1-17.
[http://dx.doi.org/10.3390/molecules25040921] [PMID: 32093048]
[105]
Haghbakhsh, R.; Peyrovedin, H.; Raeissi, S.; Duarte, A.R.C.; Shariati, A. Investigating the performance of novel green solvents in absorption refrigeration cycles: energy and exergy analyses. Int. J. Refrig., 2020, 113, 174-186.
[http://dx.doi.org/10.1016/j.ijrefrig.2020.01.013]
[106]
Huang, Y.; Feng, F.; Chen, Z.G.; Wu, T.; Wang, Z.H. Green and efficient removal of cadmium from rice flour using natural deep eutectic solvents. Food Chem., 2018, 244, 260-265.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.060] [PMID: 29120780]
[107]
Idowu, A.; Mohammad, R.; Abu, Z.; Inas, A. Novel green solvents for CO2 Capture. Energy Procedia, 2017, 114, 2552-2560.
[http://dx.doi.org/10.1016/j.egypro.2017.03.1413]
[108]
Andrey, S.; Andrey, B.; Marcello, L.; Simone, C.; Vasil, A. Applications of deep eutectic solvents in analytical chemistry: a review. Microchem. J., 2017, 135, 33-38.
[http://dx.doi.org/10.1016/j.microc.2017.07.015]
[109]
Henni, V.; Yuntao, D.; Erica, G.; Robert, V. Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. C. R. Chim., 2018, 30, 1-11.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy