Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Review on Synthesis of Bio-active Coumarin-fused Heterocyclic Molecules

Author(s): Geetika Patel and Subhash Banerjee*

Volume 24, Issue 22, 2020

Page: [2566 - 2587] Pages: 22

DOI: 10.2174/1385272824999200709125717

Abstract

The literature survey reveals that the individual coumarin and heterocyclic molecules have biological and pharmaceutical activities. Moreover, integrated coumarinfused heterocyclic compounds have shown interesting biological and physiochemical properties and thus, designing and development of coumarin-fused heterocyclic molecules are of great interest in the field of synthetic organic chemistry. Several coumarin-fused heterocyclic molecules have been synthesized by using different strategies such as multistep method, one-pot multi-component protocol, coupling and condensation method. The wide applications of integrated coumarin-fused heterocyclic molecules stimulated interest among researchers to develop different methodologies for the synthesis of novel fused molecules. As a consequence, several research articles, papers and review articles have been published in the literature. In this review article, we have presented various methods for the synthesis of different class of coumarin-fused heterocyclic molecules and their applications in chemical, optical, pharmaceutical and other useful applications.

Keywords: Couramarin-fused heterocyclic compounds, pyran-fused coumarin, pyrazolyl-fused coumarin, chromeno-chromenes, miscellaneous coumarin-fused molecules, synthetic strategies, applications.

Graphical Abstract

[1]
Miranda, M.; Cuellar, A. Pharmacognosy and Natural Products; Editorial Félix Varela: Havana, 2001.
[2]
U.S. Dept. of Health and Human Services. National Toxicology Program Technical Report on the Toxicology and Carcinogenesis of Coumarin in F 344/N Rates and B6C3F1 Mice (Gavage Studies), NIH Publications 1992, pp. 92-3153.
[3]
Sen, S.; Srivastava, V. Recent synthetic aspects on the chemistry of aminocoumarins. J. Indian Chem. Soc., 1989, 66, 166.
[4]
Matos, M.J.; Santana, L.; Uriarte, E.; Abreu, O.A.; Molina, E.; Yordi, E.G. Coumarins — an important class of phytochemicals. In:Phytochemicals-Isolation, Characterisation and Role in Human Health; Intech Publishers, 2015, pp. 113-140.
[http://dx.doi.org/10.5772]
[5]
Pornsatitworakul, S.; Boekfa, B.; Maihom, T.; Treesuko, P; Namuangruk, S.; Jarussophon, S.; Jarussophon, N.; Limtrakul, J. The coumarin synthesis: a combined experimental and theoretical study. Monatshefte für Chemie - Chemical Monthly, 2017, 148, 1245-1250.
[http://dx.doi.org/10.1007/s00706-017-1962-4]
[6]
Haider, S. Heterocycles, back bone of drug design. J. Phytochem. Biochem., 2017, 1e101
[7]
Kotthireddy, K.; Pasula, A. Comprehensive review of the application of coumarin fused with five membered heterocyclics in the field of material chemistry, agrochemistry and phormocology. RJLBPCS, 2018, 4(2), 1-203.
[8]
(a) Bush, T.E.; Scott, G.W. Fluorescence of distyrylbenzenes. J. Phys. Chem., 1981, 85, 144-146.
[http://dx.doi.org/10.1021/j150602a008]
(b) Maeda, M. Laser Dyes-Properties of Organic Compounds for Dye Lasers; Academic press: New York,, 1984, pp. 161-1676.
(c) Kumar, S.; Giri, R.; Mishra, S.C.; Michwe, M.K. Fourier transform Raman and infrared and surface-enhanced Raman spectra for rhodamine-6G. Spectrochem. Acta. Mol. Biomol. Spectrosc., 1995, 51, 1459-1467.
[http://dx.doi.org/10.1016/0584-8539(95)01407-L]
(d) Raikar, U.S.; Renuka, C.G.; Nadaf, Y.F.; Mulimani, B.G. Steady-state, time-resolved fluorescence polarization behavior and determination of dipole moments of coumarin laser dye. J. Mol. Struct., 2006, 787, 127-130.
[http://dx.doi.org/10.1016/j.molstruc.2005.10.040]
(e) Christie, R.M. Colour Chemistry; Royal Society of Chemistry, 2001, p. 9.
(f) Smith, W.F.; Ramachandran, V.N.; Hack, C.J.; Kane, J.C. A study of the analytical behavior of selected synthetic and naturally occurring coumarins using liquid chromatography, ion trap mass spectrometry, gas chromatography and polarography and the construction of an appropriate database for coumarin characterization. Anal. Chim. Acta, 2006, 564, 201-210.
[http://dx.doi.org/10.1016/j.aca.2006.01.102]
[9]
Nizamov, S.; Willig, K.I.; Sednev, M.V.; Belov, V.N.; Hell, S.W. Phosphorylated 3-heteroarylcoumarins and their use in fluorescence microscopy and nanoscopy. Chemistry, 2012, 18(51), 16339-16348.
[http://dx.doi.org/10.1002/chem.201202382] [PMID: 23111986]
[10]
Bakhtiari, G.; Moradi, S.; Soltanali, S. A novel method for the synthesis of coumarin laser dyes derived from 3-(1H-benzoimidazole-2-yl)coumarin-2-one under microwave irradiation. Arab. J. Chem., 2014, 7, 972-975.
[http://dx.doi.org/10.1016/j.arabjc.2010.12.012]
[11]
Moreira, V.F.; Greenwood, G.F.L.T.; Coogan, M.P. Applications of d6 transition metal complexes in transition metal complexes influorescence cell imaging. Chem. Commun. (Camb.), 2010, 46, 186-202.
[http://dx.doi.org/10.1039/B917757D] [PMID: 20024327]
[12]
Erkkila, K.E.; Odom, D.T.; Barton, J.K. Recognition and reaction of metallointercalators with DNA. Chem. Rev., 1999, 99(9), 2777-2796.
[http://dx.doi.org/10.1021/cr9804341] [PMID: 11749500]
[13]
(a) Hillenkamp, F.; Karas, M. Matrix assisted laser desorption/ionization, an experience. Int. J. Mass. Spectrum, 2000, 200(1-3), 71-77.
(b) Kunchenmuss, R.R.; Stortelder, A.A.; Breuker, K.K.; Zenobi, R.R. Secondary ion-molecule reactions in molecule reactions in matrix-assisted laser desorption /ionization. J. Mass Spectrom., 2000, 35, 1237-1245.
[http://dx.doi.org/10.1002/1096-9888(200011)35:11<1237::AIDJMS74>3.0.CO;2-O] [PMID: 11114080]
(c) Zenobi. R. and Knochenmuss, R. Ion formation in MALDI mass spectrometry. Mass Spectrom. Rev., 1999, 17, 337-366.
[14]
(a) Fentem, J.H.; Fry, J.R. Metabolism of di, tri, tetra, penta, and hexachlorobiphenyls by hepatic microsomes isolated from control animals treated with aroclor 1254, a commercial mixture of polychlorinated biphenyls. Comp. Biochem. Physiol. C. Comp. Pharmacol. Toxicol., 1993, 104, 1-16.
[http://dx.doi.org/10.1016/0742-8413(93)90102-Q]
(b) Benight, S.J.; Knorr, D.B., Jr; Johnson, L.E.; Sullivan, P.A.; Lao, D.; Sun, J.; Kocherlakota, L.S.; Elangovan, A.; Robinson, B.H.; Overney, R.M.; Dalton, L.R. Nano-engineering lattice dimensionality for a soft matter organic functional material. Adv. Mater., 2012, 24(24), 3263-3268.
[http://dx.doi.org/10.1002/adma.201104949] [PMID: 22605547]
[15]
(a) Murray, R. D. H.; Mendez, J.; Brown, S. A. The Natural Coumarins. John Wiley & Sons: New York 1982.
(b) Singh, R.; Gupta, B.B.; Malik, O.P. Studies on pesticides based on coumarin.I. Antifungal activity of 6-alkyl-3-n-butyl 7-Hydroxy-4-methylcoumarins. Pest Manag. Sci., 1987, 20, 125-130.
[http://dx.doi.org/10.1002/ps.2780200206]
[16]
Sashidhara, K.V.; Modukuri, R.K.; Singh, S.; Rao, K.B; Teja, G.A; Gupta, S.; Shukla, S. Design and synthesis of new series of coumarin-aminopyran derivatives possessing potential anti-depressant-like activity. Bioorg. Med. Chem. Lett., 2015, 25(2), 337-341.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.036] [PMID: 25488839]
[17]
Satyanarayan, V.S.; Sreevani, P.; Sivakumar, A. Synthesis and antimicrobial activity of new Schiff bases containing coumarin moiety and their spectral characterization. ARKIVOK, 2008, 17, 221-233.
[18]
Saghier, A.; Khodairy, A. New Synthetic approaches to condense and spiro coumarins: coumarin-3-thiocarboxamide as building block for the synthesis of condensed and spiro Coumarins. Phosphorous, Sulphur. Silicon. Rel. Elem., 2000, 160, 105-119.
[http://dx.doi.org/10.1080/10426500008043675]
[19]
Morries, L.; Jonnathan, B. Coumarin inhibits micronuclei formation indused by benzo(a) pyrene in male but not female ICR mice. Environ. Mol. Mutagen., 1998, 19, 132-138.
[http://dx.doi.org/10.1002/em.2850190207]
[20]
Chimichi, S.; Bokkalini, M.; Cosimelli, B.; Viola, G.; Vedaldi, D.; Dall, F.A. New geiparvarin analogues from 7-(2-oxoethoxy)coumarins as efficient in vitro antitumoral agents. Tetrahedron Lett., 2002, 43, 7473-7476.
[http://dx.doi.org/10.1016/S0040-4039(02)01798-7]
[21]
(a) Bell, R.G.; Caldwell, P.T. Mechanism of warfarin and the metabolism of vitamin K1. Biochemistry, 1973, 12, 1759-1762.
[http://dx.doi.org/10.1021/bi00733a015] [PMID: 4699235]
(b) Ong, E.B.B.; Watanabe, N.; Saito, A.; Futamura, Y.A.; Galil, K.H.; Koito, A.; Najimudin, N.; Osada, H. Vipirinin, a coumarin-based HIV-1 Vpr inhibitor, interacts with a hydrophobic region of VPR. J. Biol. Chem., 2011, 286, 14049-14056.
[http://dx.doi.org/10.1074/jbc.M110.185397] [PMID: 21357691]
[22]
Beriger, E. Insecticidallyactive 3-N-(4-trifluoromethylphenyl)-carbamoyl-4- hydroxycoumarin. U.S. Patent 4,078,075, March 7 1978.
[23]
(a) Daoubi, M.; Patrón, R.D.; Hmamouchi, M.; Galán, R.H.; Benharref, A.; Collado, I.G. Screening study for potential lead compounds for natural product-based fungicides: I. Synthesis and in vitro evaluation of coumarins against Botrytis cinerea. Pest Manag. Sci., 2004, 60(9), 927-932.
[http://dx.doi.org/10.1002/ps.891] [PMID: 15382508]
(b) Oucy, Z. Preliminary study on applicability of microsatellite DNA primers from parasite protozoa Tripanosoma cruzi in free-living protozoa. J Ocean Uni., 2004, 24, 82-86.
(c) Gleye, C.; Lewin, G.; Laurens, A.; Jullian, J.C.; Loiseau, P.; Bories, C.; Hocquemiller, R. Acaricidal activity of tonka bean extracts. Synthesis and structure-activity relationships of bioactive derivatives. J. Nat. Prod., 2003, 66(5), 690-692.
[http://dx.doi.org/10.1021/np020563j] [PMID: 12762809]
(d) Sukh, D.; Opender, K. Insecticides of Natural Origin; Harwood Academic publishers: Amsterdam, , 2017.
(e) Zheng, M.; Qiu, L.; Zhang, W. Advances on metabolisms of herbicides catalysed by cytochrome P450s monooxygenase. Chin. J. Pestic., 2003, 12, 1-8.
[24]
Murray, R.D.H.; Mendez, J.; Brown, S.A. The Natural Coumarins. Occurrence, Chemistry and Biochemistry; John Wiley and Sons: New York, 1982.
[25]
(a) Yvyan, J.V.R. Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron, 2002, 58, 1631-1646.
[http://dx.doi.org/10.1016/S0040-4020(02)00052-2]
(b) Aliotta, G.; Cafiero, G.; De, V. Feo-Allelochemicals from Rue(Ruta graveolens L.) and Oliva (Olea europea L.)oil mill waste as potential natural pesticides. Curr. Topics PhytoChem., 2000, 3, 167-177.
[26]
Fu, N.; Wang, S.; Zhang, Y.; Zhang, C.; Yang, D.; Weng, L.; Zhao, B.; Wang, L. Efficient click chemistry towards fatty acids containing 1,2,3-triazole: Design and synthesis as potential antifungal drugs for Candida albicans. Eur. J. Med. Chem., 2017, 136, 596-602.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.001] [PMID: 28551587]
[27]
Piazzi, L.; Cavalli, A.; Colizzi, F.; Belluti, F.; Bartolini, M.; Mancini, F.; Recanatini, M.; Andrisano, V.; Rampa, A. Multi-target-directed coumarin derivatives: hAChE and BACE1 inhibitors as potential anti-Alzheimer compounds. Bioorg. Med. Chem. Lett., 2008, 18(1), 423-426.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.100] [PMID: 17998161]
[28]
Hasan, M.Z. Osman, H.; Ali, M. A. and Ahsan. Structure-Activity Relationship (SAR) study and design strategies of nitrogen containing heterocyclic moieties for their anti-cancer activities. Eur. J. Med. Chem., 2017, 125, 143-189.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.023] [PMID: 27662031]
[29]
Hu, Y.Q.; Zhang, S.; Xu, Z.; Lv, Z.S.; Liu, M.L.; Feng, L.S. 4-Quinolone hybrids and their antibacterial activities. Eur. J. Med. Chem., 2017, 141, 335-345.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.050] [PMID: 29031077]
[30]
Chougala, B.M.; Samundeeswari, S.; Holiyachi, M. Shastri, Dodamani, S.; Jalapure, S.; Dixit, S.R.; Joshi, S.D.; Sunagar, V. A. Synthesis, charecterization and molecular docking studies of substituted 4-coumarinylpyrano(2,3-c)pyrazole derivatives as potent antibacterial and anti-inflammatory agents. Eur. J. Med. Chem., 2017, 125, 101-116.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.021] [PMID: 27657808]
[31]
Zhang, S.; Xu, Z.; Gao, C.; Ren, Q.C.; Chang, L.; Lv, Z.S.; Feng, L.S. Triazole derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 2017, 138, 501-513.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.051] [PMID: 28692915]
[32]
Chen, L.Z.; Sun, W.W.; Wang, J.Q.; Xui, C.; Tang, W.J.; Shi, J.B.; Zhau, H.P.; Lui, H.X. Design, synthesis, DFT study and antifungal activity of the derivatives of pyrazole carbaxamide containing thiazole or oxazolering. Eur. J. Med. Chem., 2017, 128, 170-181.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.044] [PMID: 28667873]
[33]
Bonsignopre, L.; Giuseppe, L. Synthesis of new 2H,4H-benzopyrano[3,4-b]pyridine-1,3,5-trione derivatives via carbon suboxide. J. Het. Chem., 1998, 35, 117-119.
[http://dx.doi.org/10.1002/jhet.5570350122]
[34]
Yasameen, K.; Majedy, A.; Abdul, A.H. Kadhum1 A.A.; Amiery, A.; Mohamad, B.A. Coumarins: the antimicrobial agents. Sys Rev Pharm., 2017, 8(1), 62-70.
[http://dx.doi.org/10.5530/srp.2017.1.11]
[35]
Abdul, A.H.; Kadhum, A.A.; Amiery, A.; Ahmed, Y.; Mohamad, B.A. The antioxidant activity of new coumarin derivatives. Int. J. Mol. Sci., 2011, 12, 5747-5761.
[http://dx.doi.org/10.3390/ijms12095747]
[36]
Amiery, A.; Temimi, A.; Sulaiman, G.; Hassan, A. Synthesis antimicrobial and antioxidant activities of 5-(2-oxo-2H-chromen-7-yloxy)methyl)-1,3,4-thiadiazole-2(3H)-one derived from umbelliferone. Chem. Nat. Compd., 2013, 48(6), 950-954.
[http://dx.doi.org/10.1007/s10600-013-0436-0]
[37]
Amiery, A.A.; Majedy, Y.K.; Khadum, A.A.H.; Mohamad, B.A. Novel macromolecules derived from coumarin: synthesis and antioxidant activity. Sci. Rep., 2015, 5(1), 1-7.
[http://dx.doi.org/10.1038/srep11825.]
[38]
Traven, V.F.; Bochkov, A.Y.; Krayushkin, M.M.; Yarovenko, V.N.; Nabatov, B.V.; Dolotov, S.M.; Barachevsky, V.A.; Beletskaya, I.P. Coumarinyl(thienyl)thiazoles: novel photochromes with modulated fluorescence. Org. Lett., 2008, 10(6), 1319-1322.
[http://dx.doi.org/10.1021/ol800223g] [PMID: 18303909]
[39]
Lončarić, M.; Sokač, D.G.; Jokić, S.; Molnar, M. Recent advances in the synthesis of coumarin derivatives from different starting materials. Biomolecules, 2020, 10(1), 151.
[http://dx.doi.org/10.3390/biom10010151] [PMID: 31963362]
[40]
Ansary, I.; Taher, A. One-pot synthesis of coumarin. In:Phytochemicals in Human Health; Intech Open, 2019.
[http://dx.doi.org/10.5772/intechopen.89013]
[41]
(a) Pechmann, H. New formation of coumarins. Synthesis of Daphnetin. I. Rep. Germ. Chem. Soc., 1884, 17, 929-936.
[http://dx.doi.org/10.1002/cber.188401701248]
(b) Pechmann, H.; Duisberg, C. About the compounds of phenols with acetoacetate. Rep. Germ. Chem. Soc., 1883, 16, 2119-2128.
[http://dx.doi.org/10.1002/cber.188301602117]
(c) Smitha, G.; Reddy, C.S. ZrCl4‐Catalyzed Pechmann reaction: synthesis of coumarins under solvent‐free conditions. Synth. Commun., 2004, 34, 3997-4003.
[http://dx.doi.org/10.1081/SCC-200034821]
(d) Potdar, M.K.; Rasalkar, M.S.; Mohile, S.S.; Salunkhe, M.M. Convenient and efficient protocols for coumarin synthesis via Pechmann condensation in neutral ionic liquids. J. Mol. Cat. A: Chem., 2005, 235, 249-252.
[http://dx.doi.org/10.1016/j.molcata.2005.04.007]
(e) Reddy, Y.T.; Sonar, V.N.; Crooks, P.A.; Dasari, P.; Reddy, P.N.; Rajitha, B. Ceric Ammonium Nitrate (CAN): an efficient catalyst for the coumarin synthesis via Pechmann condensation using conventional heating and microwave irradiation. Synth. Commun., 2008, 38, 2082-2088.
[http://dx.doi.org/10.1080/00397910802029091]
(f) Maheswara, M.; Siddaiah, V.; Damu, G.L.V.; Rao, Y.K.; Rao, C.V. A solvent-free synthesis of coumarins via Pechmann condensation using heterogeneous catalyst. J. Mol. Cat. A: Chem., 2006, 255, 49-52.
[http://dx.doi.org/10.1016/j.molcata.2006.03.051]
(g) Tyagi, B.; Mishra, M.K.; Jasra, V. Synthesis of 7-substituted 4-methyl coumarins by Pechmann reaction using nano-crystalline sulfated-zirconia. J. Mol. Cat. A: Chem., 2007, 276, 47-56.
[http://dx.doi.org/10.1016/j.molcata.2007.06.003]
(h) Alexander, V.M.; Bhat, R.P.; Samant, S.D. Bismuth(III) nitrate pentahydrate-a mild and inexpensive reagent for synthesis of coumarins under mild conditions. Tetrahedron Lett., 2005, 46, 6957-6959.
[http://dx.doi.org/10.1016/j.tetlet.2005.07.117]
(i) Kumar, V.; Tomar, S.; Patel, R.; Yousaf, A.; Parmar, V.S.; Malhotra, S.V. FeCl3-Catalyzed Pechmann synthesis of coumarins in ionic liquids. Synth. Commun., 2008, 38, 2646-2654.
[http://dx.doi.org/10.1080/00397910802219569]
(j) Karimi, B.; Zareyee, D. Design of a highly efficient and water-tolerant sulfonic acid nanoreactor based on tunable ordered porous silica for the von Pechmann reaction. Org. Lett., 2008, 10(18), 3989-3992.
[http://dx.doi.org/10.1021/ol8013107] [PMID: 18702496]
(k) Kokare, N.D.; Sangshetti, J.N.; Shinde, D.B. Oxalic acid catalyzed solvent-free one pot synthesis of coumarins. Chin. Chem. Lett., 2007, 18, 1309-1312.
[http://dx.doi.org/10.1016/j.cclet.2007.09.008]
(l) Kotharkar, S.A.; Bahekarb, S.S.; Shinde, D.B. Chlorosulfonic acid-catalysed one-pot synthesis of coumarin. Mendeleev Commun., 2006, 16(4), 241-242.
[http://dx.doi.org/10.1070/MC2006v016n04ABEH002256]
(m) Valizadeha, H.; Shockravi, A. An efficient procedure for the synthesis of coumarin derivatives using TiCl4 as catalyst under solvent-free conditions. Tetrahedron Lett., 2005, 46, 3501-3503.
[http://dx.doi.org/10.1016/j.tetlet.2005.03.124]
(n) Upadhyay, K.K.; Mishra, R.K.; Kumar, A. A convenient synthesis of some coumarin derivatives using SnCl2•2H2O as catalyst. Catal. Lett., 2008, 121, 118-120.
[http://dx.doi.org/10.1007/s10562-007-9307-2]
[42]
Bouasla, S. Coumarin derivatives solvent-free synthesis under microwave irradiation over heterogeneous solid catalysts molecules. 2017, 22, 2072.
[http://dx.doi.org/10.3390/molecules22122072] [PMID: 29182553]
[43]
Gopalan, K.; Rajagopalan, S.; Swaminathan, K.; Balasubramanian, K. A new synthesis of 3-methylcoumarins. Synthesis, 1975, 599-600.
[http://dx.doi.org/10.1055/s-1975-23849]
[44]
Hekmatshoar, R.; Beheshtiha, Y.Sh.; Heravi, M.; Asadollah, M.K. A one pot, facile, and convenient synthesis of some coumarin derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2002, 177, 703-707.
[http://dx.doi.org/10.1080/10426500210261]
[45]
Aoki, S.; Oyamada, J.; Kitamura, T. Formation of coumarins by palladium (II)-catalyzed reaction of phenols with ethyl acrylates. Bull. Chem. Soc. Jpn., 2005, 78, 468-472.
[http://dx.doi.org/10.1246/bcsj.78.468]
[46]
Kalyanam, N.; Nagarajan, A.; Majeed, M.A. Single‐step assembly of coumarin ring skeleton from oxygenated phenols and acetylenic esters by catalytic indium chloride in the absence of solvent. Synth. Commun., 2004, 34, 1909-1914.
[http://dx.doi.org/10.1081/SCC-120034175]
[47]
Fillion, E.; Dumas, A.M.; Kuropatwa, B.A.; Malhotra, N.R.; Sitler, T.C. Yb(OTf)3-catalyzed reactions of 5-alkylidene Meldrum’s acids with phenols: one-pot assembly of 3,4-dihydrocoumarins, 4-chromanones, coumarins, and chromones. J. Org. Chem., 2006, 71(1), 409-412.
[http://dx.doi.org/10.1021/jo052000t] [PMID: 16388672]
[48]
(a) Perkin, W.H. On the formation of couarin and of cinnamic acid of other analogous acids from the aromatic aldehydes. J. Chem. Soc., 1877, 31, 388-427.
[http://dx.doi.org/10.1039/JS8773100388]
(b) Johnson, J.R. Perkin reaction and related reactions. Org. React., 1942, 1, 210-265.
[http://dx.doi.org/10.1002/0471264180.or001.08]
[49]
Knoevenag, E. Condensations between malonic esters and aldehydes under the influence of ammonia and organic amines. Rep. Germ. Chem. Soc., 1898, 31, 2585-2595.
[50]
(a) Mali, R.S.; Tilve, S.G.; Patil, K.S.; Nagarajan, G. A useful synthesis of 3-ethyl- and 3A-dimethyl-cou- matins” synthesis of Trigoforin, a coumarin from Trigonella foenum-graecum. Indian J. Chem., 1985, 24, 1271-1272.
(b) Britto, V.G.; Gore, R.S.; Mali, A.; Ranade, C. A convenient synthesis of 3-behzyl, 3-benzyl-4-substituted coumarins and their benzo derivatives. Synth. Commun., 1989, 19, 1899-1910.
[http://dx.doi.org/10.1080/00397918908052581]
(c) Gagey, N.P.; Neveu, C.; Benbrahim, B.; Goetz, I.; Aujard, J.; Baudin, B.; Jullien, L. Two-photon uncaging with fluorescence reporting: evaluation of the o-hydroxycinnamic platform. J. Am. Chem. Soc., 2007, 129, 9986-9989.
[http://dx.doi.org/10.1021/ja0722022] [PMID: 17658803]
[51]
Kaye, P.T.; Musa, M.A.; Nocanda, X.W. Evaluation of Baylis–Hillman routes to 3-(aminomethyl)coumarin derivatives. Synthesis, 2003, 2003(4), 531-534.
[http://dx.doi.org/10.1055/s-2003-37655]
[52]
Rao, H.S.P.; Sivakumar, S. Condensation of α-aroylketene dithioacetals and 2-hydroxyarylaldehydes results in facile synthesis of a combinatorial library of 3-aroylcoumarins. J. Org. Chem., 2006, 71(23), 8715-8723.
[http://dx.doi.org/10.1021/jo061372e] [PMID: 17080998]
[53]
Jung, J.; Jung, C.; Park, Y.S. O. A convenient one-pot synthesis of 4- hydroxyl thiocoumarin and 4 hydroxy quinolin-2(1H) one. Synth. Commun., 2001, 31, 1195-1200.
[http://dx.doi.org/10.1081/SCC-100104003]
[54]
Molnar, M. Lončarić1,M.; Kovač, M. Green chemistry approaches to the synthesis of coumarin derivatives current organic chemistry. Curr. Org. Chem., 2020, 24, 4-43.
[http://dx.doi.org/10.2174/1385272824666200120144305]
[55]
(a) Estévez, V.; Villacampa, M.; Menéndez, J.C. Multicomponent reactions for the synthesis of pyrroles. Chem. Soc. Rev., 2010, 39(11), 4402-4421.
[http://dx.doi.org/10.1039/b917644f] [PMID: 20601998]
(b) Estevez, V.; Villacampa, M.; Menendez, J.C. Recent advances in the synthesis of pyrroles by multicomponent reactions. Chem. Soc. Rev., 2014, 43, 4633-4657.
[http://dx.doi.org/10.1039/B917644F ]
[56]
Paul, S.; Das, A.R. A new application of polymer supported, homogeneous and reusable catalyst PEG–SO3H in the synthesis of coumarin and uracil fused pyrrole derivatives. Catal. Sci. Technol., 2012, 2, 1130-1135.
[http://dx.doi.org/10.1039/c2cy20117h]
[57]
Palmieri, A.; Gaberielli, S.; Cimarelli, C.; Ballini, R. Fast mild eco-friendly synthesis of polyfunctionalizedpyrroles from β-nitroacrylates and β-enaminones. Green Chem., 2011, 13, 3333-3336.
[http://dx.doi.org/10.1039/c1gc16012e]
[58]
Paul, S.; Pal, G.; Das, A.R. Three component synthesis of a polysubstituted pyrrole core containing heterocyclic scaffolds over magnetically recoverable nanocrystalline copper ferrite. RSC Advances, 2013, 3, 8637-8644.
[http://dx.doi.org/10.1039/C3RA40571K]
[59]
Kausar, N.; Ghosh, P.P.; Pal, G.; Das, A.R. Graphene oxide nanosheets: a highly efficient and reusable carbocatalyst catalyzes the Michael-cyclization reactions of 4-hydroxycoumarins, 4-hydroxypyrone and 4-hydroxy-1-mehylquinoline with chalcone derivatives in aqueous medium. RSC Advances, 2015, 5, 60199-60207.
[http://dx.doi.org/10.1039/C5RA08776G]
[60]
Lin, C.H.; Yang, D.Y. Synthesis of coumarin/pyrrole-fused heterocycles and their photochemical and redox-switching properties. Org. Lett., 2013, 15(11), 2802-2805.
[http://dx.doi.org/10.1021/ol401138q] [PMID: 23713968]
[61]
Tsuge, O.; Uneo, K.; Oe, K. Intramolecular 1.3-Diopar cycloaddition of imines of glycine esters bearing an alkynyl function. Chem. Lett., 1979, 11, 1407-1410.
[http://dx.doi.org/10.1246/cl.1979.1407]
[62]
Ghandi, M.; Ghomi, A.T.; Kubicki, M. Synthesis of pyrrole-fused chromanones via one-pot multi-componentreactions. Tetrahedron, 2013, 69, 3054-3060.
[http://dx.doi.org/10.1016/j.tet.2013.01.085]
[63]
(a) Heugebaert, T.S.A.; Roman, B.I.; Stevens, C.V. Synthesis of isoindoles and related iso-condensed heteroaromatic pyrroles. Chem. Soc. Rev., 2012, 41(17), 5626-5640.
[http://dx.doi.org/10.1039/c2cs35093a] [PMID: 22782188]
(b) Ball, M.; Boyd, A.; Churchill, G.; Cuthbert, M.; Drew, M.; Fielding, M.; Ford, G. Frodsham, Golden, L.M.; Leslie, K.; Lyons, S.; Abbas, B.K.; Stark, A.; Tomlin, P.; Gottschling, S.; Hajar A.; Jiang, J; Lo, L.; Suchozak, J.B. Isoindolone formation via intramolecular Diels-Alder reaction. Org. Process Res. Dev., 2012, 16, 741-747.
[http://dx.doi.org/10.1021/op300002f]
(c) Potowski, M.; Schürmann, M.; Preut, H.; Antonchick, A.P.; Waldmann, H. Programmable enantioselective one-pot synthesis of molecules with eight stereocenters. Nat. Chem. Biol., 2012, 8(5), 428-430.
[http://dx.doi.org/10.1038/nchembio.901] [PMID: 22426113]
(d) Armoiry, X.; Aulagner, G.; Facon, T. Lenalidomide in the treatment of multiple myeloma: a review. J. Clin. Pharm. Therm., 2008, 33, 219-226.
[http://dx.doi.org/10.1111/j.1365-2710.2008.00920.x] [PMID: 18452408]
(e) Pin, F.; Comesse, S.; Sanselme, M.; Daïch, A. A domino Namidoacylation/aldol-type condensation approach to the synthesis of the topo-I inhibitor Rosettacin and derivatives. J. Org. Chem., 2008, 73(5), 1975-1978.
[http://dx.doi.org/10.1021/jo702387q] [PMID: 18254644]
(f)Yadav, J.S.; Reddy, B.V.S. Microwave-assisted rapid synthesis of the cytotoxic alkaloid luotonin A. Tetrahedron Lett., 2002, 43, 1905-1907.
[http://dx.doi.org/10.1016/S0040-4039(02)00135-1 ]
[64]
Di Mola, A. alombiL, P.; Massa, A. Active methylene compounds in the synthesis of 3-substituted isobenzofuranones, isoindolinones and related compounds. Curr. Org. Chem., 2012, 16, 2302-2320.
[http://dx.doi.org/10.2174/138527212803520254]
[65]
Shen, S-C.X. C.; Sun X. -W.; Lin, G. -Q. An eco-friendly and highly efficient access to 3-heterocyclic substituted isoindolinones in ammonia water. Green Chem., 2013, 15, 896-900.
[http://dx.doi.org/10.1039/c3gc40162f]
[66]
Sanap, K.; Samant, S.D. Synthesis of fluorescent dibenzopyranones by the Diels-Alder reaction of 4-styrylcoumarins and N-phenylmaleimide and in situ aromatization using DDQ. ARKIVOC, 2013, 3, 109-118.
[http://dx.doi.org/10.3998/ark.5550190.0014.309]
[67]
Tan, F.; Li, F. Zhang. X.; Wang F.; Cheng, H. G.; Chen, J. R.; Xiao, W. J. Brønsted acid catalyzed Diels–Alder reactions of 2-vinylindoles and 3-nitrocoumarins: an expedient synthesis of coumarin-fused tetrahydrocarbazoles. Tetrahedron, 2011, 67, 446-451.
[http://dx.doi.org/10.1016/j.tet.2010.11.019]
[68]
Langer, T.N.; Ngo, O.A.; Akrawi, T.T.; Dang, A.; Villinger, P. Langer, z. Synthesis of pyrrolocoumarins via Pd-catalyzed domino C–N coupling/hydroamination reactions. TrahedronLett., 2015, 56, 86-88.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.007]
[69]
Gambari, R.; Lampronti, I.; Bianchi, N. Zuccato, Viola, C.; Vedaldi, G.D.; Acqua, F.D. Top, C. Structure and biological activity of furocoumarins In: Bioactive Heterocycles III; Springer: Berlin , 2007; pp. 265-276.
(b) Kitamura, N.; Kohtani, S.; Nakagaki, R. Molecular aspects of furocoumarin reactions: photophysics, photochemistry, photobiology, and structural analysis. J. Photochem., 2005, 6, 168-185.
[http://dx.doi.org/10.1016/j.jphotochemrev.2005.08.002]
(c) Santana, L.; Uriarte, E.; Roleira, F.; Milhazes, N.; Borges, F. Furocoumarins in medicinal chemistry. Synthesis, natural occurrence and biological activity. Curr. Med. Chem., 2004, 11, 3239-3261.
[http://dx.doi.org/10.2174/0929867043363721]
[70]
Cadierno, V.; Crochet, P.S.; Garrido, E.G.; Gimeno, J. Metal-catalyzed transformations of propargylic alcohols into α, β-unsaturated carbonyl compounds: from the Meyer–Schuster and Rupe rearrangements to redox isomerizations. Dalton Trans., 2010, 39(17), 4015-4031.
[http://dx.doi.org/10.1039/B923602C ]
[71]
Ngo, T.N.; Akrawi, O.A.; Dang, T. Villinger, Langer, P. Synthesis of pyrrolocoumarins via Pd-catalyzed domino C–N coupling/hydroamination reactions. Tetrahedron Lett., 2015, 56, 86-88.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.007]
[72]
(a) Sanz, R.; Martinez, A.; Gutierrezand, J.M.A.F.; Rodriguez, F. Metal‐free catalytic nucleophilic substitution of propargylic alcohols. Eur. J. Org. Chem., 2006, 2006(6), 1383-1386.
[http://dx.doi.org/10.1002/ejoc.200500960]
(b) Sanz, R.; Miguel, D.; Martinez, A.; Gutierrez, J.M.A. Brønsted acid catalyzed propargylation of 1, 3-dicarbonyl derivatives. synthesis of tetrasubstituted furans. Org. Lett., 2007, 9, 727-730.
[http://dx.doi.org/10.1021/ol0631298] [PMID: 17256951]
[73]
Huang, W.; Wang, J.; Shen, Q.; Zhou, X. Yb(OTf)3-catalyzed propargylation and allenylation of 1, 3-dicarbonyl derivatives with propargylic alcohols: one-pot synthesis of multi-substituted furocoumarin. Tetrahedron, 2007, 63, 11636-11643.
[http://dx.doi.org/10.1016/j.tet.2007.08.114]
[74]
Chen, L.; Li, Y.; Xu, M.H. One-pot synthesis of furocoumarins via sequential Pd/Cu-catalyzed al-kynylation and intramolecular hydroalkoxylation. Org. Biomol. Chem., 2010, 8(13), 3073-3077.
[http://dx.doi.org/10.1039/c004233a] [PMID: 20480097]
[75]
Cheng, G.; Hu, Y. One-pot synthesis of furocoumarins through cascade addition-cyclization-oxidation. Chem. Commun. (Camb.), 2007, (31), 3285-3287.
[http://dx.doi.org/10.1039/b705315k] [PMID: 17668102]
[76]
Moon, Y.; Kim, Y.; Hong, H.; Hong, S. Synthesis of heterocyclic-fused benzofurans via C-H func-tionalization of flavones and coumarins. Chem. Commun. (Camb.), 2013, 49(75), 8323-8325.
[http://dx.doi.org/10.1039/c3cc44456b] [PMID: 23925467]
[77]
Nair, V.; Menon, R.S.; Vinod, A.U.; Viji, S. One-pot three component condensation reaction in water: an efficient and improved procedure for the synthesis of furo [2, 3-d] pyrimidine-2, 4 (1H, 3H)-diones. Tetrahedron Lett., 2002, 43, 2293-2295.
[http://dx.doi.org/10.1016/S0040-4039(02)00226-5]
[78]
Brahmbhatt, D.I. Gajera, J.; Patel, N.; Pandya, V. P.; Pandya, U. R. Syntheses of furo [3, 4-c] coumarins and related furylcoumarin derivatives via intramolecular Wittig reactions. J. Heterocycl. Chem., 2006, 43, 1699-1702.
[http://dx.doi.org/10.1002/jhet.5570430643]
[79]
(a) Kao, T.T.; Syu, S.E.; Jhang, Y.W.; Lin, W. Preparation of tetrasubstituted furans via in-tramolecular Wittig reactions with phosphorus ylides as intermediates. Org. Lett., 2010, 12(13), 3066-3069.
[http://dx.doi.org/10.1021/ol101080q] [PMID: 20521775]
(b) Chen, K.W.; Syu, S.E.; Jang, Y.J.; Lin, W. A facile approach to highly functional trisubstituted furans via intramolecular Wittig reactions. Org. Biomol. Chem., 2011, 9(7), 2098-2106.
[http://dx.doi.org/10.1039/c0ob00912a] [PMID: 21286654]
[80]
Sosnovskikh, V.Y.; Moshkin, V.S.; Kodess, M.I. Rearrangement of 3-aminoisoxazolo [4, 5-c] coumarins into 2-aminooxazolo [4, 5-c] coumarins mediated by carboxylic acid anhydrides. Mendeleev Commun., 2010, 20, 209-211.
[http://dx.doi.org/10.1016/j.mencom.2010.06.009]
[81]
Latypov, S.; Balandina, A.; Boccalini, M.; Matteucci, A.; Usachev, K.; Chimichi, S. Structure de-termination of regioisomeric fused heterocycles by the combined use of 2D NMR experiments and GIAO DFT 13C chemical shifts. Eur. J. Org. Chem., 2008, 4640-4646.
[http://dx.doi.org/10.1002/ejoc.200800550]
[82]
Jashari, A.; Imeri, F.; Ballazhi, L.; Shabani, A.; Mikhova, B.; Dräger, G.; Popovski, E.; Huwiler, A. Synthesis and cellular characterization of novel isoxazolo- and thiazolohydrazinylidene-chroman-2,4-diones on cancer and non-cancer cell growth and death. Bioorg. Med. Chem., 2014, 22(9), 2655-2661.
[http://dx.doi.org/10.1016/j.bmc.2014.03.026] [PMID: 24721833]
[83]
Murray, R.D.H.; M’endez, J.; Brown, S.A. The Natural Coumarins: Occurrence, Chemistry and Biochemistry; Wiley and Sons: New York , 1982.
(b)Meng, J.B. Shen, M.G.; Fu, D.C.; Gao, Z.H.; Wang, R.J.; Wang, H.G.; Matsuura, T. A photochemical synthesis of 3-arylcoumarins. Synthesis, 1990, 1990(8), 719-721.
[http://dx.doi.org/10.1055/s-1990-26993]
(c)Pescitelli, G.; Berova, N.; Xiao, T.L.; Rozhkov, R.V.; Larock, R.C. Armstrong, D.W. Assignment of absolute configuration of a chiral phenylsubstituted dihydrofuroangelicin. Org. Biomol. Chem., 2003, 1, 186-190.
[http://dx.doi.org/10.1039/b207652g] [PMID: 12929409]
(d)Thapliyal, P.; Singh, P.K.; Khanna, R.N. Copper(II) halides adsorbed on alumina as halogenating rea-gent for coumarins. In: Synth. Commun; , 1993; 23, pp. 2821-2826.
[http://dx.doi.org/10.1080/00397919308012602]
[84]
Gouda, M.A.; Berghot, M.A.; Baz, E.A.; Hamama, W.S. Synthesis, antitumor and antioxidant evaluation of some new thiazole and thiophene derivatives incorporated coumarin moiety. Med. Chem. Res., 2012, 21, 1062-1070.
[http://dx.doi.org/10.1007/s00044-011-9610-8]
[85]
Paul, K.; Bindal, S.; Luxami, V. Synthesis of new conjugated coumarin-benzimidazole hybrids and their anticancer activity. Bioorg. Med. Chem. Lett., 2013, 23(12), 3667-3672.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.071] [PMID: 23642480]
[86]
Ghosh, P.; Pal, G.; Paula, S.; Das, A.R. Design and synthesis of benzylpyrazolylcoumarin deriva-tives via a four-component reaction in water: investigation of the weak interactions accumulating in the crystal. Green Chem., 2012, 14, 2691-2698.
[http://dx.doi.org/10.1039/c2gc36021g]
[87]
Hein, J.E.; Fokin, V.V. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem. Soc. Rev., 2010, 39(4), 1302-1315.
[http://dx.doi.org/10.1039/b904091a] [PMID: 20309487]
[88]
Stefani, H.A.; Gueogjan, K.; Manarin, F.; Farsky, S.H.P.; Schpector, J.Z.; Caracelli, I.; Pizano, S.R.; Rodrigues, M.N.; Muscara, S.A.; Teixeira, J.R.; Santin, I.D.; Machado, S.M.; Curi, R.B.; Vi-nolo, M.A. Synthesis, biological evaluation and molecular docking studies of 3-(triazolyl)-coumarin derivatives: effect on inducible nitric oxide synthase. Eur. J. Med. Chem., 2012, 58, 117-127.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.010] [PMID: 23123728]
[89]
Shi, Y.; Zhou, C.H. Synthesis and evaluation of a class of new coumarin triazole derivatives as po-tential antimicrobial agents. Bioorg. Med. Chem. Lett., 2011, 21(3), 956-960.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.059] [PMID: 21215620]
[90]
Rajesha; Naik, H.; Kumar, H.N.H.; Hosamani K.M. Studies on the synthesis and fluorescent prop-erties of long-chained 2-(5-alkyl-1,3,4-oxadiazol-2-yl)-3H-benzo[f]chromen-3-ones. ARKIVOC, 2009, 2, 11-19.
[91]
Mulwad, V.V.; Pawar, R.; Chaskar, B. Synthesis and antibacterial activity of new tetrazole deriva-tives. J. Korean Chem. Soc., 2008, 52, 249-256.
[92]
Tisseh, Z.; Dabiri, N.M.; Bazgir, A. Coumarine heterocyclic derivatives chemical synthesis and biological activity. Helv. Chim. Acta, 2012, 95, 1600-1604.
[http://dx.doi.org/10.1002/hlca.201200031]
[93]
Lauria, A.; Patella, C.; Diana, P.; Barraja, P.; Montalbano, A.; Cirrincione, G. Dattallo G., and Almerico, A. M. A. synthetic approach to new polycyclic ring system of biological interest through domino reaction: indolo [2, 3-e][1, 2, 3] triazolo [1, 5-a] pyrimidine. Tetrahedron Lett., 2006, 47, 2187-2190.
[http://dx.doi.org/10.1016/j.tetlet.2006.01.112]
[94]
Kudale, A.A.; Miller, D.O.; Dawe, L.N.; Bodwell, G.J. Intramolecular Povarov reactions involving 3-aminocoumarins. Org. Biomol. Chem., 2011, 9(20), 7196-7206.
[http://dx.doi.org/10.1039/c1ob05867c] [PMID: 21858320]
[95]
Kudale, A.A.; Kendall, J.; Miller, D.O.; Collins, J.L.; Bodwell, G.J. Povarov reactions involving 3-aminocoumarins: synthesis of 1,2,3,4-tetrahydropyrido[2,3-c]coumarins and pyrido[2,3-c]coumarins. J. Org. Chem., 2008, 73(21), 8437-8447.
[http://dx.doi.org/10.1021/jo801411p] [PMID: 18821803]
[96]
Khan, A.T.; Das, D.K.; Islam, K.; Das, P.A. simple and expedient synthesis of functionalized pyrido [2, 3-c] coumarin derivatives using molecular iodine catalyzed three-component reaction. Tetrahedron Lett., 2012, 53, 6418-6422.
[http://dx.doi.org/10.1016/j.tetlet.2012.09.051]
[97]
Kidwai, M.; Rastogi, S.; Mohan, R.; Bull, A. novel route to new bis (benzopyrano) fused dihydro-pyridines using dry media. Korean Chem. Soc., 2004, 25, 119-121.
[http://dx.doi.org/10.5012/bkcs.2004.25.1.119]
[98]
Abdelhafez, O.M.; Amin, K.M.; Batran, R.Z.; Maher, T.J.; Nada, S.A.; Sethumadhavan, S. Syn-thesis, anticoagulant and PIVKA-II induced by new 4-hydroxycoumarin derivatives. Bioorg. Med. Chem., 2010, 18(10), 3371-3378.
[http://dx.doi.org/10.1016/j.bmc.2010.04.009] [PMID: 20435480]
[99]
Alipour, M.; Khoobi, M.; Foroumadi, A.; Nadri, H.; Moradi, A.; Sakhteman, A.; Ghandi, M.; Shafiee, A. Novel coumarin derivatives bearing N-benzyl pyridinium moiety: potent and dual binding site acetylcholinesterase inhibitors. Bioorg. Med. Chem., 2012, 20(24), 7214-7222.
[http://dx.doi.org/10.1016/j.bmc.2012.08.052] [PMID: 23140986]
[100]
Yetra, S.R.; Roy, T.; Bhunia, A.; Porwal, D.; Biju, A.T. Synthesis of functionalized coumarins and quinolinones by NHC-catalyzed annulation of modified enals with heterocyclic C-H acids. J. Org. Chem., 2014, 79(9), 4245-4251.
[http://dx.doi.org/10.1021/jo500693h] [PMID: 24716576]
[101]
Pradhan, K.; Paul, S.; Das, A.R. Magnetically retrievable nano crystalline CuFe2O4 catalyzed multi-component reaction: a facile and efficient synthesis of functionalized dihydropyrano. Catal. Sci. Technol., 2014, 4, 822-831.
[http://dx.doi.org/10.1039/c3cy00901g]
[102]
Paul, S.; Bhattacharyya, P.; Das, A.R. Silica-bonded N-propylpiperazine sodium n-propionate as recyclable basic catalyst for synthesis of 3, 4-dihydropyrano [c] chromene derivatives and biscou-marins. Tetrahedron Lett., 2011, 52, 4636-4641.
[http://dx.doi.org/10.1016/j.tetlet.2011.06.101]
[103]
Seddighi, M.; Shirini, F.; Mamaghani, M. Facile synthesis of benzimidazole, benzoxazole, and benzothiazole derivatives catalyzed by sulfonated rice husk ash (RHA-SO3H) as an efficient solid acid catalyst. RSC Advances, 2013, 3, 24046-24053.
[http://dx.doi.org/10.1039/c3ra44053b]
[104]
Saha, A.; Payra, S.; Banerjee, S. One-pot multi-componentsynthesis of highly functionalized bio-active pyrano [2, 3-c] pyrazole and benzylpyrazolylcoumarin derivatives using ZrO2 nanoparticles. Green Chem., 2015, 17, 2859-2866.
[http://dx.doi.org/10.1039/C4GC02420F]
[105]
Saha, A.; Payra, S.; Banerjee, S. On water synthesis of pyran–chromenes via a multi-componentreactions catalyzed by fluorescent t-ZrO2 nanoparticles. RSC Advances, 2015, 5, 101664-101671.
[http://dx.doi.org/10.1039/C5RA19290K]
[106]
Tanuraghaj, H.M.; Farahi, M. 2, 3-Unsubstituted chromones and their enaminone precursors as versatile reagents for the synthesis of fused pyridines. Royal Soc. Chem., 2012, 2012, 1-3.
[107]
Ardakani, H.A.; Charoose, A. An efficient synthesis of functionalized 3-(α-amidobenzyl)-4-hydroxycoumarin derivatives by ZnO nanoparticles promoted condensation reaction between aro-matic. J. Chem., 2015, 31, 1455-1460.
[108]
Majumder, S.; Borah, P.; Bhuyan, P.J. Intramolecular 1,3-dipolar cycloaddition reactions in the synthesis of complex annelated quinolines, α-carbolines and coumarins. Mol. Divers., 2012, 16(2), 279-289.
[http://dx.doi.org/10.1007/s11030-012-9358-1] [PMID: 22374452]
[109]
Frolova, L.V.; Malik, I.; Uglinskii, P.Y.; Rogelj, S.; Kornienko, A.; Magedov, I.V. Multicompo-nent synthesis of 2, 3-dihydrochromeno [4, 3-d] pyrazolo [3, 4-b] pyridine-1, 6-diones: a novel heterocyclic scaffold with antibacterial activity. Tetrahedron Lett., 2011, 52(49), 6643-6645.
[http://dx.doi.org/10.1016/j.tetlet.2011.10.012] [PMID: 22162894]

© 2025 Bentham Science Publishers | Privacy Policy