Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

CO Surrogates: A Green Alternative in Palladium-Catalyzed CO Gas Free Carbonylation Reactions

Author(s): Mayur V. Khedkar*, Shoeb R. Khan*, Trimurti L. Lambat*, Ratiram G. Chaudhary and Ahmed A. Abdala*

Volume 24, Issue 22, 2020

Page: [2588 - 2600] Pages: 13

DOI: 10.2174/1385272824999200622115655

Price: $65

Abstract

Carbonylation reactions with carbon monoxide (CO) provide efficient and attractive routes for the synthesis of bulk and fine chemicals. However, the practice of using a large excess of an inflammable, lethal and greenhouse CO gas is always a concern in this chemistry. The development of CO surrogates has gained substantial interest and become a green alternative to gaseous CO. Many of the recent studies have focused on the development of other benign and safe reagents to work as a CO source in carbonylation reactions, and the assortment of feasible CO surrogates for specific reaction can be accomplished by the literature data. This review describes the recent developments in palladium-catalyzed carbonyl insertions without the direct use of gaseous CO.

Keywords: Palladium, heterogeneous and homogeneous catalysis, coupling reaction, CO surrogates, carbonylation, CO gas free, green synthesis.

Graphical Abstract

[1]
Cornils, B.; Herrmann, W.A.; Rasch, M. Otto Roelen, pioneer in industrial homogeneous catalysis. Angew. Chem. Int. Ed. Engl., 1994, 33(21), 2144-2163.
[http://dx.doi.org/10.1002/anie.199421441]
[2]
Wang, Z. Comprehensive organic name reactions and reagents John Wiley & Sons,, 2010, pp. 2352-2357.
[http://dx.doi.org/10.1002/9780470638859]
[3]
Khan, S.R.; Bhanage, B.M. Selective hydroformylation of various olefins using diphosphinite ligands. Appl. Organomet. Chem., 2013, 27, 313-317.
[http://dx.doi.org/10.1002/aoc.2983]
[4]
Khan, S.R.; Bhanage, B.M. Regioselective hydroformylation of vinyl esters catalyzed by Rh(acac)(CO)2 with simple and efficient diphosphinite ligands. Catal. Commun., 2014, 46, 109-112.
[http://dx.doi.org/10.1016/j.catcom.2013.12.002]
[5]
Khan, S.R.; Bhanage, B.M. Selective hydroformylation–acetalization of various olefins using simple and efficient Rh-phosphinite complex catalyst. Tetrahedron Lett., 2013, 54, 5998-6001.
[http://dx.doi.org/10.1016/j.tetlet.2013.08.061]
[6]
Schoenberg, A.; Bartoletti, I.; Heck, R.F. Palladium-catalyzed carboalkoxylation of aryl, benzyl, and vinylic halides. J. Org. Chem., 1974, 39, 3318-3326.
[http://dx.doi.org/10.1021/jo00937a003]
[7]
Cornils, B.; Herrmann, W.A. Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Three Volumes; Wiley-VCH, 2002.
[8]
Gabriele, B.; Salerno, G.; Costa, M.; Chiusoli, G.P. Recent advances in the synthesis of carbonyl compounds by palladium- catalyzed oxidative carbonylation reactions of unsaturated substrates. Curr. Org. Chem., 2004, 8(10), 919-946.
[http://dx.doi.org/10.2174/1385272043370366]
[9]
Wu, X.F.; Neumann, H.; Beller, M. Synthesis of heterocycles via palladium-catalyzed carbonylations. Chem. Rev., 2013, 113(1), 1-35.
[http://dx.doi.org/10.1021/cr300100s] [PMID: 23039127]
[10]
Molnár, Á. Efficient, selective, and recyclable palladium catalysts in carbon-carbon coupling reactions. Chem. Rev., 2011, 111(3), 2251-2320.
[http://dx.doi.org/10.1021/cr100355b] [PMID: 21391571]
[11]
Skoda-Földesa, R.; Kollár, L. Synthetic applications of palladium catalysed carbonylation of organic halides. Curr. Org. Chem., 2002, 6, 1097-1119.
[http://dx.doi.org/10.2174/1385272023373699]
[12]
Beller, M. Catalytic Carbonylation Reactions; Springer: Berlin, 2006.
[http://dx.doi.org/10.1007/b105253]
[13]
Kuik, A.; Szarka, Z.; Foldes, R.S.; Kollar, L. Facile synthesis of unsymmetrically substituted ferrocene-1,1′-bis- carboxamides via homogeneous catalytic carbonylation. Lett. Org. Chem., 2004, 1(2), 151-153.
[http://dx.doi.org/10.2174/1570178043488554]
[14]
Horvath, L.; Berente, Z.; Kollar, L. High-yielding synthesis of 3-alkoxycarbonyl- and 3-carboxamido-3-tropene derivatives in homogeneous carbonylation reactions of 3-iodo-2-tropene. Lett. Org. Chem., 2005, 2(2), 124-127.
[http://dx.doi.org/10.2174/1570178053202856]
[15]
Torres, G.M.; Liu, Y.; Arndtsen, B.A. A dual light-driven palladium catalyst: breaking the barriers in carbonylation reactions. Science, 2020, 368(6488), 318-323.
[http://dx.doi.org/10.1126/science.aba5901] [PMID: 32299954]
[16]
Khedkar, M.V.; Sasaki, T.; Bhanage, B.M. Immobilized palladium metal containing ionic liquid catalyzed alkoxycarbonylation, phenoxycarbonylation and aminocarbonylation reactions. ACS Catal., 2013, 3, 287-293.
[http://dx.doi.org/10.1021/cs300719r]
[17]
Qureshi, Z.S.; Revankar, S.A.; Khedkar, M.V.; Bhanage, B.M. Aminopcarbonylation of aryl iodides with primary and secondary amines in aqueous medium using polymer supported PdNHC carbene complex as an efficient and heterogeneous catalyst. Catal. Today, 2012, 198, 148-153.
[http://dx.doi.org/10.1016/j.cattod.2012.03.039]
[18]
Khedkar, M.V.; Khan, S.R.; Dhake, K.P.; Bhanage, B.M. Carbonylative cyclization of o-halobenzoic acids for synthesis of N-substituted phthalimides using polymer supported Pd N-heterocyclic carbene as an efficient, heterogeneous and reusable catalyst. Synthesis, 2012, 44(16), 2623-2629.
[http://dx.doi.org/10.1055/s-0032-1316565]
[19]
Khedkar, M.V.; Bhanage, B.M. Facile synthesis of isoindole-1,3-dinones by palladium-catalyzed carbonylative cyclization of o-bromobenzoic acid and primary amines. Front. Chem. Sci. Eng., 2013, 7, 226-232.
[http://dx.doi.org/10.1007/s11705-013-1321-x]
[20]
Khedkar, M.V.; Shinde, A.R.; Sasaki, T.; Bhanage, B.M. Immobilized palladium metal containing ionic liquid catalyzed one step synthesis of Isoindole-1,3-diones by aminocarbonylative cyclization reaction. J. Mol. Catal. Chem., 2014, 385, 91-97.
[http://dx.doi.org/10.1016/j.molcata.2014.01.018]
[21]
Gadge, S.T.; Khedkar, M.V.; Lanke, S.R.; Bhanage, B.M. Oxidative aminocarbonylation of terminal alkynes for the synthesis of alk-2-ynamides by using Pd/C as efficient, heterogeneous, phosphine-free, and reusable catalyst. Adv. Synth. Catal., 2012, 354(10), 2049-2056.
[http://dx.doi.org/10.1002/adsc.201200041]
[22]
Cao, J.; Zheng, Z.; Xu, Z.; Xu, L. Transition-metal-catalyzed transfer carbonylation with HCOOH or HCHO as a non-gaseous C1 source. Coord. Chem. Rev., 2017, 336, 43-53.
[http://dx.doi.org/10.1016/j.ccr.2017.01.005]
[23]
Khedkar, M.V.; Khan, S.R.; Sawant, D.N.; Bagal, D.B.; Bhanage, B.M. Palladium on carbon: an efficient, heterogeneous and reusable catalytic system for carbonylative synthesis of N-substituted phthalimides. Adv. Synth. Catal., 2011, 18, 3415-3422.
[http://dx.doi.org/10.1002/adsc.201100460]
[24]
Khan, S.R.; Khedkar, M.V.; Qureshi, Z.S.; Bagal, D.B.; Bhanage, B.M. PEG-anchored rhodium polyether diphosphinite complex as an efficient homogeneous and recyclable catalyst for hydroaminomethylation of olefins. Catal. Commun., 2011, 15, 141-145.
[http://dx.doi.org/10.1016/j.catcom.2011.08.033]
[25]
Zhang, D.; You, C.; Li, X.; Wen, J.; Zhang, X. Asymmetric linear-selective hydroformylation of 1,1-dialkyl olefins assisted by a steric-auxiliary strategy. Org. Lett., 2020, 22(11), 4523-4526.
[http://dx.doi.org/10.1021/acs.orglett.0c01550] [PMID: 32396011]
[26]
Gautam, P.; Bhanage, B.M. Recent advances in the transition metal catalyzed carbonylation of alkynes, arenes and aryl halides using CO surrogates. Catal. Sci. Technol., 2015, 5, 4663-4702.
[http://dx.doi.org/10.1039/C5CY00691K]
[27]
Hermange, P.; Lindhardt, A.T.; Taaning, R.H.; Bjerglund, K.; Lupp, D.; Skrydstrup, T. Ex situ generation of stoichiometric and substoichiometric 12CO and 13CO and its efficient incorporation in palladium catalyzed aminocarbonylations. J. Am. Chem. Soc., 2011, 133(15), 6061-6071.
[http://dx.doi.org/10.1021/ja200818w] [PMID: 21446732]
[28]
Konishi, H.; Manabe, K. Recent progress on catalytic Heck carbonylations using carbon monoxide surrogates. Tetrahedron Lett., 2019, 60151147
[http://dx.doi.org/10.1016/j.tetlet.2019.151147]
[29]
Furusawa, T.; Morimoto, T.; Oka, N.; Tanimoto, H.; Nishiyama, Y.; Kakiuchi, K. Pd(0)-catalyzed CO gas-free carbonylation of 2-bromobiphenyls with formaldehyde as a carbonyl surrogate through the cleavage of a CH bond. Chem. Lett., 2016, 45, 406-408.
[http://dx.doi.org/10.1246/cl.151182]
[30]
Morimoto, T.; Kakiuchi, K. Evolution of carbonylation catalysis: no need for carbon monoxide. Angew. Chem. Int. Ed. Engl., 2004, 43(42), 5580-5588.
[http://dx.doi.org/10.1002/anie.200301736] [PMID: 15372547]
[31]
Morimoto, T.; Yamashita, M.; Tomiie, A.; Tanimoto, H.; Kakiuchi, K.CO Gas-free intramolecular cyclocarbonylation reactions of haloarenes having a C-nucleophile through CO-relay between rhodium and palladium. Chem. Asian J., 2020, 15(4), 473-477.
[http://dx.doi.org/10.1002/asia.201901595] [PMID: 31849197]
[32]
Korsager, S.; Nielsen, D.U.; Taaning, R.H.; Skrydstrup, T. Access to β-keto esters by palladium-catalyzed carbonylative coupling of aryl halides with monoester potassium malonates. Angew. Chem. Int. Ed. Engl., 2013, 52(37), 9763-9766.
[http://dx.doi.org/10.1002/anie.201304072] [PMID: 23881598]
[33]
Chen, Z.; Wang, L.C.; Wu, X.F. Carbonylative synthesis of heterocycles involving diverse CO surrogates. Chem. Commun. (Camb.), 2020, 56(45), 6016-6030.
[http://dx.doi.org/10.1039/D0CC01504K] [PMID: 32409789]
[34]
Wu, L.; Liu, Q.; Jackstell, R.; Beller, M. Carbonylations of alkenes with CO surrogates. Angew. Chem. Int. Ed. Engl., 2014, 53(25), 6310-6320.
[http://dx.doi.org/10.1002/anie.201400793] [PMID: 24866101]
[35]
Geuther, A. Ueber die Einwirkung des Phosphoroxychlorids auf die trocknen Salze organischer einbasischer Säuren und über die Formel desselben. Justus Liebigs Ann. Chem., 1862, 123, 121.
[http://dx.doi.org/10.1002/jlac.18621230108]
[36]
Fedoryński, M. Syntheses of gem-dihalocyclopropanes and their use in organic synthesis. Chem. Rev., 2003, 103(4), 1099-1132.
[http://dx.doi.org/10.1021/cr0100087] [PMID: 12683778]
[37]
Jayachandran, J.P.; Wang, M.L. A new phase transfer reagent for the addition of dichlorocarbene to olefins under mild PTC conditions. Syn. Comm., 1999, 29, 4101-4112.
[http://dx.doi.org/10.1080/00397919908085884]
[38]
Sepideh, A.; Hassan, K.; Mohammad, M. Pd-catalyzed carbonylation-cyclization of N′-(2-bromophenyl)benzamidines by chloroform as a CO precursor for the synthesis of quinazolin- 4(3H)-ones. Lett. Org. Chem., 2020, 17(4), 303-308.
[http://dx.doi.org/10.2174/1570178616666190514085642]
[39]
Grushin, V.V.; Alper, H. Novel palladium-catalyzed carbonylation of organic halides by chloroform and alkali. Organometallics, 1993, 12, 3846-3850.
[http://dx.doi.org/10.1021/om00034a016]
[40]
Sun, G.; Lei, M.; Hu, L. A facile and efficient method for the synthesis of alkynone by carbonylative Sonogashira coupling using CHCl3 as the CO source. RSC Advances, 2016, 6, 28442-28446.
[http://dx.doi.org/10.1039/C6RA02424F]
[41]
Guo, S.; Kumar, P.S.; Yuan, Y.; Yang, M. Palladium catalyzed aroylation of NH-sulfoximines with aryl halides using chloroform as the CO precursor. Tetrahedron Lett., 2017, 58, 2681-2684.
[http://dx.doi.org/10.1016/j.tetlet.2017.05.088]
[42]
Sharma, P.; Rohilla, S.; Jain, N. Palladium catalyzed carbonylative coupling for synthesis of arylketones and arylesters using chloroform as the carbon monoxide source. J. Org. Chem., 2017, 82(2), 1105-1113.
[http://dx.doi.org/10.1021/acs.joc.6b02711] [PMID: 28001401]
[43]
Layek, S.; Agrahari, B.; Ganguly, R.; Das, P.; Pathak, D.D. Carbonylative Suzuki coupling reactions catalyzed by ONO Pincer–type Pd(II) complexes using chloroform as a carbon monoxide surrogate. Appl. Organomet. Chem., 2020, 34(3), 5414.
[http://dx.doi.org/10.1002/aoc.5414]
[44]
Veryser, C.; Mileghem, S.V.; Egle, B.; Gilles, P.; Borggraeve, W.M.D. Low-cost instant CO generation at room temperature using formic acid, mesyl chloride and triethylamine. React. Chem. Eng., 2016, 1, 142-146.
[http://dx.doi.org/10.1039/C6RE00006A]
[45]
Yang, R.; Yu, J.; Sun, S.; Cheng, J. Palladium-catalyzed CO-free cyclizative carbonylation of 2-benzylpyridines leading to pyridoisoquinolinones. Org. Chem. Front., 2018, 5, 962-966.
[http://dx.doi.org/10.1039/C7QO01081H]
[46]
Cacchi, S.; Fabrizi, G.; Goggiamani, A. Palladium-catalyzed hydroxycarbonylation of aryl and vinyl halides or triflates by acetic anhydride and formate anions. Org. Lett., 2003, 5(23), 4269-4272.
[http://dx.doi.org/10.1021/ol0354371] [PMID: 14601977]
[47]
Berger, P.; Bessmernykh, A.; Caille, J.C.; Mignonac, S. Palladium-catalyzed hydroxycarbonylation of aryl and vinyl bromides by mixed acetic formic anhydride palladium- catalyzed hydroxycarbonylation of aryl and vinyl bromides. Synthesis, 2006, 18, 3106-3110.
[http://dx.doi.org/10.1055/s-2006-950195]
[48]
Korsager, S.; Taaning, R.H.; Skrydstrup, T. Effective palladium-catalyzed hydroxycarbonylation of aryl halides with substoichiometric carbon monoxide. J. Am. Chem. Soc., 2013, 135(8), 2891-2894.
[http://dx.doi.org/10.1021/ja3114032] [PMID: 23398204]
[49]
Khedkar, M.V.; Tambade, P.J.; Qureshi, Z.S.; Bhanage, B.M. Pd/C: an efficient, heterogeneous and reusable catalyst for phosphane-free carbonylative Suzuki coupling reactions of aryl and heteroaryl iodides. Eur. J. Org. Chem., 2010, 36, 6981-6986.
[http://dx.doi.org/10.1002/ejoc.201001134]
[50]
Khedkar, M.V.; Sasaki, T.; Bhanage, B.M. Efficient recyclable and phosphine-free carbonylative cross-coupling using immobilized palladium metal containing ionic liquid: Synthesis of aryl ketones and heteroaryl ketones. RSC Advances, 2013, 3, 7791-7797.
[http://dx.doi.org/10.1039/c3ra40730f]
[51]
Bagal, D.B.; Watile, R.A.; Khedkar, M.V.; Dhake, K.P.; Bhanage, B.M. PS-Pd–NHC: an efficient and heterogeneous recyclable catalyst for direct reductive amination of carbonyl compounds with primary/secondary amines in aqueous medium. Catal. Sci. Technol., 2012, 2, 354-358.
[http://dx.doi.org/10.1039/C1CY00392E]
[52]
Paluru, D.K.; Dey, S.; Chaudhari, K.R.; Khedkar, M.V.; Bhanage, B.M.; Jain, V.K. Palladium(II) chalcogenolate complexes as catalysts for C–C cross-coupling and carbonylative Suzuki coupling reactions. Tetrahedron Lett., 2014, 55, 2953-2956.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.101]
[53]
Qi, X.; Jiang, L.B.; Li, H.P.; Wu, X.F. A convenient palladium-catalyzed carbonylative suzuki coupling of aryl halides with formic acid as the carbon monoxide source. Chemistry, 2015, 21(49), 17650-17656.
[http://dx.doi.org/10.1002/chem.201502943] [PMID: 26486227]
[54]
Qi, X.; Li, C.L.; Wu, X.F. A convenient palladium-catalyzed reductive carbonylation of aryl iodides with dual role of formic acid. Chemistry, 2016, 22(17), 5835-5838.
[http://dx.doi.org/10.1002/chem.201600387] [PMID: 26934464]
[55]
Fu, M.C.; Shang, R.; Cheng, W.M.; Fu, Y. Efficient Pd-catalyzed regio- and stereoselective carboxylation of allylic alcohols with formic acid. Chemistry, 2017, 23(37), 8818-8822.
[http://dx.doi.org/10.1002/chem.201701971] [PMID: 28543768]
[56]
Wu, F.; Peng, J.; Meng, L.; Qi, X.; Wu, X. Palladium catalyzed ligand-controlled selective synthesis of aldehydes and acids from aryl halides and formic acid. ChemCatChem, 2017, 9(16), 3121-3124.
[http://dx.doi.org/10.1002/cctc.201700517]
[57]
Wu, F.P.; Peng, J.B.; Qi, X.; Wu, X.F. Palladium-catalyzed carbonylative transformation of organic halides with formic acid as the coupling partner and CO source: synthesis of carboxylic acids. J. Org. Chem., 2017, 82(18), 9710-9714.
[http://dx.doi.org/10.1021/acs.joc.7b01808] [PMID: 28817931]
[58]
Wu, F.; Peng, J.; Qi, X.; Wu, X. Palladium‐catalyzed carbonylative homocoupling of aryl iodides for the synthesis of symmetrical diaryl ketones with formic acid. ChemCatChem, 2018, 10(1), 173-177.
[http://dx.doi.org/10.1002/cctc.201701185]
[59]
Sun, G.; Lv, X.; Zhang, Y.; Lei, M.; Hu, L. Palladium-catalyzed formylation of aryl iodides with HCOOH as CO source. Org. Lett., 2017, 19(16), 4235-4238.
[http://dx.doi.org/10.1021/acs.orglett.7b01882] [PMID: 28782963]
[60]
Qi, X.; Li, R.; Wu, X. Selective palladium-catalyzed carbonylative synthesis of aurones with formic acid as the CO source. RSC Advances, 2016, 6, 62810-62813.
[http://dx.doi.org/10.1039/C6RA13615J]
[61]
Li, R.; Qi, X.; Wu, X.F. A general and convenient palladium-catalyzed synthesis of benzylideneindolin-3-ones with formic acid as the CO source. Org. Biomol. Chem., 2017, 15(33), 6905-6908.
[http://dx.doi.org/10.1039/C7OB01557G] [PMID: 28786470]
[62]
Peng, J. Wu. F.; Li, C.; Qi, X.; Wu, X. A convenient and efficient palladium‐catalyzed carbonylative sonogashira transformation with formic acid as the CO source. Eur. J. Org. Chem., 2017, 11, 1434-1437.
[http://dx.doi.org/10.1002/ejoc.201700076]
[63]
Wu, X.F. Palladium-catalyzed synthesis of aldehydes from aryl iodides and formic acid with propylphosphonic anhydride as the activator. Sci. Rep., 2018, 8(1), 8389.
[http://dx.doi.org/10.1038/s41598-018-26850-2] [PMID: 29849095]
[64]
Sang, R.; Kucmierczyk, P.; Dong, K.; Franke, R.; Neumann, H.; Jackstell, R.; Beller, M. Palladium-catalyzed selective generation of CO from formic acid for carbonylation of alkenes. J. Am. Chem. Soc., 2018, 140(15), 5217-5223.
[http://dx.doi.org/10.1021/jacs.8b01123] [PMID: 29528637]
[65]
Lyu, X.; Sun, G.; Zhou, Y.; Wang, Y.; Lei, M.; Wu, W.; Guo, D. Palladium-catalyzed carbonylative Sonogashira cross-coupling for the synthesis of alkynones with formic acid as the CO source. Monatsh. Chem., 2019, 150(2), 309-315.
[http://dx.doi.org/10.1007/s00706-018-2331-7]
[66]
Molaei, E.; Mohammadsaleh, F.; Niknam, K. Powerful and phosphine-free palladium-catalyzed selective formylation of aryl halides with formic acid as CO source. Catal. Lett., 2020, 150, 1970-1975.
[http://dx.doi.org/10.1007/s10562-020-03108-z]
[67]
Abel, E.W.; Stone, F.G.A. The chemistry of transition-metal carbonyls: synthesis and reactivity. Q. Rev. Chem. Soc., 1970, 24, 498-552.
[http://dx.doi.org/10.1039/qr9702400498]
[68]
Ellis, J.E.; Flom, E.A. The chemistry of metal carbonyl anions. J. Organomet. Chem., 1975, 99, 263-268.
[http://dx.doi.org/10.1016/S0022-328X(00)88455-7]
[69]
Herrmann, W.A. 100 years of metal carbonyls: a serendipitous chemical discovery of major scientific and industrial impact. J. Organomet. Chem., 1990, 383, 21-44.
[http://dx.doi.org/10.1016/0022-328X(90)85120-N]
[70]
Sinha, C. Azoimine chelated ruthenium(II)- and osmium(II)-carbonyl complex catalyzed alcohol oxidation reaction. Curr. Organocatal., 2019, 6(2), 139-157.
[http://dx.doi.org/10.2174/2213337206666190311130604]
[71]
Ellis, J.E.; Flom, E.A. The chemistry of metal carbonyl anions: III. Sodium-potassium alloy: an efficient reagent for the production of metal carbonyl anions. J. Organomet. Chem., 1975, 99(2), 263-268.
[http://dx.doi.org/10.1016/S0022-328X(00)88455-7]
[72]
Pyo, A.; Park, A.; Jung, H.; Lee, S. Palladium-catalyzed carbonylation with Mo(CO)6 for the synthesis of benzoylacetonitriles. Synthesis, 2012, 44, 2885-2888.
[http://dx.doi.org/10.1055/s-0032-1316760]
[73]
Wu, X.F.; Sharif, M.; Shoaib, K.; Neumann, H.; Davtyan, A.P.; Langer, P.; Beller, M. A convenient palladium-catalyzed carbonylative synthesis of 2-aminbenzoxazinones from 2-bromoanilines and isocyanates. Chemistry, 2013, 19(20), 6230-6233.
[http://dx.doi.org/10.1002/chem.201300537] [PMID: 23519727]
[74]
Motwani, H.V.; Larhed, M. Diarylated ethanones from Mo(CO)6‐mediated and microwave‐assisted palladium‐catalysed carbonylative Negishi cross‐couplings. Eur. J. Org. Chem., 2013, 22, 4729-4733.
[http://dx.doi.org/10.1002/ejoc.201300610]
[75]
Sun, N.; Sun, Q.; Zhao, W.; Jin, L.; Hu, B.; Shen, Z.; Hu, X. Ligand‐free palladium‐catalyzed carbonylative Suzuki coupling of aryl iodides in aqueous CH3CN with sub‐stoichiometric amount of Mo(CO)6 as CO source. Adv. Synth. Catal., 2019, 361(9), 2117-2123.
[http://dx.doi.org/10.1002/adsc.201900011]
[76]
van Bonn, P.; Bolm, C.; Hernández, J.G. Mechanochemical palladium-catalyzed carbonylative reactions using Mo(CO)6. Chemistry, 2020, 26(12), 2576-2580.
[http://dx.doi.org/10.1002/chem.201904528] [PMID: 31802549]
[77]
Baburajan, P.; Senthilkumaran, R.; Elango, K.P. Cobalt carbonyl as an effective CO source in one-pot synthesis of esters from aryl halides. New J. Chem., 2013, 37, 3050-3056.
[http://dx.doi.org/10.1039/c3nj00548h]
[78]
Iranpoor, N.; Firouzabadi, H.; Etemadi-Davan, E.; Rostami, A.; Moghadam, K.R. Palladium-catalysed reductive carbonylation of aryl halides with iron pentacarbonyl for synthesis of aromatic aldehydes and deuterated aldehydes. Appl. Organomet. Chem., 2015, 29(11), 719-724.
[http://dx.doi.org/10.1002/aoc.3356]
[79]
Niakan, M.; Asadi, Z.; Emami, M. Binuclear palladium complex immobilized on mesoporous SBA−16: efficient heterogeneous catalyst for the carbonylative Suzuki coupling reaction of aryl iodides and arylboronic acids using Cr(CO)6 as carbonyl source. Catal. Lett., 2020, 150, 404-418.
[http://dx.doi.org/10.1007/s10562-019-03087-w]
[80]
Cochet, T.; Bellosta, V.; Greiner, A.; Roche, D.; Cossy, J. N-Formylsaccharin: a new formylating agent. Synlett, 2011, 13, 1920-1922.
[http://dx.doi.org/10.1055/s-0030-1260951]
[81]
Ueda, T.; Konishi, H.; Manabe, K. Palladium-catalyzed reductive carbonylation of aryl halides with N-formylsaccharin as a CO source. Angew. Chem. Int. Ed. Engl., 2013, 52(33), 8611-8615.
[http://dx.doi.org/10.1002/anie.201303926] [PMID: 23824917]
[82]
Ueda, T.; Konishi, H.; Manabe, K. Palladium-catalyzed fluorocarbonylation using N-formylsaccharin as CO source: general access to carboxylic acid derivatives. Org. Lett., 2013, 15(20), 5370-5373.
[http://dx.doi.org/10.1021/ol4026815] [PMID: 24088068]
[83]
Gehrtz, P.H.; Hirschbeck, V.; Fleischer, I. A recyclable CO surrogate in regioselective alkoxycarbonylation of alkenes: indirect use of carbon dioxide. Chem. Commun. (Camb.), 2015, 51(63), 12574-12577.
[http://dx.doi.org/10.1039/C5CC05012J] [PMID: 26152898]
[84]
Gautam, P.; Gupta, R.; Bhanage, B.M. Pd/C in propylene carbonate: a sustainable catalyst–solvent system for the carbonylative Suzuki–Miyaura cross‐coupling using N‐formylsaccharin as a CO surrogate. Eur. J. Org. Chem., 2017, 24, 3431-3437.
[http://dx.doi.org/10.1002/ejoc.201700543]
[85]
Yadav, V.K.; Srivastava, V.P.; Yadav, L.S. Pd-catalysed carbonylative annulation of salicylaldehydes with benzyl chlorides using N-formylsaccharin as a CO surrogate. New J. Chem., 2018, 42, 16281-16286.
[http://dx.doi.org/10.1039/C8NJ03173H]
[86]
Fan, X.; Shi, M.; Wei, Y. Palladium-catalyzed cascade reductive and carbonylative cyclization of ortho-iodo-tethered Methylenecyclopropanes (MCPs) using N-formylsaccharin as CO source. Adv. Synth. Catal., 2019, 61(24), 5677-5683.
[http://dx.doi.org/10.1002/adsc.201901005]
[87]
Liu, A.H.; Yu, B.; He, L.N. Catalytic conversion of carbon dioxide to carboxylic acid derivatives. Greenhouse Gas Sci. Technol., 2015, 5, 17-33.
[http://dx.doi.org/10.1002/ghg.1461]
[88]
Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem. Rev., 2014, 114(3), 1709-1742.
[http://dx.doi.org/10.1021/cr4002758] [PMID: 24313306]
[89]
Huang, K.; Sun, C.L.; Shi, Z.J. Transition-metal-catalyzed C-C bond formation through the fixation of carbon dioxide. Chem. Soc. Rev., 2011, 40(5), 2435-2452.
[http://dx.doi.org/10.1039/c0cs00129e] [PMID: 21387036]
[90]
Wang, L.; Sun, W.; Liu, C. Recent advances in homogeneous carbonylation using CO2 as CO surrogate. Chin. J. Chem., 2018, 36, 353-362.
[http://dx.doi.org/10.1002/cjoc.201700746]
[91]
Yu, B.; Zhao, Y.; Zhang, H.; Xu, J.; Hao, L.; Gao, X.; Liu, Z. Pd/C-catalyzed direct formylation of aromatic iodides to aryl aldehydes using carbon dioxide as a C1 resource. Chem. Commun. (Camb.), 2014, 50(18), 2330-2333.
[http://dx.doi.org/10.1039/c3cc49365b] [PMID: 24448219]
[92]
Yu, B.; Yang, Z.; Zhao, Y.; Hao, L.; Zhang, H.; Gao, X.; Han, B.; Liu, Z. An efficient and general method for formylation of aryl bromides with CO2 and poly(methylhydrosiloxane). Chemistry, 2016, 22(3), 1097-1102.
[http://dx.doi.org/10.1002/chem.201504320] [PMID: 26663139]
[93]
Whiteoak, C.J.; Henseler, A.H.; Ayats, C.; Kleij, A.W.; Pericàs, M.A. Conversion of oxiranes and CO2 to organic cyclic carbonates using a recyclable, bifunctional polystyrene-supported organocatalyst. Green Chem., 2014, 16, 1552-1559.
[http://dx.doi.org/10.1039/c3gc41919c]
[94]
Park, H.D.; Dincă, M.; Leshkov, Y.R. Heterogeneous epoxide carbonylation by cooperative ion-pair catalysis in Co(CO)4--incorporated Cr-MIL-101. ACS Cent. Sci., 2017, 3(5), 444-448.
[http://dx.doi.org/10.1021/acscentsci.7b00075] [PMID: 28573206]
[95]
Getzler, Y.D.; Mahadevan, V.; Lobkovsky, E.B.; Coates, G.W. Synthesis of β-lactones: a highly active and selective catalyst for epoxide carbonylation. J. Am. Chem. Soc., 2002, 124(7), 1174-1175.
[http://dx.doi.org/10.1021/ja017434u] [PMID: 11841278]
[96]
Ganesan, V.; Yoon, S. Direct heterogenization of salphen coordination complexes to porous organic polymers: catalysts for ring-expansion carbonylation of epoxides. Inorg. Chem., 2020, 59(5), 2881-2889.
[http://dx.doi.org/10.1021/acs.inorgchem.9b03247] [PMID: 32048846]
[97]
Dunn, E.W.; Lamb, J.R.; LaPointe, A.M.; Coates, G.W. Carbonylation of ethylene oxide to β-propiolactone: a facile route to poly(3-hydroxypropionate) and acrylic acid. ACS Catal., 2016, 6(12), 8219-8223.
[http://dx.doi.org/10.1021/acscatal.6b02773]
[98]
Min, B.H.; Kim, D.S.; Park, H.S.; Jun, C.H. Pd/C-Catalyzed carbonylative esterification of aryl halides with alcohols by using oxiranes as CO sources. Chemistry, 2016, 22(18), 6234-6238.
[http://dx.doi.org/10.1002/chem.201600570] [PMID: 26918409]
[99]
Friis, S.D.; Taaning, R.H.; Lindhardt, A.T.; Skrydstrup, T. Silacarboxylic acids as efficient carbon monoxide releasing molecules: synthesis and application in palladium-catalyzed carbonylation reactions. J. Am. Chem. Soc., 2011, 133(45), 18114-18117.
[http://dx.doi.org/10.1021/ja208652n] [PMID: 22014278]
[100]
Lian, Z.; Friis, S.D.; Lindhardt, A.T.; Skrydstrup, T. Palladium-catalyzed carbonylation of aryl bromides with N-substituted cyanamides. Synlett, 2014, 25(9), 1241-1245.
[http://dx.doi.org/10.1055/s-0033-1341200]
[101]
Hansen, S.V.F.; Ulven, T. Oxalyl chloride as a practical carbon monoxide source for carbonylation reactions. Org. Lett., 2015, 17(11), 2832-2835.
[http://dx.doi.org/10.1021/acs.orglett.5b01252] [PMID: 26000869]
[102]
Markovič, M.; Lopatka, P.; Koóš, P.; Gracza, T. Zn-Mediated reduction of oxalyl chloride forming CO and its application in carbonylation reactions. Org. Lett., 2015, 17(22), 5618-5621.
[http://dx.doi.org/10.1021/acs.orglett.5b02840] [PMID: 26555577]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy