Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Systematic Review Article

系统综述:轻度认知损伤和早期阿尔茨海默病认知训练研究的神经影像学结果

卷 17, 期 5, 2020

页: [472 - 486] 页: 15

弟呕挨: 10.2174/1567205017666200624202425

价格: $65

摘要

背景:认知训练(CT)已证明对轻度认知障碍(MCI)和早期痴呆患者的认知和心理社会功能有一定的好处,但这些发现的确定性仍不清楚。因此,了解CT改善认知功能的机制有助于理解CT与认知功能的关系。本综述的目的是确定MCI和早期阿尔茨海默病(AD) 的CT研究中神经影像学结果的证据。 方法:采用预先设定的搜索策略,搜索Medline、Embase、Web of Science、PsycINFO、CINAHL和Cochrane图书馆,共获得1778篇文章。对MCI或AD患者使用CT程序,并将有结构或功能的磁共振成像(MRI)结果纳入研究。使用Downs和Black标准对研究的质量进行评估。 结果:共有19项研究符合纳入标准。纳入研究的质量是可变的,纳入本综述的研究存在显著的异质性。训练后,任务激活度普遍增加,但功能连接度在训练后既增加又减少。结果因诊断、CT程序类型和脑网络检查而异。训练后海马体积未见影响,但皮质增厚和灰质体积增加。 结论:CT可导致痴呆患者功能和结构变化,但异质性和研究质量限制了结论的准确性。需要更大规模、更有力的研究来将这些发现与CT的临床益处联系起来。

关键词: 认知障碍,脑训练,脑成像,MCI,阿尔茨海默病,血管性认知功能障碍。

[1]
Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 2004; 256(3): 183-94.
[http://dx.doi.org/10.1111/j.1365-2796.2004.01388.x] [PMID: 15324362]
[2]
Cummings J, Lee G, Ritter A, Zhong K. Alzheimer's disease drug development pipeline: 2018 Alzheimer's & dementia (New York, NY) 2018; 4: 195-214.
[3]
Martin M, Clare L, Altgassen AM, Cameron MH, Zehnder F. Cognition-based interventions for healthy older people and people with mild cognitive impairment. Cochrane Database Syst Rev 2011; (1): CD006220
[http://dx.doi.org/10.1002/14651858.CD006220.pub2] [PMID: 21249675]
[4]
Belleville S. Cognitive training for persons with mild cognitive impairment. Int Psychogeriatr 2008; 20(1): 57-66.
[http://dx.doi.org/10.1017/S104161020700631X] [PMID: 17958927]
[5]
Gates NJ, Sachdev P. Is cognitive training an effective treatment for preclinical and early Alzheimer’s disease? J Alzheimers Dis 2014; 42(4): S551-9.
[http://dx.doi.org/10.3233/JAD-141302] [PMID: 25171716]
[6]
Bahar-Fuchs A, Clare L, Woods B. Cognitive training and cognitive rehabilitation for persons with mild to moderate dementia of the Alzheimer’s or vascular type: A review. Alzheimers Res Ther 2013; 5(4): 35.
[http://dx.doi.org/10.1186/alzrt189] [PMID: 23924584]
[7]
Bahar-Fuchs A, Martyr A, Goh AM, Sabates J, Clare L. Cognitive training for people with mild to moderate dementia. Cochrane Database Syst Rev 2019; 3 CD013069
[http://dx.doi.org/10.1002/14651858.CD013069.pub2] [PMID: 30909318]
[8]
Hill NT, Mowszowski L, Naismith SL, Chadwick VL, Valenzuela M, Lampit A. computerized cognitive training in older adults with mild cognitive impairment or dementia: A systematic review and meta-analysis. Am J Psychiatry 2017; 174(4): 329-40.
[http://dx.doi.org/10.1176/appi.ajp.2016.16030360] [PMID: 27838936]
[9]
ten Brinke LF, Davis JC, Barha CK, Liu-Ambrose T. Effects of computerized cognitive training on neuroimaging outcomes in older adults: A systematic review. BMC Geriatr 2017; 17(1): 139.
[http://dx.doi.org/10.1186/s12877-017-0529-x]
[10]
Belleville S, Bherer L. Biomarkers of cognitive training effects in aging. Curr Transl Geriatr Exp Gerontol Rep 2012; 1(2): 104-10.
[http://dx.doi.org/10.1007/s13670-012-0014-5] [PMID: 23864998]
[11]
Ikram MA, Vrooman HA, Vernooij MW, et al. Brain tissue volumes in relation to cognitive function and risk of dementia. Neurobiol Aging 2010; 31(3): 378-86.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.04.008] [PMID: 18501994]
[12]
Westman E, Cavallin L, Muehlboeck JS, et al. AddNeuroMed consortium. Sensitivity and specificity of medial temporal lobe visual ratings and multivariate regional MRI classification in Alzheimer’s disease. PLoS One 2011; 6(7) e22506
[http://dx.doi.org/10.1371/journal.pone.0022506] [PMID: 21811624]
[13]
Narayanan L, Murray AD. What can imaging tell us about cognitive impairment and dementia? World J Radiol 2016; 8(3): 240-54.
[http://dx.doi.org/10.4329/wjr.v8.i3.240] [PMID: 27029053]
[14]
Lehmann M, Koedam EL, Barnes J, et al. Alzheimer’s Disease Neuroimaging Initiative. Visual ratings of atrophy in MCI: Prediction of conversion and relationship with CSF biomarkers. Neurobiol Aging 2013; 34(1): 73-82.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.03.010] [PMID: 22516280]
[15]
Hosseini SM, Kramer JH, Kesler SR. Neural correlates of cognitive intervention in persons at risk of developing Alzheimer’s disease. Front Aging Neurosci 2014; 6: 231.
[http://dx.doi.org/10.3389/fnagi.2014.00231] [PMID: 25206335]
[16]
Park DC, Bischof GN. The aging mind: Neuroplasticity in response to cognitive training. Dialogues Clin Neurosci 2013; 15(1): 109-19.
[PMID: 23576894]
[17]
Park DC, Reuter-Lorenz P. The adaptive brain: Aging and neurocognitive scaffolding In Annu Rev Psychol 2009; 173-96.
[18]
Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R. Understanding diffusion MR imaging techniques: From scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 2006; 26(1): S205-23.
[http://dx.doi.org/10.1148/rg.26si065510] [PMID: 17050517]
[19]
Health Quality Ontario. The appropriate use of neuroimaging in the diagnostic work-up of dementia: An evidence-based analysis. Ont Health Technol Assess Ser 2014; 14(1): 1-64.
[PMID: 24592296]
[20]
Grieve SM, Williams LM, Paul RH, Clark CR, Gordon E. Cognitive aging, executive function, and fractional anisotropy: A diffusion tensor MR imaging study. Am J Neuroradiol 2007; 28(2): 226-35.
[PMID: 17296985]
[21]
Glover GH. Overview of functional magnetic resonance imaging. Neurosurg Clin N Am 2011; 22(2): 133-139[vii.].
[http://dx.doi.org/10.1016/j.nec.2010.11.001] [PMID: 21435566]
[22]
Grade M, Hernandez Tamames JA, Pizzini FB, Achten E, Golay X, Smits M. A neuroradiologist’s guide to arterial spin labeling MRI in clinical practice. Neuroradiology 2015; 57(12): 1181-202.
[http://dx.doi.org/10.1007/s00234-015-1571-z] [PMID: 26351201]
[23]
Petcharunpaisan S, Ramalho J, Castillo M. Arterial spin labeling in neuroimaging. World J Radiol 2010; 2(10): 384-98.
[http://dx.doi.org/10.4329/wjr.v2.i10.384] [PMID: 21161024]
[24]
Rogers BP, Morgan VL, Newton AT, Gore JC. Assessing functional connectivity in the human brain by fMRI. Magn Reson Imaging 2007; 25(10): 1347-57.
[http://dx.doi.org/10.1016/j.mri.2007.03.007] [PMID: 17499467]
[25]
Vermeij A, Kessels RPC, Heskamp L, Simons EMF, Dautzenberg PLJ, Claassen JAHR. Prefrontal activation may predict working-memory training gain in normal aging and mild cognitive impairment. Brain Imaging Behav 2016; 11(1): 141-54.
[PMID: 26843001]
[26]
Belleville S, Clément F, Mellah S, Gilbert B, Fontaine F, Gauthier S. Training-related brain plasticity in subjects at risk of developing Alzheimer’s disease. Brain 2011; 134(6): 1623-34.
[http://dx.doi.org/10.1093/brain/awr037] [PMID: 21427462]
[27]
Chhatwal JP, Sperling RA. Functional MRI of mnemonic networks across the spectrum of normal aging, mild cognitive impairment, and Alzheimer’s disease. J Alzheimers Dis 2012; 31(3): S155-67.
[28]
Sala-Llonch R, Bartrés-Faz D, Junqué C. Reorganization of brain networks in aging: A review of functional connectivity studies. Front Psychol 2015; 6(663): 663.
[http://dx.doi.org/10.3389/fpsyg.2015.00663] [PMID: 26052298]
[29]
Morcom AM, Henson RNA. Increased prefrontal activity with aging reflects nonspecific neural responses rather than compensation. J Neurosci 2018; 38(33): 7303-13.
[http://dx.doi.org/10.1523/JNEUROSCI.1701-17.2018] [PMID: 30037829]
[30]
Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med 2009; 6(7) e1000097
[http://dx.doi.org/10.1371/journal.pmed.1000097] [PMID: 19621072]
[31]
Gates NJ, Sachdev PS, Fiatarone Singh MA, Valenzuela M. Cognitive and memory training in adults at risk of dementia: A systematic review. BMC Geriatr 2011; 11: 55.
[http://dx.doi.org/10.1186/1471-2318-11-55] [PMID: 21942932]
[32]
Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health 1998; 52(6): 377-84.
[http://dx.doi.org/10.1136/jech.52.6.377] [PMID: 9764259]
[33]
Huntley JD, Hampshire A, Bor D, Owen A, Howard RJ. Adaptive working memory strategy training in early Alzheimer’s disease: Randomised controlled trial. Br J Psychiatry 2017; 210(1): 61-6.
[http://dx.doi.org/10.1192/bjp.bp.116.182048] [PMID: 27758836]
[34]
Barban F, Mancini M, Cercignani M, et al. A pilot study on brain plasticity of functional connectivity modulated by cognitive training in mild Alzheimer’s disease and mild cognitive impairment. Brain Sci 2017; 7(5) E50
[http://dx.doi.org/10.3390/brainsci7050050] [PMID: 28468232]
[35]
Yang H, Leaver AM, Siddarth P, et al. Neurochemical and neuroanatomical plasticity following memory training and yoga interventions in older adults with mild cognitive impairment. Front Aging Neurosci 2016; 8: 277.
[http://dx.doi.org/10.3389/fnagi.2016.00277]
[36]
Feng W, Wang D, Tang L, et al. Effects of different cognitive trainings on amnestic mild cognitive impairment in the elderly: A one-year longitudinal functional magnetic resonance imaging (MRI) study. Med Sci Monit 2018; 24: 5517-27.
[http://dx.doi.org/10.12659/MSM.908315] [PMID: 30089102]
[37]
Suo C, Singh MF, Gates N, et al. Therapeutically relevant structural and functional mechanisms triggered by physical and cognitive exercise. Mol Psychiatry 2016; 21(11): 1645.
[http://dx.doi.org/10.1038/mp.2016.57] [PMID: 27090304]
[38]
Na HR, Lim JS, Kim WJ, et al. Multimodal Assessment of neural substrates in computerized cognitive training: A preliminary study. J Clin Neurol 2018; 14(4): 454-63.
[http://dx.doi.org/10.3988/jcn.2018.14.4.454] [PMID: 30198220]
[39]
Zhang H, Wang Z, Wang J, et al. Computerized multi-domain cognitive training reduces brain atrophy in patients with amnestic mild cognitive impairment. Transl Psychiatry 2019; 9(1): 48.
[http://dx.doi.org/10.1038/s41398-019-0385-x] [PMID: 30705261]
[40]
Hampstead BM, Stringer AY, Stilla RF, Giddens M, Sathian K. Mnemonic strategy training partially restores hippocampal activity in patients with mild cognitive impairment. Hippocampus 2012; 22(8): 1652-8.
[http://dx.doi.org/10.1002/hipo.22006] [PMID: 22368035]
[41]
Rosen AC, Sugiura L, Kramer JH, Whitfield-Gabrieli S, Gabrieli JD. Cognitive training changes hippocampal function in mild cognitive impairment: A pilot study. J Alzheimers Dis 2011; 26(3): 349-57.
[http://dx.doi.org/10.3233/JAD-2011-0009] [PMID: 21971474]
[42]
Hampstead BM, Stringer AY, Stilla RF, et al. Activation and effective connectivity changes following explicit-memory training for face-name pairs in patients with mild cognitive impairment: A pilot study. Neurorehabil Neural Repair 2011; 25(3): 210-22.
[http://dx.doi.org/10.1177/1545968310382424] [PMID: 20935339]
[43]
Simon SS, Hampstead BM, Nucci MP, et al. Cognitive and brain activity changes after mnemonic strategy training in amnestic mild cognitive impairment: Evidence from a randomized controlled trial. Front Aging Neurosci 2018; 10: 342.
[http://dx.doi.org/10.3389/fnagi.2018.00342] [PMID: 30483113]
[44]
Hampstead BM, Stringer AY, Stilla RF, Sathian K. Mnemonic strategy training increases neocortical activation in healthy older adults and patients with mild cognitive impairment. Int J Psychophysiol 2020; 154: 27-36.
[http://dx.doi.org/10.1016/j.ijpsycho.2019.04.011]] [PMID: 31067489]
[45]
De Marco M, Meneghello F, Pilosio C, Rigon J, Venneri A. Up-regulation of DMN connectivity in mild cognitive impairment via network-based cognitive training. Curr Alzheimer Res 2018; 15(6): 578-89.
[http://dx.doi.org/10.2174/1567205015666171212103323] [PMID: 29231140]
[46]
Lin F, Heffner KL, Ren P, et al. Cognitive and neural effects of vision-based speed-of-processing training in older adults with amnestic mild cognitive impairment: A pilot study. J Am Geriatr Soc 2016; 64(6): 1293-8.
[http://dx.doi.org/10.1111/jgs.14132] [PMID: 27321608]
[47]
Lin F, Heffner KL, Ren P, Tadin D. A role of the parasympathetic nervous system in cognitive training. Curr Alzheimer Res 2017; 14(7): 784-9.
[http://dx.doi.org/10.2174/1567205014666170203095128] [PMID: 28164771]
[48]
Eyre HA, Acevedo B, Yang H, et al. Changes in neural connectivity and memory following a yoga intervention for older adults: a pilot study. J Alzheimers Dis 2016; 52(2): 673-84.
[http://dx.doi.org/10.3233/JAD-150653] [PMID: 27060939]
[49]
Li BY, He NY, Qiao Y, et al. Computerized cognitive training for Chinese mild cognitive impairment patients: A neuropsychological and fMRI study. Neuroimage Clin 2019; 22 101691
[http://dx.doi.org/10.1016/j.nicl.2019.101691] [PMID: 30708349]
[50]
Pantoni L, Poggesi A, Diciotti S, et al. Effect of attention training in mild cognitive impairment patients with subcortical vascular changes: The RehAtt study. J Alzheimers Dis 2017; 60(2): 615-24.
[http://dx.doi.org/10.3233/JAD-170428] [PMID: 28869475]
[51]
Reuter-Lorenz PA, Cappell KA. Neurocognitive aging and the compensation hypothesis. Curr Dir Psychol Sci 2008; 17(3): 177-82.
[http://dx.doi.org/10.1111/j.1467-8721.2008.00570.x]
[52]
Berlingeri M, Danelli L, Bottini G, Sberna M, Paulesu E. Reassessing the HAROLD model: Is the hemispheric asymmetry reduction in older adults a special case of compensatory-related utilisation of neural circuits? Exp Brain Res 2013; 224(3): 393-410.
[http://dx.doi.org/10.1007/s00221-012-3319-x] [PMID: 23178904]
[53]
Cabeza R. Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 2002; 17(1): 85-100.
[http://dx.doi.org/10.1037/0882-7974.17.1.85] [PMID: 11931290]
[54]
Goh JO, Park DC. Neuroplasticity and cognitive aging: The scaffolding theory of aging and cognition. Restor Neurol Neurosci 2009; 27(5): 391-403.
[http://dx.doi.org/10.3233/RNN-2009-0493] [PMID: 19847066]
[55]
Schneider-Garces NJ, Gordon BA, Brumback-Peltz CR, et al. Span, CRUNCH, and beyond: Working memory capacity and the aging brain. J Cogn Neurosci 2010; 22(4): 655-69.
[http://dx.doi.org/10.1162/jocn.2009.21230] [PMID: 19320550]
[56]
Festini SB, Zahodne L, Reuter-Lorenz PA. Theoretical perspectives on age differences in brain activation: HAROLD, PASA, CRUNCH-how do they stac up?. Oxford University Press 2018.
[57]
Reuter-Lorenz PA, Park DC. How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychol Rev 2014; 24(3): 355-70.
[http://dx.doi.org/10.1007/s11065-014-9270-9] [PMID: 25143069]
[58]
Myrum C. Is PASA Passé? Rethinking compensatory mechanisms in cognitive aging. J Neurosci 2019; 39(5): 786-7.
[http://dx.doi.org/10.1523/JNEUROSCI.2348-18.2018] [PMID: 30700526]
[59]
Mevel K, Chételat G, Eustache F, Desgranges B. The default mode network in healthy aging and Alzheimer’s disease. Int J Alzheimers Dis 2011; 2011 535816
[http://dx.doi.org/10.4061/2011/535816]
[60]
Weiler M, Casseb RF, De Ligo Teixeira CV, et al. Alzheimer’s disease patients with higher cognitive reserve present more efficient network topology. Alzheimers Dement 2017; 13(7): 584.
[http://dx.doi.org/10.1016/j.jalz.2017.07.209]
[61]
Sheline YI, Raichle ME. Resting state functional connectivity in preclinical Alzheimer’s disease. Biol Psychiatry 2013; 74(5): 340-7.
[http://dx.doi.org/10.1016/j.biopsych.2012.11.028] [PMID: 23290495]
[62]
Brier MR, Thomas JB, Snyder AZ, et al. Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression. J Neurosci 2012; 32(26): 8890-9.
[http://dx.doi.org/10.1523/JNEUROSCI.5698-11.2012] [PMID: 22745490]
[63]
Brier MR, Thomas JB, Ances BM. Network dysfunction in Alzheimer’s disease: Refining the disconnection hypothesis. Brain Connect 2014; 4(5): 299-311.
[http://dx.doi.org/10.1089/brain.2014.0236] [PMID: 24796856]
[64]
Bakker A, Krauss GL, Albert MS, et al. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 2012; 74(3): 467-74.
[http://dx.doi.org/10.1016/j.neuron.2012.03.023] [PMID: 22578498]
[65]
Li M, Zheng G, Zheng Y, et al. Alterations in resting-state functional connectivity of the default mode network in amnestic mild cognitive impairment: An fMRI study. BMC Med Imaging 2017; 17(1): 48.
[http://dx.doi.org/10.1186/s12880-017-0221-9] [PMID: 28814282]
[66]
Das SR, Pluta J, Mancuso L, et al. Increased functional connectivity within medial temporal lobe in mild cognitive impairment. Hippocampus 2013; 23(1): 1-6.
[http://dx.doi.org/10.1002/hipo.22051] [PMID: 22815064]
[67]
Lampit A, Hallock H, Valenzuela M. Computerized cognitive training in cognitively healthy older adults: A systematic review and meta-analysis of effect modifiers. PLoS Med 2014; 11(11) e1001756
[http://dx.doi.org/10.1371/journal.pmed.1001756] [PMID: 25405755]
[68]
Cheng Y, Wu W, Feng W, et al. The effects of multi-domain versus single-domain cognitive training in non-demented older people: A randomized controlled trial. BMC Med 2012; 10: 30.
[http://dx.doi.org/10.1186/1741-7015-10-30] [PMID: 22453114]
[69]
Motter JN, Devanand DP, Doraiswamy PM, Sneed JR. Clinical trials to gain FDA approval for computerized cognitive training: What is the ideal control condition? Front Aging Neurosci 2016; 8: 249.
[http://dx.doi.org/10.3389/fnagi.2016.00249] [PMID: 27853432]
[70]
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34(7): 939-44.
[http://dx.doi.org/10.1212/WNL.34.7.939] [PMID: 6610841]
[71]
Organisation WH. International classification of diseases. WHO 2010.
[72]
Organisation WH. International classification of diseases 11. WHO 2018.
[73]
Association AP. Diagnostic and statistical manual of mental health disorders (DSM-IV). APA 2000.
[74]
Association AP. Diagnostic and statistical manual of mental health disorders (DSM-V). APA 2013.
[http://dx.doi.org/10.1176/appi.books.9780890425596]
[75]
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 263-9.
[http://dx.doi.org/10.1016/j.jalz.2011.03.005] [PMID: 21514250]
[76]
Petersen RC, Caracciolo B, Brayne C, Gauthier S, Jelic V, Fratiglioni L. Mild cognitive impairment: A concept in evolution. J Intern Med 2014; 275(3): 214-28.
[http://dx.doi.org/10.1111/joim.12190] [PMID: 24605806]
[77]
Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment--beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J Intern Med 2004; 256(3): 240-6.
[http://dx.doi.org/10.1111/j.1365-2796.2004.01380.x] [PMID: 15324367]
[78]
Román GC, Tatemichi TK, Erkinjuntti T, et al. Vascular dementia: Diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 1993; 43(2): 250-60.
[http://dx.doi.org/10.1212/WNL.43.2.250] [PMID: 8094895]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy