[1]
Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol., 2014, 7, 60-72.
[5]
Vlasova, I.I. Peroxidase activity of human hemoproteins: Keeping the fire under control. Molecules, 2018, 23, 1-27.
[6]
Shamsi, A.; Mohammad, T.; Khan, M.S.; Shahwan, M.; Husain, F.M.; Rehman, M.T.; Hassan, M.I.; Ahmad, F.; Islam, A. Unraveling binding mechanism of Alzheimer’s drug rivastigmine tartrate with human transferrin: Molecular docking and multi-spectroscopic approach towards neurodegenerative diseases. Biomolecules, 2019, 9(9), 495.
[8]
Agbas, A. Trends of protein aggregation in neurodegenerative diseases, , 2018.
[9]
Koseoglu, E.; Koseoglu, R.; Kendirci, M.; Saraymen, R.; Saraymen, B. Trace metal concentrations in hair and nails from Alzheimer’s disease patients: Relations with clinical severity. J. Trace Elem. Med. Biol., 2017, 39, 124-128.
[10]
Drahansky, M.; Paridah, M.; Moradbak, A.; Mohamed, A. We are IntechOpen, the world’ s leading publisher of Open Access books Built by scientists, for scientists TOP 1; Intech, 2016, p. 13.
[11]
Tamás, M.J.; Sharma, S.K.; Ibstedt, S.; Jacobson, T.; Christen, P. Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules, 2014, 4, 252-267.
[15]
Flora, S.J.S.; Mittal, M.; Mehta, A. Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J. Med. Res., 2008, 128(4), 501-523.
[16]
Palaniappan, R.; Muthulingam, M. Effect of heavy metal, chromium on protein and amino acid 450 contents in gill, liver and kidney of freshwater fish, Channa striatus (Bloch). Int. J. Curr. Microbiol. Appl. Sci., 2016, 5(7), 372-382.
[17]
Flora, S.J.S. Nutritional components modify metal absorption, toxic response and chelation therapy. J. Nutr. Environ. Med., 2002, 12, 53-67.
[18]
Aungst, B.J.; Fung, H.L. The effects of dietary calcium on lead absorption, distribution, and elimination kinetics in rats. J. Toxicol. Environ. Health, 1985, 16(1), 147-159.
[19]
Flora, S.J.S.; Tandon, S.K. Preventive and therapeutic effects of thiamine, ascorbic acid and their combination in lead intoxication. Acta Pharmacol. Toxicol. (Copenh.), 1986, 58(5), 374-378.
[20]
Oh, S.H.; Lim, S.C. A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation. Toxicol. Appl. Pharmacol., 2006, 212(3), 212-223.
[21]
Mohajeri, M.; Rezaee, M.; Sahebkar, A. Cadmium-induced toxicity is rescued by curcumin: A review. Biofactors, 2017, 43, 645-661.
[22]
Wang, Z.; Zhang, J.; Chen, L.; Li, J.; Zhang, H.; Guo, X. Glycine suppresses AGE/RAGE signaling athway and subsequent oxidative stress by restoring Glo1 function in the aorta of diabetic rats and in HUVECs. Oxid. Med. Cell. Longev., 2019, 46, 28962.
[23]
Geetha, T.; Rohit, B.; Pal, K. Sesamol: An efficient antioxidant with potential therapeutic benefits. Med. Chem., 2009, 5, 367-371.
[24]
Micali, A. Flavocoxid, a natural antioxidant, protects mouse kidney from cadmium-induced toxicity. Oxid. Med. Cell. Longev., 2018, 2018, 9162946.
[26]
Puett, D. The Equilibrium unfolding parameters of horse and sperm whale myoglobin. J. Biol. Chem., 1973, 248, 4263-4634.
[27]
Narra, H.P.; Cordes, M.H.J.; Ochman, H. Structural features and the persistence of acquired proteins. Proteomics, 2008, 8, 4772-4781.
[28]
Kuroda, Y.; Hamada, D.; Tanaka, T.; Goto, Y. High helicity of peptide fragments corresponding to 479 β-strand regions of β-lactoglobulin observed by 2D-NMR spectroscopy. Fold. Des., 1996, 1, 255-263.
[29]
Sharma, G.S.; Warepam, M.; Bhattacharya, R.; Singh, L.R. Covalent modification by glyoxals converts Cytochrome C into its apoptotically competent state. Sci. Rep., 2019, 9, 1-8.
[30]
Schrodinger, L.L.C. The PyMOL molecular graphics system. Version, 2010, 1(5)
[31]
Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 1997, 18, 2714-2723.
[33]
Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int., 2019, 125, 365-385.
[34]
Greenfield, N.J. Circular dichroism analysis for protein-protein interactions. Methods Mol. Biol., 2004, 261, 55-78.
[35]
Parray, Z.A.; Shahid, S.; Ahmad, F.; Hassan, M.I.; Islam, A. Characterization of intermediate state of myoglobin in the presence of PEG 10 under physiological conditions. Int. J. Biol. Macromol., 2017, 99, 241-248.
[37]
Kito, H.; Ose, Y.; Sato, T. Cadmium-binding protein (metallothionein) in carp. Environ. Health Perspect., 1986, 65, 117-124.
[38]
Kondoh, M.; Ogasawara, S.; Araragi, S.; Higashimoto, M.; Sato, M. Cytochrome C release from mitochondria induced by cadmium. J. Health Sci., 2001, 47(1), 78-82.
[39]
Bent, P.; Hospital, B. Metallothionein: A cadmium and zinc-containing protein from equine renal cortex. J. Biol. Chem., 1961, 236(9), 508.
[40]
Mizrahi, L.; Achituv, Y. Effect of heavy metals ions on enzyme activity in the mediterranean mussel, Donax trunculus. Bull. Environ. Contam. Toxicol., 1989, 42, 854-859.
[41]
Alnuaimi, M.M.; Saeed, I.A.; Ashraf, S.S. Effect of various heavy metals on the enzymatic activity of E. coli alkaline phosphatase. Int. J. Biotechnol. Biochem., 2012, 8(1), 973-2691.