Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Molecular Insight into the Crosstalk of UPS Components and Alzheimer’s Disease

Author(s): Abdullah Al Mamun, Md. Mosiqur Rahman, Sonia Zaman, Mst Shirajum Munira, Md. Sahab Uddin*, Abdur Rauf, Naheed Banu and Ghulam Md Ashraf*

Volume 21, Issue 12, 2020

Page: [1193 - 1201] Pages: 9

DOI: 10.2174/1389203721666200923153406

Price: $65

Abstract

The ubiquitin (Ub)-proteasome system (UPS) targets various cellular proteins for degradation. It has been found that defects in the UPS play a crucial role in the pathogenesis of Alzheimer's disease (AD), as the existence of Ub immunoreactivity in AD-linked neuronal inclusions, including neurofibrillary tangles, is observed in all types of AD cases. Current investigations have shown that components of the UPS can be connected with the early stage of AD, which is characterized by synaptic dysfunction, and to the late phases of the disease, marked by neurodegeneration. Although the significance of UPS in the pathogenesis of AD has been emphasized, targeted treatment at the main components of these pathways has a great perspective in advancing new therapeutic interventions for AD. In this review, we emphasize the relationship between UPS and AD pathology. We also represent the recent therapeutic advancements targeting UPS components in AD.

Keywords: Ubiquitin-proteasome system, Alzheimer`s disease, ubiquitin, proteasome, neurodegeneration, pathogenesis.

Graphical Abstract

[1]
Selkoe, D.J. Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev., 2001, 81(2), 741-766.
[http://dx.doi.org/10.1152/physrev.2001.81.2.741] [PMID: 11274343]
[2]
Uddin, M.S.; Mamun, A.A.; Jakaria, M.; Thangapandiyan, S.; Ahmad, J.; Rahman, M.A.; Mathew, B.; Abdel-Daim, M.M.; Aleya, L. Emerging promise of sulforaphane-mediated Nrf2 signaling cascade against neurological disorders. Sci. Total Environ., 2020, 707, 135624.
[http://dx.doi.org/10.1016/j.scitotenv.2019.135624] [PMID: 31784171]
[3]
Kabir, M.T.; Uddin, M.S.; Begum, M.M.; Thangapandiyan, S.; Rahman, M.S.; Aleya, L.; Mathew, B.; Ahmed, M.; Barreto, G.E.; Ashraf, G.M. Cholinesterase Inhibitors for Alzheimer’s Disease: Multitargeting Strategy Based on Anti-Alzheimer’s Drugs Repositioning. Curr. Pharm. Des., 2019, 25(33), 3519-3535.
[http://dx.doi.org/10.2174/1381612825666191008103141] [PMID: 31593530]
[4]
Mamun, A.A.; Uddin, M.S.; Mathew, B.; Ashraf, G.M. Toxic tau: structural origins of tau aggregation in Alzheimer’s disease. Neural Regen. Res., 2020, 15(8), 1417-1420.
[http://dx.doi.org/10.4103/1673-5374.274329] [PMID: 31997800]
[5]
Uddin, M.S.; Rahman, M.M.; Jakaria, M.; Rahman, M.S.; Hossain, M.S.; Islam, A.; Ahmed, M.; Mathew, B.; Omar, U.M.; Barreto, G.E.; Ashraf, G.M. Estrogen Signaling in Alzheimer’s Disease: Molecular Insights and Therapeutic Targets for Alzheimer’s Dementia. Mol. Neurobiol., 2020, 57(6), 2654-2670.
[http://dx.doi.org/10.1007/s12035-020-01911-8] [PMID: 32297302]
[6]
Tarawneh, R.; Holtzman, D.M. The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb. Perspect. Med., 2012, 2(5), a006148.
[http://dx.doi.org/10.1101/cshperspect.a006148] [PMID: 22553492]
[7]
Welsh, K.A.; Butters, N.; Hughes, J.P.; Mohs, R.C.; Heyman, A. Detection and staging of dementia in Alzheimer’s disease. Use of the neuropsychological measures developed for the Consortium to Establish a Registry for Alzheimer’s Disease. Arch. Neurol., 1992, 49(5), 448-452.
[http://dx.doi.org/10.1001/archneur.1992.00530290030008] [PMID: 1580805]
[8]
Artero, S.; Tierney, M.C.; Touchon, J.; Ritchie, K. Prediction of transition from cognitive impairment to senile dementia: a prospective, longitudinal study. Acta Psychiatr. Scand., 2003, 107(5), 390-393.
[http://dx.doi.org/10.1034/j.1600-0447.2003.00081.x] [PMID: 12752036]
[9]
Oddo, S. The ubiquitin-proteasome system in Alzheimer’s disease. J. Cell. Mol. Med., 2008, 12(2), 363-373.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00276.x] [PMID: 18266959]
[10]
Kabir, M.T.; Uddin, M.S.; Mathew, B.; Das, P.K.; Perveen, A.; Ashraf, G.M. Emerging Promise of Immunotherapy for Alzheimer’s Disease: A New Hope for the Development of Alzheimer’s Vaccine. Curr. Top. Med. Chem., 2020, 20(13), 1214-1234.
[http://dx.doi.org/10.2174/1568026620666200422105156] [PMID: 32321405]
[11]
Uddin, M.S.; Kabir, M.T.; Niaz, K.; Jeandet, P.; Clément, C.; Mathew, B.; Rauf, A.; Rengasamy, K.R.R.; Sobarzo-Sánchez, E.; Ashraf, G.M.; Aleya, L. Molecular Insight into the Therapeutic Promise of Flavonoids against Alzheimer’s Disease. Molecules, 2020, 25(6), 1267.
[http://dx.doi.org/10.3390/molecules25061267] [PMID: 32168835]
[12]
Price, J.L.; Davis, P.B.; Morris, J.C.; White, D.L. The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiol. Aging, 1991, 12(4), 295-312.
[http://dx.doi.org/10.1016/0197-4580(91)90006-6] [PMID: 1961359]
[13]
Uddin, M.S.; Kabir, M.T.; Rahman, M.H.; Alim, M.A.; Rahman, M.M.; Khatkar, A.; Al Mamun, A.; Rauf, A.; Mathew, B.; Ashraf, G.M. Exploring the Multifunctional Neuroprotective Promise of Rasagiline Derivatives for Multi-Dysfunctional Alzheimer’s Disease. Curr. Pharm. Des., 2020, 26, 4690-4698.
[http://dx.doi.org/10.2174/1381612826666200406075044] [PMID: 32250219]
[14]
Uddin, M.S.; Tewari, D.; Mamun, A.A.; Kabir, M.T.; Niaz, K.; Wahed, M.I.I.; Barreto, G.E.; Ashraf, G.M. Circadian and sleep dysfunction in Alzheimer’s disease. Ageing Res. Rev., 2020, 60, 101046.
[http://dx.doi.org/10.1016/j.arr.2020.101046] [PMID: 32171783]
[15]
Masters, C.L.; Simms, G.; Weinman, N.A.; Multhaup, G.; McDonald, B.L.; Beyreuther, K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA, 1985, 82(12), 4245-4249.
[http://dx.doi.org/10.1073/pnas.82.12.4245] [PMID: 3159021]
[16]
Glenner, G.G.; Wong, C.W. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun., 1984, 120(3), 885-890.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4] [PMID: 6375662]
[17]
Uddin, M.S.; Kabir, M.T.; Rahman, M.M.; Mathew, B.; Shah, M.A.; Ashraf, G.M. TV 3326 for Alzheimer’s Dementia: A Novel Multimodal ChE and MAO Inhibitors to Mitigate Alzheimer’s- like Neuropathology J. Pharm. Pharmacol., 2020, 72, 1001-1012.
[http://dx.doi.org/10.1111/jphp.13244]
[18]
LaFerla, F.M.; Green, K.N.; Oddo, S. Intracellular amyloid-β in Alzheimer’s disease. Nat. Rev. Neurosci., 2007, 8(7), 499-509.
[http://dx.doi.org/10.1038/nrn2168] [PMID: 17551515]
[19]
Kosik, K.S.; Joachim, C.L.; Selkoe, D.J. Microtubule-associated protein τ (τ) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1986, 83(11), 4044-4048.
[http://dx.doi.org/10.1073/pnas.83.11.4044] [PMID: 2424016]
[20]
Grundke-Iqbal, I.; Iqbal, K.; Tung, Y.C.; Quinlan, M.; Wisniewski, H.M.; Binder, L.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA, 1986, 83(13), 4913-4917.
[http://dx.doi.org/10.1073/pnas.83.13.4913] [PMID: 3088567]
[21]
Ihara, Y.; Nukina, N.; Miura, R.; Ogawara, M. Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer’s disease. J. Biochem., 1986, 99(6), 1807-1810.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a135662] [PMID: 2427509]
[22]
Goedert, M.; Wischik, C.M.; Crowther, R.A.; Walker, J.E.; Klug, A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc. Natl. Acad. Sci. USA, 1988, 85(11), 4051-4055.
[http://dx.doi.org/10.1073/pnas.85.11.4051] [PMID: 3131773]
[23]
Uddin, M.S.; Kabir, M.T.; Jeandet, P.; Mathew, B.; Ashraf, G.M.; Perveen, A.; Bin-Jumah, M.N.; Mousa, S.A.; Abdel-Daim, M.M. Novel Anti-Alzheimer’s Therapeutic Molecules Targeting Amyloid Precursor Protein Processing. Oxid. Med. Cell. Longev., 2020, 2020, 7039138.
[http://dx.doi.org/10.1155/2020/7039138] [PMID: 32411333]
[24]
Uddin, M.S.; Kabir, M.T. Emerging Signal Regulating Potential of Genistein Against Alzheimer’s Disease: A Promising Molecule of Interest. Front. Cell Dev. Biol., 2019, 7, 197.
[http://dx.doi.org/10.3389/fcell.2019.00197] [PMID: 31620438]
[25]
Zaplatic, E.; Bule, M.; Shah, S.Z.A.; Uddin, M.S.; Niaz, K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci., 2019, 224, 109-119.
[http://dx.doi.org/10.1016/j.lfs.2019.03.055] [PMID: 30914316]
[26]
Uddin, M.S.; Hossain, M.F.; Mamun, A.A.; Shah, M.A.; Hasana, S.; Bulbul, I.J.; Sarwar, M.S.; Mansouri, R.A.; Ashraf, G.M.; Rauf, A.; Abdel-Daim, M.M.; Bin-Jumah, M.N. Exploring the multimodal role of phytochemicals in the modulation of cellular signaling pathways to combat age-related neurodegeneration. Sci. Total Environ., 2020, 725, 138313.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138313] [PMID: 32464743]
[27]
Flood, F.; Murphy, S.; Cowburn, R.F.; Lannfelt, L.; Walker, B.; Johnston, J.A. Proteasome-mediated effects on amyloid precursor protein processing at the γ-secretase site. Biochem. J., 2005, 385(Pt 2), 545-550.
[http://dx.doi.org/10.1042/BJ20041145] [PMID: 15473868]
[28]
Kienlen-Campard, P.; Feyt, C.; Huysseune, S.; de Diesbach, P.; N’Kuli, F.; Courtoy, P.J.; Octave, J.N. Lactacystin decreases amyloid-β peptide production by inhibiting β-secretase activity. J. Neurosci. Res., 2006, 84(6), 1311-1322.
[http://dx.doi.org/10.1002/jnr.21025] [PMID: 16941495]
[29]
Uddin, M.S.; Kabir, M.T.; Tewari, D.; Mathew, B.; Aleya, L. Emerging signal regulating potential of small molecule biflavonoids to combat neuropathological insults of Alzheimer’s disease. Sci. Total Environ., 2020, 700, 134836.
[http://dx.doi.org/10.1016/j.scitotenv.2019.134836] [PMID: 31704512]
[30]
Lowe, J.; Mayer, R.J.; Landon, M. Ubiquitin in neurodegenerative diseases. Brain Pathol., 1993, 3(1), 55-65.
[http://dx.doi.org/10.1111/j.1750-3639.1993.tb00726.x] [PMID: 8269084]
[31]
Morishima-Kawashima, M.; Hasegawa, M.; Takio, K.; Suzuki, M.; Titani, K.; Ihara, Y. Ubiquitin is conjugated with amino-terminally processed tau in paired helical filaments. Neuron, 1993, 10(6), 1151-1160.
[http://dx.doi.org/10.1016/0896-6273(93)90063-W] [PMID: 8391280]
[32]
Deriziotis, P.; Tabrizi, S.J. Prions and the proteasome. Biochim. Biophys. Acta, 2008, 1782(12), 713-722.
[http://dx.doi.org/10.1016/j.bbadis.2008.06.011] [PMID: 18644436]
[33]
Cecarini, V.; Ding, Q.; Keller, J.N. Oxidative inactivation of the proteasome in Alzheimer’s disease. Free Radic. Res., 2007, 41(6), 673-680.
[http://dx.doi.org/10.1080/10715760701286159] [PMID: 17516240]
[34]
Keller, J.N.; Hanni, K.B.; Markesbery, W.R. Impaired proteasome function in Alzheimer’s disease. J. Neurochem., 2000, 75(1), 436-439.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0750436.x] [PMID: 10854289]
[35]
Uddin, M.S.; Stachowiak, A.; Mamun, A.A.; Tzvetkov, N.T.; Takeda, S.; Atanasov, A.G.; Bergantin, L.B.; Abdel-Daim, M.M.; Stankiewicz, A.M. Autophagy and Alzheimer’s Disease: From Molecular Mechanisms to Therapeutic Implications. Front. Aging Neurosci., 2018, 10, 04.
[http://dx.doi.org/10.3389/fnagi.2018.00004] [PMID: 29441009]
[36]
Gentier, R.J.; van Leeuwen, F.W. Misframed ubiquitin and impaired protein quality control: an early event in Alzheimer’s disease. Front. Mol. Neurosci., 2015, 8, 47.
[http://dx.doi.org/10.3389/fnmol.2015.00047] [PMID: 26388726]
[37]
Schmidt, M.; Finley, D. Regulation of proteasome activity in health and disease. Biochim. Biophys. Acta, 2014, 1843(1), 13-25.
[http://dx.doi.org/10.1016/j.bbamcr.2013.08.012] [PMID: 23994620]
[38]
Necchi, D.; Lomoio, S.; Scherini, E. Dysfunction of the ubiquitin-proteasome system in the cerebellum of aging Ts65Dn mice. Exp. Neurol., 2011, 232(2), 114-118.
[http://dx.doi.org/10.1016/j.expneurol.2011.08.009] [PMID: 21867700]
[39]
Ciechanover, A.; Brundin, P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron, 2003, 40(2), 427-446.
[http://dx.doi.org/10.1016/S0896-6273(03)00606-8] [PMID: 14556719]
[40]
Hegde, A.N. Ubiquitin-proteasome-mediated local protein degradation and synaptic plasticity. Prog. Neurobiol., 2004, 73(5), 311-357.
[http://dx.doi.org/10.1016/j.pneurobio.2004.05.005] [PMID: 15312912]
[41]
Sahab Uddin, M.; Ashraf, G.M. Quality Control of Cellular Protein in Neurodegenerative Disorders; IGI Global: Hershey, 2020.
[http://dx.doi.org/10.4018/978-1-7998-1317-0]
[42]
van Leeuwen, F.W.; de Kleijn, D.P. V.; van den Hurk, H.H.; Neubauer, A.; Sonnemans, M.A.F.; Sluijs, J.A.; Köycü, S.; Ramdjielal, R.D.J.; Salehi, A.; Martens, G.J.M.; Grosveld, F.G.; Burbach, J.P.H.; Hol, E.M.; Hol, E.M. Frameshift mutants of β amyloid precursor protein and ubiquitin-B in Alzheimer’s and down patients. Science, 1998, 279(5348), 242-247.
[43]
Tan, Z.; Sun, X.; Hou, F-S.; Oh, H-W.; Hilgenberg, L.G.W.; Hol, E.M.; van Leeuwen, F.W.; Smith, M.A.; O’Dowd, D.K.; Schreiber, S.S. Mutant ubiquitin found in Alzheimer’s disease causes neuritic beading of mitochondria in association with neuronal degeneration. Cell Death Differ., 2007, 14(10), 1721-1732.
[http://dx.doi.org/10.1038/sj.cdd.4402180] [PMID: 17571083]
[44]
Park, C.W.; Ryu, K.Y. Cellular ubiquitin pool dynamics and homeostasis. BMB Rep., 2014, 47(9), 475-482.
[http://dx.doi.org/10.5483/BMBRep.2014.47.9.128] [PMID: 24924398]
[45]
Herrmann, J.; Lerman, L.O.; Lerman, A. Ubiquitin and ubiquitin- like proteins in protein regulation. Circ. Res., 2007, 100(9), 1276-1291.
[http://dx.doi.org/10.1161/01.RES.0000264500.11888.f0] [PMID: 17495234]
[46]
Haas, A.L.; Warms, J.V.; Hershko, A.; Rose, I.A. Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation. J. Biol. Chem., 1982, 257(5), 2543-2548.
[PMID: 6277905]
[47]
Hershko, A.; Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem., 1998, 67, 425-479.
[http://dx.doi.org/10.1146/annurev.biochem.67.1.425] [PMID: 9759494]
[48]
Yang, C.; Zhou, W.; Jeon, M.S.; Demydenko, D.; Harada, Y.; Zhou, H.; Liu, Y-C. Negative regulation of the E3 ubiquitin ligase itch via Fyn-mediated tyrosine phosphorylation. Mol. Cell, 2006, 21(1), 135-141.
[http://dx.doi.org/10.1016/j.molcel.2005.11.014] [PMID: 16387660]
[49]
Hong, L.; Huang, H-C.; Jiang, Z-F. Relationship between amyloid-beta and the ubiquitin-proteasome system in Alzheimer’s disease. Neurol. Res., 2014, 36(3), 276-282.
[http://dx.doi.org/10.1179/1743132813Y.0000000288] [PMID: 24512022]
[50]
Takalo, M.; Haapasalo, A.; Natunen, T.; Viswanathan, J.; Kurkinen, K.M.; Tanzi, R.E.; Soininen, H.; Hiltunen, M. Targeting ubiquilin-1 in Alzheimer’s disease. Expert Opin. Ther. Targets, 2013, 17(7), 795-810.
[http://dx.doi.org/10.1517/14728222.2013.791284] [PMID: 23600477]
[51]
Al Mamun, A.; Uddin, M.S.; Kabir, M.T.; Khanum, S.; Sarwar, M.S.; Mathew, B.; Rauf, A.; Ahmed, M.; Ashraf, G.M. Exploring the Promise of Targeting Ubiquitin-Proteasome System to Combat Alzheimer’s Disease. Neurotox. Res., 2020, 38(1), 8-17.
[http://dx.doi.org/10.1007/s12640-020-00185-1] [PMID: 32157628]
[52]
Xie, Y. Structure, assembly and homeostatic regulation of the 26S proteasome. J. Mol. Cell Biol., 2010, 2(6), 308-317.
[http://dx.doi.org/10.1093/jmcb/mjq030] [PMID: 20930034]
[53]
Cecarini, V.; Bonfili, L.; Cuccioloni, M.; Mozzicafreddo, M.; Rossi, G.; Buizza, L.; Uberti, D.; Angeletti, M.; Eleuteri, A.M. Crosstalk between the ubiquitin-proteasome system and autophagy in a human cellular model of Alzheimer’s disease. Biochim. Biophys. Acta, 2012, 1822(11), 1741-1751.
[http://dx.doi.org/10.1016/j.bbadis.2012.07.015] [PMID: 22867901]
[54]
Manavalan, A.; Mishra, M.; Feng, L.; Sze, S.K.; Akatsu, H.; Heese, K. Brain site-specific proteome changes in aging-related dementia. Exp. Mol. Med., 2013, 45, e39-e39.
[http://dx.doi.org/10.1038/emm.2013.76] [PMID: 24008896]
[55]
Zhang, M.; Deng, Y.; Luo, Y.; Zhang, S.; Zou, H.; Cai, F.; Wada, K.; Song, W. Control of BACE1 degradation and APP processing by ubiquitin carboxyl-terminal hydrolase L1. J. Neurochem., 2012, 120(6), 1129-1138. [no-no.].
[http://dx.doi.org/10.1111/j.1471-4159.2011.07644.x] [PMID: 22212137]
[56]
Lane, R.F.; Shineman, D.W.; Steele, J.W.; Lee, L.B.; Fillit, H.M. Beyond amyloid: the future of therapeutics for Alzheimer’s disease. Adv. Pharmacol., 2012, 64, 213-271.
[http://dx.doi.org/10.1016/B978-0-12-394816-8.00007-6] [PMID: 22840749]
[57]
Tai, H-C.; Serrano-Pozo, A.; Hashimoto, T.; Frosch, M.P.; Spires-Jones, T.L.; Hyman, B.T. The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am. J. Pathol., 2012, 181(4), 1426-1435.
[http://dx.doi.org/10.1016/j.ajpath.2012.06.033] [PMID: 22867711]
[58]
Mishto, M.; Bellavista, E.; Santoro, A.; Stolzing, A.; Ligorio, C.; Nacmias, B.; Spazzafumo, L.; Chiappelli, M.; Licastro, F.; Sorbi, S.; Pession, A.; Ohm, T.; Grune, T.; Franceschi, C. Immunoproteasome and LMP2 polymorphism in aged and Alzheimer’s disease brains. Neurobiol. Aging, 2006, 27(1), 54-66.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.12.004] [PMID: 16298241]
[59]
Morawe, T.; Hiebel, C.; Kern, A.; Behl, C. Protein homeostasis, aging and Alzheimer’s disease. Mol. Neurobiol., 2012, 46(1), 41-54.
[http://dx.doi.org/10.1007/s12035-012-8246-0] [PMID: 22361852]
[60]
Lehman, N.L. The ubiquitin proteasome system in neuropathology. Acta Neuropathol., 2009, 118(3), 329-347.
[http://dx.doi.org/10.1007/s00401-009-0560-x] [PMID: 19597829]
[61]
Dickey, C.A.; Yue, M.; Lin, W-L.; Dickson, D.W.; Dunmore, J.H.; Lee, W.C.; Zehr, C.; West, G.; Cao, S.; Clark, A.M.K.; Caldwell, G.A.; Caldwell, K.A.; Eckman, C.; Patterson, C.; Hutton, M.; Petrucelli, L. Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species. J. Neurosci., 2006, 26(26), 6985-6996.
[http://dx.doi.org/10.1523/JNEUROSCI.0746-06.2006] [PMID: 16807328]
[62]
Sahara, N.; Murayama, M.; Mizoroki, T.; Urushitani, M.; Imai, Y.; Takahashi, R.; Murata, S.; Tanaka, K.; Takashima, A. In vivo evidence of CHIP up-regulation attenuating tau aggregation. J. Neurochem., 2005, 94(5), 1254-1263.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03272.x] [PMID: 16111477]
[63]
Hol, E.M.; van Leeuwen, F.W.; Fischer, D.F. The proteasome in Alzheimer’s disease and Parkinson’s disease: lessons from ubiquitin B+1. Trends Mol. Med., 2005, 11(11), 488-495.
[http://dx.doi.org/10.1016/j.molmed.2005.09.001] [PMID: 16213790]
[64]
Song, S.; Lee, H.; Kam, T-I.; Tai, M.L.; Lee, J-Y.; Noh, J-Y.; Shim, S.M.; Seo, S.J.; Kong, Y-Y.; Nakagawa, T.; Chung, C-W.; Choi, D-Y.; Oubrahim, H.; Jung, Y-K. E2-25K/Hip-2 regulates caspase-12 in ER stress-mediated Abeta neurotoxicity. J. Cell Biol., 2008, 182(4), 675-684.
[http://dx.doi.org/10.1083/jcb.200711066] [PMID: 18710920]
[65]
Lonskaya, I.; Hebron, M.L.; Desforges, N.M.; Schachter, J.B.; Moussa, C.E-H. Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance. J. Mol. Med. (Berl.), 2014, 92(4), 373-386.
[http://dx.doi.org/10.1007/s00109-013-1112-3] [PMID: 24337465]
[66]
Lonskaya, I.; Shekoyan, A.R.; Hebron, M.L.; Desforges, N.; Algarzae, N.K.; Moussa, C.E-H. Diminished parkin solubility and co-localization with intraneuronal amyloid-β are associated with autophagic defects in Alzheimer’s disease. J. Alzheimers Dis., 2013, 33(1), 231-247.
[http://dx.doi.org/10.3233/JAD-2012-121141] [PMID: 22954671]
[67]
Gerakis, Y.; Dunys, J.; Bauer, C.; Checler, F. Aβ42 oligomers modulate β-secretase through an XBP-1s-dependent pathway involving HRD1. Sci. Rep., 2016, 6, 37436.
[http://dx.doi.org/10.1038/srep37436] [PMID: 27853315]
[68]
Saito, R.; Kaneko, M.; Okuma, Y.; Nomura, Y. Correlation between decrease in protein levels of ubiquitin ligase HRD1 and amyloid-beta production. J. Pharmacol. Sci., 2010, 113(3), 285-288.
[http://dx.doi.org/10.1254/jphs.10118SC] [PMID: 20606367]
[69]
Kaneko, M.; Koike, H.; Saito, R.; Kitamura, Y.; Okuma, Y.; Nomura, Y. Loss of HRD1-mediated protein degradation causes amyloid precursor protein accumulation and amyloid-beta generation. J. Neurosci., 2010, 30(11), 3924-3932.
[http://dx.doi.org/10.1523/JNEUROSCI.2422-09.2010] [PMID: 20237263]
[70]
Gong, B.; Radulovic, M.; Figueiredo-Pereira, M.E.; Cardozo, C. The Ubiquitin-Proteasome System: Potential Therapeutic Targets for Alzheimer’s Disease and Spinal Cord Injury. Front. Mol. Neurosci., 2016, 9, 4.
[http://dx.doi.org/10.3389/fnmol.2016.00004] [PMID: 26858599]
[71]
Chen, F.; Sugiura, Y.; Myers, K.G.; Liu, Y.; Lin, W. Ubiquitin carboxyl-terminal hydrolase L1 is required for maintaining the structure and function of the neuromuscular junction. Proc. Natl. Acad. Sci. USA, 2010, 107(4), 1636-1641.
[http://dx.doi.org/10.1073/pnas.0911516107] [PMID: 20080621]
[72]
Paul, S. Dysfunction of the ubiquitin-proteasome system in multiple disease conditions: therapeutic approaches. BioEssays, 2008, 30(11-12), 1172-1184.
[http://dx.doi.org/10.1002/bies.20852] [PMID: 18937370]
[73]
Harilal, S.; Jose, J.; Parambi, D.G.T.; Kumar, R.; Mathew, G.E.; Uddin, M.S.; Kim, H.; Mathew, B. Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J. Pharm. Pharmacol., 2019, 71(9), 1370-1383.
[http://dx.doi.org/10.1111/jphp.13132] [PMID: 31304982]
[74]
O’Leary, J.C., III; Li, Q.; Marinec, P.; Blair, L.J.; Congdon, E.E.; Johnson, A.G.; Jinwal, U.K.; Koren, J., III; Jones, J.R.; Kraft, C.; Peters, M.; Abisambra, J.F.; Duff, K.E.; Weeber, E.J.; Gestwicki, J.E.; Dickey, C.A. Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden. Mol. Neurodegener., 2010, 5, 45.
[http://dx.doi.org/10.1186/1750-1326-5-45] [PMID: 21040568]
[75]
Rochet, J-C. Novel therapeutic strategies for the treatment of protein-misfolding diseases. Expert Rev. Mol. Med., 2007, 9(17), 1-34.
[http://dx.doi.org/10.1017/S1462399407000385] [PMID: 17597554]
[76]
Ross, C.A.; Poirier, M.A. Protein aggregation and neurodegenerative disease. Nat. Med., 2004, 10(Suppl.), S10-S17.
[http://dx.doi.org/10.1038/nm1066] [PMID: 15272267]
[77]
Goldberg, A.L. Protein degradation and protection against misfolded or damaged proteins. Nature, 2003, 426(6968), 895-899.
[http://dx.doi.org/10.1038/nature02263] [PMID: 14685250]
[78]
Upadhya, S.C.; Hegde, A.N. Ubiquitin-proteasome pathway components as therapeutic targets for CNS maladies. Curr. Pharm. Des., 2005, 11(29), 3807-3828.
[http://dx.doi.org/10.2174/138161205774580651] [PMID: 16305513]
[79]
Verma, R.; Peters, N.R.; D’Onofrio, M.; Tochtrop, G.P.; Sakamoto, K.M.; Varadan, R.; Zhang, M.; Coffino, P.; Fushman, D.; Deshaies, R.J.; King, R.W. Ubistatins Inhibit Proteasome-Dependent Degradation by Binding the Ubiquitin Chain Science (80-. ), 2004.
[80]
Raaben, M.; Posthuma, C.C.; Verheije, M.H.; te Lintelo, E.G.; Kikkert, M.; Drijfhout, J.W.; Snijder, E.J.; Rottier, P.J.M.; de Haan, C.A.M. The ubiquitin-proteasome system plays an important role during various stages of the coronavirus infection cycle. J. Virol., 2010, 84(15), 7869-7879.
[http://dx.doi.org/10.1128/JVI.00485-10] [PMID: 20484504]
[81]
Eldridge, A.G.; O’Brien, T. Therapeutic strategies within the ubiquitin proteasome system. Cell Death Differ., 2010, 17(1), 4-13.
[http://dx.doi.org/10.1038/cdd.2009.82] [PMID: 19557013]
[82]
Schneekloth, A.R.; Pucheault, M.; Tae, H.S.; Crews, C.M. Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics. Bioorg. Med. Chem. Lett., 2008, 18(22), 5904-5908.
[http://dx.doi.org/10.1016/j.bmcl.2008.07.114] [PMID: 18752944]
[83]
Marambaud, P.; Zhao, H.; Davies, P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-β peptides. J. Biol. Chem., 2005, 280(45), 37377-37382.
[http://dx.doi.org/10.1074/jbc.M508246200] [PMID: 16162502]
[84]
Huang, L.; Ho, P.; Chen, C-H. Activation and inhibition of the proteasome by betulinic acid and its derivatives. FEBS Lett., 2007, 581(25), 4955-4959.
[http://dx.doi.org/10.1016/j.febslet.2007.09.031] [PMID: 17904555]
[85]
Stanhill, A.; Haynes, C.M.; Zhang, Y.; Min, G.; Steele, M.C.; Kalinina, J.; Martinez, E.; Pickart, C.M.; Kong, X-P.; Ron, D. An arsenite-inducible 19S regulatory particle-associated protein adapts proteasomes to proteotoxicity. Mol. Cell, 2006, 23(6), 875-885.
[http://dx.doi.org/10.1016/j.molcel.2006.07.023] [PMID: 16973439]
[86]
Gadhave, K.; Bolshette, N.; Ahire, A.; Pardeshi, R.; Thakur, K.; Trandafir, C.; Istrate, A.; Ahmed, S.; Lahkar, M.; Muresanu, D.F.; Balea, M. The ubiquitin proteasomal system: a potential target for the management of Alzheimer’s disease. J. Cell. Mol. Med., 2016, 20(7), 1392-1407.
[http://dx.doi.org/10.1111/jcmm.12817] [PMID: 27028664]
[87]
Rayner, S.L.; Morsch, M.; Molloy, M.P.; Shi, B.; Chung, R.; Lee, A. Using proteomics to identify ubiquitin ligase-substrate pairs: how novel methods may unveil therapeutic targets for neurodegenerative diseases. Cell. Mol. Life Sci., 2019, 76(13), 2499-2510.
[http://dx.doi.org/10.1007/s00018-019-03082-9] [PMID: 30919022]
[88]
Upadhyay, A.; Joshi, V.; Amanullah, A.; Mishra, R.; Arora, N.; Prasad, A.; Mishra, A. E3 Ubiquitin Ligases Neurobiological Mechanisms: Development to Degeneration. Front. Mol. Neurosci., 2017, 10, 151.
[http://dx.doi.org/10.3389/fnmol.2017.00151] [PMID: 28579943]
[89]
Thibaudeau, T.A.; Smith, D.M. A Practical Review of Proteasome Pharmacology. Pharmacol. Rev., 2019, 71(2), 170-197.
[http://dx.doi.org/10.1124/pr.117.015370] [PMID: 30867233]
[90]
Njomen, E.; Tepe, J.J. Proteasome Activation as a New Therapeutic Approach To Target Proteotoxic Disorders. J. Med. Chem., 2019, 62(14), 6469-6481.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00101] [PMID: 30839208]
[91]
Gregori, L.; Hainfeld, J.F.; Simon, M.N.; Goldgaber, D. Binding of amyloid β protein to the 20 S proteasome. J. Biol. Chem., 1997, 272(1), 58-62.
[http://dx.doi.org/10.1074/jbc.272.1.58] [PMID: 8995227]
[92]
Tseng, B.P.; Green, K.N.; Chan, J.L.; Blurton-Jones, M.; LaFerla, F.M. Abeta inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiol. Aging, 2008, 29(11), 1607-1618.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.04.014] [PMID: 17544172]
[93]
Wang, J.; Maldonado, M.A. The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell. Mol. Immunol., 2006, 3(4), 255-261.
[PMID: 16978533]
[94]
Bukau, B.; Weissman, J.; Horwich, A. Molecular chaperones and protein quality control. Cell, 2006, 125(3), 443-451.
[http://dx.doi.org/10.1016/j.cell.2006.04.014] [PMID: 16678092]
[95]
Lim, J.; Yue, Z. Neuronal aggregates: formation, clearance, and spreading. Dev. Cell, 2015, 32(4), 491-501.
[http://dx.doi.org/10.1016/j.devcel.2015.02.002] [PMID: 25710535]
[96]
Köhler, A.; Bajorek, M.; Groll, M.; Moroder, L.; Rubin, D.M.; Huber, R.; Glickman, M.H.; Finley, D. The substrate translocation channel of the proteasome. Biochimie, 2001, 83(3-4), 325-332.
[http://dx.doi.org/10.1016/S0300-9084(01)01242-1] [PMID: 11295493]
[97]
Wang, Y.; Mandelkow, E. Degradation of tau protein by autophagy and proteasomal pathways. Biochem. Soc. Trans., 2012, 40(4), 644-652.
[http://dx.doi.org/10.1042/BST20120071] [PMID: 22817709]
[98]
Dal Vechio, F.H.; Cerqueira, F.; Augusto, O.; Lopes, R.; Demasi, M. Peptides that activate the 20S proteasome by gate opening increased oxidized protein removal and reduced protein aggregation. Free Radic. Biol. Med., 2014, 67, 304-313.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.11.017] [PMID: 24291399]
[99]
Brockwell, D.J.; Radford, S.E. Intermediates: ubiquitous species on folding energy landscapes? Curr. Opin. Struct. Biol., 2007, 17(1), 30-37.
[http://dx.doi.org/10.1016/j.sbi.2007.01.003] [PMID: 17239580]
[100]
Lee, M.J.; Lee, B.H.; Hanna, J.; King, R.W.; Finley, D. Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol. Cell. Proteomics, 2011, 10(5), 003871.
[http://dx.doi.org/10.1074/mcp.R110.003871] [PMID: 20823120]
[101]
Lee, B-H.; Lee, M.J.; Park, S.; Oh, D-C.; Elsasser, S.; Chen, P-C.; Gartner, C.; Dimova, N.; Hanna, J.; Gygi, S.P.; Wilson, S.M.; King, R.W.; Finley, D. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature, 2010, 467(7312), 179-184.
[http://dx.doi.org/10.1038/nature09299] [PMID: 20829789]
[102]
Ristic, G.; Tsou, W-L.; Todi, S.V. An optimal ubiquitin-proteasome pathway in the nervous system: the role of deubiquitinating enzymes. Front. Mol. Neurosci., 2014, 7, 72.
[http://dx.doi.org/10.3389/fnmol.2014.00072] [PMID: 25191222]
[103]
Liu, C-C.; Liu, C-C.; Kanekiyo, T.; Xu, H.; Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol., 2013, 9(2), 106-118.
[http://dx.doi.org/10.1038/nrneurol.2012.263] [PMID: 23296339]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy