Research Article

加权基因共表达网络分析筛选黑色素瘤的潜在预后预测因子和分子靶点

卷 20, 期 1, 2020

页: [5 - 14] 页: 10

弟呕挨: 10.2174/1566523220666200516170832

价格: $65

摘要

目的和目标: 在皮肤癌中,恶性黑色素瘤是导致死亡的主要原因。恶性黑色素瘤与生存相关的基因标志物的鉴定可能为预测预后和治疗提供新的线索。本研究旨在筛选恶性黑色素瘤的潜在预后预测因子和分子靶点。 简介: 基因在黑色素瘤中的表达和患者的临床特征信息从基因表达综合数据库中获得。应用加权基因共表达网络分析(WGCNA)构建共表达模块,探讨其与临床特征的关系。此外,对临床显著共表达模块进行功能富集分析。这些模块的枢纽基因通过基因表达谱交互分析(GEPIA)和人类蛋白图谱(http:// www.proteinatlas.org)进行验证。 方法:首先,利用WGCNA,从77个人类黑色素瘤样本中提取前25%差异表达基因(4406个基因),构建9个共表达模块。两种共表达模块(品红和蓝色模块)与生存月显著相关(r = -0.27, p = 0.02;r = 0.27, p = 0.02)。功能富集分析结果表明,品红模块主要富集于细胞周期过程,蓝色模块主要富集于免疫应答过程。此外,GEPIA和人类蛋白图谱结果提示中枢基因CCNB2、ARHGAP30和SEMA4D与无复发生存和总生存相关(所有p值<和在黑色素瘤肿瘤和正常皮肤中差异表达。 结果与结论: 该结果提供了皮肤黑色素瘤共表达基因模块的框架,并筛选出与生存相关的CCNB2、ARHGAP30和SEMA4D作为潜在的预后预测因子和治疗的分子靶点。

关键词: 黑色素瘤

图形摘要

[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1): 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[2]
Howlader N, Noone A, Krapcho M, et al. SEER Cancer Statistics Review, 1975-2013. Bethesda, MD: National Cancer Institute 2016.
[3]
Shao C, Dai W, Li H, et al. The relationship between RASSF1A gene promoter methylation and the susceptibility and prognosis of melanoma: A meta-analysis and bioinformatics. PLoS One 2017; 12(2): e0171676
[http://dx.doi.org/10.1371/journal.pone.0171676] [PMID: 28207831]
[4]
Barut F, Udul P, Kokturk F, Kandemir NO, Keser SH, Ozdamar SO. Clinicopathological features and pituitary homeobox 1 gene expression in the progression and prognosis of cutaneous malignant melanoma. Kaohsiung J Med Sci 2016; 32(10): 494-500.
[http://dx.doi.org/10.1016/j.kjms.2016.08.001] [PMID: 27742032]
[5]
Liu H, Zhou M. Evaluation of p53 gene expression and prognosis characteristics in uveal melanoma cases. OncoTargets Ther 2017; 10: 3429-34.
[http://dx.doi.org/10.2147/OTT.S136785] [PMID: 28744147]
[6]
Yan J, Yu J, Wu X, et al. Increased AURKA gene copy number correlates with poor prognosis and predicts the efficacy of High-dose interferon therapy in acral melanoma. J Cancer 2018; 9(7): 1267-76.
[http://dx.doi.org/10.7150/jca.24013] [PMID: 29675108]
[7]
Gerami P, Cook RW, Wilkinson J, et al. Development of a prognostic genetic signature to predict the metastatic risk associated with cutaneous melanoma. Clin Cancer Res 2015; 21(1): 175-83.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-3316]
[8]
Uhara H. Recent advances in therapeutic strategies for unresectable or metastatic melanoma and real-world data in Japan. Int J Clin Oncol 2019; 24(12): 1508-14.
[PMID: 29470725]
[9]
Robert C, Grob JJ, Stroyakovskiy D, et al. Five-Year outcomes with dabrafenib plus trametinib in metastatic melanoma. N Engl J Med 2019; 381(7): 626-36.
[http://dx.doi.org/10.1056/NEJMoa1904059] [PMID: 31166680]
[10]
Guo Y, Ma J, Xiao L, et al. Identification of key pathways and genes in different types of chronic kidney disease based on WGCNA. Mol Med Rep 2019; 20(3): 2245-57.
[http://dx.doi.org/10.3892/mmr.2019.10443] [PMID: 31257514]
[11]
Xia WX, Yu Q, Li GH, et al. Identification of four hub genes associated with adrenocortical carcinoma progression by WGCNA. PeerJ 2019; 7: e6555
[http://dx.doi.org/10.7717/peerj.6555] [PMID: 30886771]
[12]
Di Y, Chen D, Yu W, Yan L. Bladder cancer stage-associated hub genes revealed by WGCNA co-expression network analysis. Hereditas 2019; 156: 7.
[http://dx.doi.org/10.1186/s41065-019-0083-y] [PMID: 30723390]
[13]
Mann GJ, Pupo GM, Campain AE, et al. BRAF mutation, NRAS mutation, and the absence of an immune-related expressed gene profile predict poor outcome in patients with stage III melanoma. J Invest Dermatol 2013; 133(2): 509-17.
[http://dx.doi.org/10.1038/jid.2012.283] [PMID: 22931913]
[14]
Mason MJ, Fan G, Plath K, Zhou Q, Horvath S. Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells. BMC Genomics 2009; 10(1): 327.
[http://dx.doi.org/10.1186/1471-2164-10-327] [PMID: 19619308]
[15]
Yip AM, Horvath S. Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinformatics 2007; 8: 22.
[http://dx.doi.org/10.1186/1471-2105-8-22] [PMID: 17250769]
[16]
Langfelder P, Horvath S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol 2007; 1: 54.
[http://dx.doi.org/10.1186/1752-0509-1-54] [PMID: 18031580]
[17]
Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 2017; 45(W1): W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[18]
Takashima S, Saito H, Takahashi N, et al. Strong expression of cyclin B2 mRNA correlates with a poor prognosis in patients with non-small cell lung cancer. Tumour Biol 2014; 35(5): 4257-65.
[http://dx.doi.org/10.1007/s13277-013-1556-7] [PMID: 24375198]
[19]
Li R, Jiang X, Zhang Y, et al. Cyclin B2 overexpression in human hepatocellular carcinoma is associated with poor prognosis. Arch Med Res 2019; 50(1): 10-7.
[http://dx.doi.org/10.1016/j.arcmed.2019.03.003] [PMID: 31101236]
[20]
Shubbar E, Kovács A, Hajizadeh S, et al. Elevated cyclin B2 expression in invasive breast carcinoma is associated with unfavorable clinical outcome. BMC Cancer 2013; 13: 1.
[http://dx.doi.org/10.1186/1471-2407-13-1] [PMID: 23282137]
[21]
Shi Q, Wang W, Jia Z, Chen P, Ma K, Zhou C. ISL1, a novel regulator of CCNB1, CCNB2 and c-MYC genes, promotes gastric cancer cell proliferation and tumor growth. Oncotarget 2016; 7(24): 36489-500.
[http://dx.doi.org/10.18632/oncotarget.9269] [PMID: 27183908]
[22]
Naji L, Pacholsky D, Aspenström P. ARHGAP30 is a Wrch-1-interacting protein involved in actin dynamics and cell adhesion. Biochem Biophys Res Commun 2011; 409(1): 96-102.
[http://dx.doi.org/10.1016/j.bbrc.2011.04.116] [PMID: 21565175]
[23]
Wang J, Qian J, Hu Y, et al. ArhGAP30 promotes p53 acetylation and function in colorectal cancer. Nat Commun 2014; 5: 4735.
[http://dx.doi.org/10.1038/ncomms5735] [PMID: 25156493]
[24]
Mao X, Tong J. ARHGAP30 suppressed lung cancer cell proliferation, migration, and invasion through inhibition of the Wnt/β-catenin signaling pathway. OncoTargets Ther 2018; 11: 7447-57.
[http://dx.doi.org/10.2147/OTT.S175255] [PMID: 30425532]
[25]
Li H, Wang JS, Mu LJ, Shan KS, Li LP, Zhou YB. Promotion of Sema4D expression by tumor-associated macrophages: Significance in gastric carcinoma. World J Gastroenterol 2018; 24(5): 593-601.
[http://dx.doi.org/10.3748/wjg.v24.i5.593] [PMID: 29434448]
[26]
Xia Y, Cai XY, Fan JQ, et al. The role of sema4D in vasculogenic mimicry formation in non-small cell lung cancer and the underlying mechanisms. Int J Cancer 2019; 144(9): 2227-38.
[http://dx.doi.org/10.1002/ijc.31958] [PMID: 30374974]
[27]
Chen Y, Zhang L, Liu WX, Wang K. VEGF and SEMA4D have synergistic effects on the promotion of angiogenesis in epithelial ovarian cancer. Cell Mol Biol Lett 2018; 23: 2.
[http://dx.doi.org/10.1186/s11658-017-0058-9] [PMID: 29308068]
[28]
Soong J, Scott G. Plexin B1 inhibits MET through direct association and regulates Shp2 expression in melanocytes. J Cell Sci 2013; 126(Pt 2): 688-95.
[http://dx.doi.org/10.1242/jcs.119487] [PMID: 23203808]
[29]
Soong J, Chen Y, Shustef EM, Scott GA. Sema4D, the ligand for Plexin B1, suppresses c-Met activation and migration and promotes melanocyte survival and growth. J Invest Dermatol 2012; 132(4): 1230-8.
[http://dx.doi.org/10.1038/jid.2011.414] [PMID: 22189792]
[30]
Heo JR, Kim NH, Cho J, Choi KC. Current treatments for advanced melanoma and introduction of a promising novel gene therapy for melanoma (Review). Oncol Rep 2016; 36(4): 1779-86.
[http://dx.doi.org/10.3892/or.2016.5032] [PMID: 27573048]
[31]
Menezes ME, Talukdar S, Wechman SL, et al. Prospects of gene therapy to treat melanoma. Adv Cancer Res 2018; 138: 213-37.
[http://dx.doi.org/10.1016/bs.acr.2018.02.007] [PMID: 29551128]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy