Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Potential Pharmaceutical and Food Applications of Postbiotics: A Review

Author(s): Aziz H. Rad, Amin Abbasi*, Hossein S. Kafil* and Khudaverdi Ganbarov

Volume 21, Issue 15, 2020

Page: [1576 - 1587] Pages: 12

DOI: 10.2174/1389201021666200516154833

Price: $65

Abstract

In recent decades, functional foods with ingredients comprising probiotics, prebiotics and postbiotics have been gaining a lot of attention from scientists. Probiotics and postbiotics are usually applied in pharmaceutical formulations and/or commercial food-based products. These bioactive agents can be associated with host eukaryotic cells and have a key role in maintaining and restoring host health. The review describes the concept of postbiotics, their quality control and potential applications in pharmaceutical formulations and commercial food-based products for health promotion, prevention of disease and complementary treatment. Despite the effectiveness of probiotic products, researchers have introduced the concept of postbiotic to optimize their beneficial effects as well as to meet the needs of consumers to provide a safe product. The finding of recent studies suggests that postbiotics might be appropriate alternative agents for live probiotic cells and can be applied in medical, veterinary and food practice to prevent and to treat some diseases, promote animal health status and develop functional foods. Presently scientific literature confirms that postbiotics, as potential alternative agents, may have superiority in terms of safety relative to their parent live cells, and due to their unique characteristics in terms of clinical, technological and economical aspects, can be applied as promising tools in the drug and food industry for developing health benefits, and therapeutic aims.

Keywords: Postbiotic, probiotic, safety, pharmaceutical, functional food, immunomodulation.

Graphical Abstract

[1]
Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; Calder, P.C.; Sanders, M.E. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(8), 506-514.
[http://dx.doi.org/10.1038/nrgastro.2014.66 ] [PMID: 24912386]
[2]
Mohamadshahi, M.; Veissi, M.; Haidari, F.; Shahbazian, H.; Kaydani, G-A.; Mohammadi, F. Effects of probiotic yogurt consumption on inflammatory biomarkers in patients with type 2 diabetes. Bioimpacts, 2014, 4(2), 83-88.
[PMID: 25035851]
[3]
Vaghef-Mehrabany, E.; Vaghef-Mehrabany, L.; Asghari-Jafarabadi, M.; Homayouni-Rad, A.; Issazadeh, K.; Alipour, B. Effects of probiotic supplementation on lipid profile of women with rheumatoid arthritis: A randomized placebo-controlled clinical trial. Health Promot. Perspect., 2017, 7(2), 95-101.
[http://dx.doi.org/10.15171/hpp.2017.17 ] [PMID: 28326290]
[4]
Sanaie, S.; Ebrahimi-Mameghani, M.; Mahmoodpoor, A.; Shadvar, K.; Golzari, S.E. Effect of a probiotic preparation (VSL# 3) on cardiovascular risk parameters in critically-ill patients. J. Cardiovasc. Thorac. Res., 2013, 5(2), 67-70.
[PMID: 24251014]
[5]
Sarkar, S. Probiotics as functional foods: Documented health benefits. Nutr. Food Sci., 2013, 43(2), 107-115.
[http://dx.doi.org/10.1108/00346651311313445]
[6]
Homayouni, A.; Alizadeh, M.; Alikhah, H.; Zijah, V. Functional dairy probiotic food development: trends, concepts, and products; InTech Rijeka: Croatia, 2012.
[7]
Aguilar-Toalá, J.; Garcia-Varela, R.; Garcia, H.; Mata-Haro, V.; González-Córdova, A.; Vallejo-Cordoba, B.; Hernández-Mendoza, A. Postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol., 2018, 75, 105-114.
[http://dx.doi.org/10.1016/j.tifs.2018.03.009]
[8]
Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Abbasi, A. Postbiotics: A novel strategy in food allergy treatment. Crit. Rev. Food Sci. Nutr., 2020, 1-8.
[http://dx.doi.org/10.1080/10408398.2020.1738333 ] [PMID: 32160762]
[9]
Guéniche, A.; Bastien, P.; Ovigne, J.M.; Kermici, M.; Courchay, G.; Chevalier, V.; Breton, L.; Castiel-Higounenc, I. Bifidobacterium longum lysate, a new ingredient for reactive skin. Exp. Dermatol., 2010, 19(8), e1-e8.
[http://dx.doi.org/10.1111/j.1600-0625.2009.00932.x ] [PMID: 19624730]
[10]
Raman, M.; Ambalam, P.; Doble, M. Probiotics and Bioactive Carbohydrates in Colon Cancer Management; Springer India, 2016.
[http://dx.doi.org/10.1007/978-81-322-2586-7]
[11]
Sarkar, S. Whether viable and dead probiotic are equally efficacious? Nutr. Food Sci., 2018, 48(2), 285-300.
[http://dx.doi.org/10.1108/NFS-07-2017-0151]
[12]
Weese, J.S.; Martin, H. Assessment of commercial probiotic bacterial contents and label accuracy. Can. Vet. J., 2011, 52(1), 43-46.
[PMID: 21461205]
[13]
Fleming, P.F.; Berrington, J.E.; Jacobs, S.E. Addressing safety concerns of probiotic use in preterm babies. Early Hum. Dev., 2019, 135, 72-74.
[http://dx.doi.org/10.1016/j.earlhumdev.2019.05.016 ] [PMID: 31155280]
[14]
Adams, C.A. The probiotic paradox: Live and dead cells are biological response modifiers. Nutr. Res. Rev., 2010, 23(1), 37-46.
[http://dx.doi.org/10.1017/S0954422410000090 ] [PMID: 20403231]
[15]
Dash, G.; Raman, R.P.; Pani Prasad, K.; Makesh, M.; Pradeep, M.A.; Sen, S. Evaluation of paraprobiotic applicability of Lactobacillus plantarum in improving the immune response and disease protection in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Fish Shellfish Immunol., 2015, 43(1), 167-174.
[http://dx.doi.org/10.1016/j.fsi.2014.12.007 ] [PMID: 25542379]
[16]
Homayouni, A.; Azizi, A.; Javadi, M.; Mahdipour, S.; Ejtahed, H. Factors influencing probiotic survival in ice cream: A review. Int. J. Dairy Sci., 2012, 7(1), 1-10.
[http://dx.doi.org/10.3923/ijds.2012.1.10]
[17]
Imperial, I.C.; Ibana, J.A. Addressing the antibiotic resistance problem with probiotics: Reducing the risk of its double-edged sword effect. Front. Microbiol., 2016, 7, 1983.
[http://dx.doi.org/10.3389/fmicb.2016.01983 ] [PMID: 28018315]
[18]
Shenderov, B.A. Metabiotics: Novel idea or natural development of probiotic conception. Microb. Ecol. Health Dis., 2013, 24(1), 20399.
[PMID: 23990841]
[19]
Netzker, T.; Fischer, J.; Weber, J.; Mattern, D.J.; König, C.C.; Valiante, V.; Schroeckh, V.; Brakhage, A.A. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front. Microbiol., 2015, 6, 299.
[http://dx.doi.org/10.3389/fmicb.2015.00299 ] [PMID: 25941517]
[20]
Imperial, I.C.V.J.; Ibana, J.A. Addressing the antibiotic resistance problem with probiotics: Reducing the risk of its double-edged sword effect. Front. Microbiol., 1983, 2016, 7.
[PMID: 28018315]
[21]
Kothari, D.; Patel, S.; Kim, S-K. Probiotic supplements might not be universally-effective and safe: A review. Biomed. Pharmacother., 2019, 111, 537-547.
[http://dx.doi.org/10.1016/j.biopha.2018.12.104 ] [PMID: 30597307]
[22]
Tomar, S.K.; Anand, S.; Sharma, P.; Sangwan, V.; Mandal, S. Role of probiotics, prebiotics, synbiotics and postbiotics in inhibition of pathogens. The Battle against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs; Formatex: Badajoz, Spain, 2015.
[23]
Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Fathi Zavoshti, H.; Abbasi, A. Postbiotics as novel health-promoting ingredients in functional foods. Health Promot. Perspect., 2020, 10(1), 3-4.
[http://dx.doi.org/10.15171/hpp.2020.02 ] [PMID: 32104650]
[24]
Patel, R.M.; Denning, P.W. Therapeutic use of prebiotics, probiotics, and postbiotics to prevent necrotizing enterocolitis: What is the current evidence? Clin. Perinatol., 2013, 40(1), 11-25.
[http://dx.doi.org/10.1016/j.clp.2012.12.002 ] [PMID: 23415261]
[25]
Dinić, M.; Lukić, J.; Djokić, J.; Milenković, M.; Strahinić, I.; Golić, N.; Begović, J. Lactobacillus fermentum postbiotic-induced autophagy as potential approach for treatment of acetaminophen hepatotoxicity. Front. Microbiol., 2017, 8, 594.
[http://dx.doi.org/10.3389/fmicb.2017.00594 ] [PMID: 28428777]
[26]
Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Abbasi, A. Molecular mechanisms of postbiotics in colorectal cancer prevention and treatment. Crit. Rev. Food Sci. Nutr., 2020, 1-17.
[http://dx.doi.org/10.1080/10408398.2020.1765310 ] [PMID: 32410512]
[27]
Amaretti, A.; di Nunzio, M.; Pompei, A.; Raimondi, S.; Rossi, M.; Bordoni, A. Antioxidant properties of potentially probiotic bacteria: In vitro and in vivo activities. Appl. Microbiol. Biotechnol., 2013, 97(2), 809-817.
[http://dx.doi.org/10.1007/s00253-012-4241-7 ] [PMID: 22790540]
[28]
Sharma, S.; Singh, R.L.; Kakkar, P. Modulation of Bax/Bcl-2 and caspases by probiotics during acetaminophen induced apoptosis in primary hepatocytes. Food Chem. Toxicol., 2011, 49(4), 770-779.
[http://dx.doi.org/10.1016/j.fct.2010.11.041 ] [PMID: 21130831]
[29]
Tiptiri-Kourpeti, A.; Spyridopoulou, K.; Santarmaki, V.; Aindelis, G.; Tompoulidou, E.; Lamprianidou, E.E.; Saxami, G.; Ypsilantis, P.; Lampri, E.S.; Simopoulos, C.; Kotsianidis, I.; Galanis, A.; Kourkoutas, Y.; Dimitrellou, D.; Chlichlia, K. Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells. PLoS One, 2016, 11(2)e0147960
[http://dx.doi.org/10.1371/journal.pone.0147960 ] [PMID: 26849051]
[30]
Vidal, K.; Donnet-Hughes, A.; Granato, D. Lipoteichoic acids from Lactobacillus johnsonii strain La1 and Lactobacillus acidophilus strain La10 antagonize the responsiveness of human intestinal epithelial HT29 cells to lipopolysaccharide and gram-negative bacteria. Infect. Immun., 2002, 70(4), 2057-2064.
[http://dx.doi.org/10.1128/IAI.70.4.2057-2064.2002 ] [PMID: 11895971]
[31]
Kim, H.G.; Lee, S.Y.; Kim, N.R.; Lee, H.Y.; Ko, M.Y.; Jung, B.J.; Kim, C.M.; Lee, J.M.; Park, J.H.; Han, S.H.; Chung, D.K. Lactobacillus plantarum lipoteichoic acid down-regulated Shigella flexneri peptidoglycan-induced inflammation. Mol. Immunol., 2011, 48(4), 382-391.
[http://dx.doi.org/10.1016/j.molimm.2010.07.011 ] [PMID: 21129777]
[32]
Sawada, H.; Furushiro, M.; Hirai, K.; Motoike, M.; Watanabe, T.; Yokokura, T. Purification and characterization of an antihypertensive compound from Lactobacillus casei. Agric. Biol. Chem., 1990, 54(12), 3211-3219.
[http://dx.doi.org/10.1271/bbb1961.54.3211 ] [PMID: 1368639]
[33]
Antunes, L.C.M.; Han, J.; Ferreira, R.B.; Lolić, P.; Borchers, C.H.; Finlay, B.B. Effect of antibiotic treatment on the intestinal metabolome. Antimicrob. Agents Chemother., 2011, 55(4), 1494-1503.
[http://dx.doi.org/10.1128/AAC.01664-10 ] [PMID: 21282433]
[34]
Kok, M.G.; Ruijken, M.M.; Swann, J.R.; Wilson, I.D.; Somsen, G.W.; de Jong, G.J. Anionic metabolic profiling of urine from antibiotic-treated rats by capillary electrophoresis-mass spectrometry. Anal. Bioanal. Chem., 2013, 405(8), 2585-2594.
[http://dx.doi.org/10.1007/s00216-012-6701-4 ] [PMID: 23314487]
[35]
Moradi, M.; Mardani, K.; Tajik, H. Characterization and application of postbiotics of Lactobacillus spp. on Listeria monocytogenes in vitro and in food models. LWT, 2019, 111, 457-464.
[http://dx.doi.org/10.1016/j.lwt.2019.05.072]
[36]
Pajarillo, E.A.B.; Kim, S.H.; Lee, J-Y.; Valeriano, V.D.V.; Kang, D-K. Quantitative proteogenomics and the reconstruction of the metabolic pathway in Lactobacillus mucosae LM1. Han-gug Chugsan Sigpum Hag-hoeji, 2015, 35(5), 692-702.
[http://dx.doi.org/10.5851/kosfa.2015.35.5.692 ] [PMID: 26761899]
[37]
Wang, J.; Hui, W.; Cao, C.; Jin, R.; Ren, C.; Zhang, H.; Zhang, W. Proteomic analysis of an engineered isolate of Lactobacillus plantarum with enhanced raffinose metabolic capacity. Sci. Rep., 2016, 6, 31403.
[http://dx.doi.org/10.1038/srep31403 ] [PMID: 27510766]
[38]
Chiu, Y-H.; Lu, Y-C.; Ou, C-C.; Lin, S-L.; Tsai, C-C.; Huang, C-T.; Lin, M-Y. Lactobacillus plantarum MYL26 induces endotoxin tolerance phenotype in Caco-2 cells. BMC Microbiol., 2013, 13(1), 190.
[http://dx.doi.org/10.1186/1471-2180-13-190 ] [PMID: 23937116]
[39]
Lopez, M.; Li, N.; Kataria, J.; Russell, M.; Neu, J. Live and ultraviolet-inactivated Lactobacillus rhamnosus GG decrease flagellin-induced interleukin-8 production in Caco-2 cells. J. Nutr., 2008, 138(11), 2264-2268.
[http://dx.doi.org/10.3945/jn.108.093658 ] [PMID: 18936229]
[40]
Shin, H.S.; Park, S.Y.; Lee, D.K.; Kim, S.A.; An, H.M.; Kim, J.R.; Kim, M.J.; Cha, M.G.; Lee, S.W.; Kim, K.J.; Lee, K.O.; Ha, N.J. Hypocholesterolemic effect of sonication-killed Bifidobacterium longum isolated from healthy adult Koreans in high cholesterol fed rats. Arch. Pharm. Res., 2010, 33(9), 1425-1431.
[http://dx.doi.org/10.1007/s12272-010-0917-7 ] [PMID: 20945142]
[41]
van Hoffen, E.; Korthagen, N.M.; de Kivit, S.; Schouten, B.; Bardoel, B.; Duivelshof, A.; Knol, J.; Garssen, J.; Willemsen, L.E. Exposure of intestinal epithelial cells to UV-killed Lactobacillus GG but not Bifidobacterium breve enhances the effector immune response in vitro. Int. Arch. Allergy Immunol., 2010, 152(2), 159-168.
[http://dx.doi.org/10.1159/000265537 ] [PMID: 20016198]
[42]
de Almada, C.N.; Almada, C.N.; Martinez, R.C.; Sant’Ana, A.S. Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends Food Sci. Technol., 2016, 58, 96-114.
[http://dx.doi.org/10.1016/j.tifs.2016.09.011]
[43]
Raz, E.; Rachmilewitz, D. Inactivated probiotic bacteria and methods of use thereof. US Patent 1,074,2052, 2005.
[44]
Awuah, G.; Ramaswamy, H.; Economides, A. Thermal processing and quality: Principles and overview. Chem. Engin. Proc.: Process Intensificat., 2007, 46(6), 584-602.
[http://dx.doi.org/10.1016/j.cep.2006.08.004]
[45]
Gould, G.W. Mechanisms of action of food preservation procedures; Elsevier Applied Science: United States, 1989.
[46]
Ou, C.C.; Lin, S.L.; Tsai, J.J.; Lin, M.Y. Heat-killed lactic acid bacteria enhance immunomodulatory potential by skewing the immune response toward Th1 polarization. J. Food Sci., 2011, 76(5), M260-M267.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02161.x ] [PMID: 22417436]
[47]
Kawase, M.; He, F.; Miyazawa, K.; Kubota, A.; Yoda, K.; Hiramatsu, M. Orally administered heat-killed Lactobacillus gasseri TMC0356 can upregulate cell-mediated immunity in senescence-accelerated mice. FEMS Microbiol. Lett., 2012, 326(2), 125-130.
[http://dx.doi.org/10.1111/j.1574-6968.2011.02440.x ] [PMID: 22092995]
[48]
Favero, M. Chemical disinfection of medical and surgical materials; Disinfect., Sterilizat., Preservat, 1991, pp. 617-641.
[49]
Choudhury, T.G.; Kamilya, D. Paraprobiotics: An aquaculture perspective. Rev. Aquacult., 2018, 11(4), 1258-1270.
[http://dx.doi.org/10.1111/raq.12290]
[50]
Farkas, J. Irradiation as a method for decontaminating food. A review. Int. J. Food Microbiol., 1998, 44(3), 189-204.
[http://dx.doi.org/10.1016/S0168-1605(98)00132-9 ] [PMID: 9851599]
[51]
Ibrahim, H.M. Prediction of meat and meat products by gamma rays, electron beams and X-ray irradiations-A Review. Int. J. Agric. Sci., 2013, 3, 521-534.
[52]
Gayán, E.; Condón, S.; Álvarez, I. Biological aspects in food preservation by ultraviolet light: A review. Food Bioprocess Technol., 2014, 7(1), 1-20.
[http://dx.doi.org/10.1007/s11947-013-1168-7]
[53]
Chawla, R.; Patil, G.R.; Singh, A.K. High hydrostatic pressure technology in dairy processing: A review. J. Food Sci. Technol., 2011, 48(3), 260-268.
[http://dx.doi.org/10.1007/s13197-010-0180-4 ] [PMID: 23572744]
[54]
Rendueles, E.; Omer, M.; Alvseike, O.; Alonso-Calleja, C.; Capita, R.; Prieto, M. Microbiological food safety assessment of high hydrostatic pressure processing: A review. LWT, 2011, 44(5), 1251-1260.
[http://dx.doi.org/10.1016/j.lwt.2010.11.001]
[55]
Niamah, A. Ultrasound treatment (low frequency) effects on probiotic bacteria growth in fermented milk. Future Food, 2019, 7(2) Nr. 103-Nr
[56]
Butz, P.; Tauscher, B. Emerging technologies: Chemical aspects. Food Res. Int., 2002, 35(2), 279-284.
[http://dx.doi.org/10.1016/S0963-9969(01)00197-1]
[57]
Birmpa, A.; Sfika, V.; Vantarakis, A. Ultraviolet light and ultrasound as non-thermal treatments for the inactivation of microorganisms in fresh ready-to-eat foods. Int. J. Food Microbiol., 2013, 167(1), 96-102.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2013.06.005 ] [PMID: 23827815]
[58]
Ross, A.I.V.; Griffiths, M.W.; Mittal, G.S.; Deeth, H.C. Combining nonthermal technologies to control foodborne microorganisms. Int. J. Food Microbiol., 2003, 89(2-3), 125-138.
[http://dx.doi.org/10.1016/S0168-1605(03)00161-2 ] [PMID: 14623378]
[59]
Zheng, X.; Duan, Y.; Dong, H.; Zhang, J. Effects of dietary Lactobacillus plantarum in different treatments on growth performance and immune gene expression of white shrimp Litopenaeus vannamei under normal condition and stress of acute low salinity. Fish Shellfish Immunol., 2017, 62, 195-201.
[http://dx.doi.org/10.1016/j.fsi.2017.01.015 ] [PMID: 28108342]
[60]
Verruck, S.; de Carvalho, M.W.; de Liz, G.R.; Amante, E.R.; Vieira, C.R.W.; Amboni, R.D.M.C.; Prudencio, E.S. Survival of Bifidobacterium BB-12 microencapsulated with full-fat goat’s milk and prebiotics when exposed to simulated gastrointestinal conditions and thermal treatments. Small Rumin. Res., 2017, 153, 48-56.
[http://dx.doi.org/10.1016/j.smallrumres.2017.05.008]
[61]
Farkas, J. Irradiation for better foods. Trends Food Sci. Technol., 2006, 17(4), 148-152.
[http://dx.doi.org/10.1016/j.tifs.2005.12.003]
[62]
Mañas, P.; Pagán, R. Microbial inactivation by new technologies of food preservation. J. Appl. Microbiol., 2005, 98(6), 1387-1399.
[http://dx.doi.org/10.1111/j.1365-2672.2005.02561.x ] [PMID: 15916651]
[63]
Gayán, E.; Álvarez, I.; Condón, S. Inactivation of bacterial spores by UV-C light. Innov. Food Sci. Emerg. Technol., 2013, 19, 140-145.
[http://dx.doi.org/10.1016/j.ifset.2013.04.007]
[64]
Franz, C.M.A.P.; Specht, I.; Cho, G-S.; Graef, V.; Stahl, M.R. UV-C-inactivation of microorganisms in naturally cloudy apple juice using novel inactivation equipment based on Dean vortex technology. Food Control, 2009, 20(12), 1103-1107.
[http://dx.doi.org/10.1016/j.foodcont.2009.02.010]
[65]
Diels, A.M.; Michiels, C.W. High-pressure homogenization as a non-thermal technique for the inactivation of microorganisms. Crit. Rev. Microbiol., 2006, 32(4), 201-216.
[http://dx.doi.org/10.1080/10408410601023516 ] [PMID: 17123905]
[66]
Guyon, C.; Meynier, A.; de Lamballerie, M. Protein and lipid oxidation in meat: A review with emphasis on high-pressure treatments. Trends Food Sci. Technol., 2016, 50, 131-143.
[http://dx.doi.org/10.1016/j.tifs.2016.01.026]
[67]
Gibson, J.H.; Yong, D.H.N.; Farnood, R.R.; Seto, P. A literature review of ultrasound technology and its application in wastewater disinfection. Water Quality Res. J., 2008, 43(1), 23-35.
[http://dx.doi.org/10.2166/wqrj.2008.004]
[68]
Choudhury, T.G.; Kamilya, D. Paraprobiotics: An aquaculture perspective. Rev. Aquacult., 2019, 11(4), 1258-1270.
[http://dx.doi.org/10.1111/raq.12290]
[69]
Chaluvadi, S.; Hotchkiss, A.T.; Yam, K. Gut microbiota: Impact of probiotics, prebiotics, synbiotics, pharmabiotics, and postbiotics on human health. Probiotics, Prebiotics, and Synbiotics: Bioactive Foods in Health Promotion; Elsevier Inc: United States, 2015, pp. 515-523.
[70]
Ray, B.S.; Sherlock, A.; Wilken, T.; Woods, T. Cell wall lysed probiotic tincture decreases immune response to pathogenic enteric bacteria and improves symptoms in autistic and immune compromised children. Explore (NY), 2010, 19(1), 1-5.
[PMID: 20129304]
[71]
West, R.; Roberts, E.; Sichel, L.; Sichel, J. Improvements in gastrointestinal symptoms among children with autism spectrum disorder receiving the Delpro® probiotic and immunomodulator formulation. J. Prob. Health., 2013, 1(2)
[72]
Roda, A.; Simoni, P.; Magliulo, M.; Nanni, P.; Baraldini, M.; Roda, G.; Roda, E. A new oral formulation for the release of sodium butyrate in the ileo-cecal region and colon. World J. Gastroenterol., 2007, 13(7), 1079-1084.
[http://dx.doi.org/10.3748/wjg.v13.i7.1079 ] [PMID: 17373743]
[73]
Omarov, T.R.; Omarova, L.A.; Omarova, V.A.; Sarsenova, S.V. The chronic gastritis, the dysbacteriosis and the use of Hylak forte at the treatment. Wiad. Lek., 2014, 67(2 Pt 2), 365-367.
[PMID: 25796872]
[74]
Kareem, K.Y.; Loh, T.C.; Foo, H.L.; Akit, H.; Samsudin, A.A. Effects of dietary postbiotic and inulin on growth performance, IGF1 and GHR mRNA expression, faecal microbiota and volatile fatty acids in broilers. BMC Vet. Res., 2016, 12(1), 163.
[http://dx.doi.org/10.1186/s12917-016-0790-9 ] [PMID: 27496016]
[75]
Loh, T.C.; Choe, D.W.; Foo, H.L.; Sazili, A.Q.; Bejo, M.H. Effects of feeding different postbiotic metabolite combinations produced by Lactobacillus plantarum strains on egg quality and production performance, faecal parameters and plasma cholesterol in laying hens. BMC Vet. Res., 2014, 10(1), 149.
[http://dx.doi.org/10.1186/1746-6148-10-149 ] [PMID: 24996258]
[76]
Kareem, K.Y.; Hooi Ling, F.; Teck Chwen, L.; May Foong, O.; Anjas Asmara, S. Inhibitory activity of postbiotic produced by strains of Lactobacillus plantarum using reconstituted media supplemented with inulin. Gut Pathog., 2014, 6(1), 23.
[http://dx.doi.org/10.1186/1757-4749-6-23 ] [PMID: 24991236]
[77]
Min, M.; Bunt, C.R.; Mason, S.L.; Hussain, M.A. Non-dairy probiotic food products: An emerging group of functional foods. Crit. Rev. Food Sci. Nutr., 2019, 59(16), 2626-2641.
[http://dx.doi.org/10.1080/10408398.2018.1462760 ] [PMID: 29630845]
[78]
Sarkar, S. Microbiological considerations for probiotic supplemented foods. Int. J. Microbiol. Adv. Immunol., 2013, 1(1), 1-7.
[79]
Homayoni Rad, A.; Vaghef Mehrabany, E.; Alipoor, B.; Vaghef Mehrabany, L. The comparison of food and supplement as probiotic delivery vehicles. Crit. Rev. Food Sci. Nutr., 2016, 56(6), 896-909.
[http://dx.doi.org/10.1080/10408398.2012.733894 ] [PMID: 25117939]
[80]
Barros, C.P.; Guimarães, J.T.; Esmerino, E.A.; Duarte, M.C.K.; Silva, M.C.; Silva, R.; Ferreira, B.M.; Sant’Ana, A.S.; de Freitas, M.Q.; da Cruz, A.G. Paraprobiotics, postbiotics and psychobiotics: Concepts and potential applications in dairy products. Curr. Opin. Food Sci., 2019, 32, 1-8.
[81]
Phister, T.G.; O’Sullivan, D.J.; McKay, L.L. Identification of bacilysin, chlorotetaine, and iturin a produced by Bacillus sp. strain CS93 isolated from pozol, a Mexican fermented maize dough. Appl. Environ. Microbiol., 2004, 70(1), 631-634.
[http://dx.doi.org/10.1128/AEM.70.1.631-634.2004 ] [PMID: 14711701]
[82]
Ahmad, R.I.; Seo, B.J.; Rejish Kumar, V.J.; Choi, U.H.; Choi, K.H.; Lim, J.H.; Park, Y.H. Isolation and characterization of a proteinaceous antifungal compound from Lactobacillus plantarum YML007 and its application as a food preservative. Lett. Appl. Microbiol., 2013, 57(1), 69-76.
[http://dx.doi.org/10.1111/lam.12077 ] [PMID: 23565693]
[83]
Wang, N.; Wu, W.; Pan, J.; Long, M. Detoxification strategies for zearalenone using microorganisms: A review. Microorganisms, 2019, 7(7), 208.
[http://dx.doi.org/10.3390/microorganisms7070208 ] [PMID: 31330922]
[84]
Jacobi, C.A.; Schulz, C.; Malfertheiner, P. Treating critically ill patients with probiotics: Beneficial or dangerous? Gut Pathog., 2011, 3(1), 2.
[http://dx.doi.org/10.1186/1757-4749-3-2 ] [PMID: 21352578]
[85]
Zheng, M.; Zhang, R.; Tian, X.; Zhou, X.; Pan, X.; Wong, A. Assessing the risk of probiotic dietary supplements in the context of antibiotic resistance. Front. Microbiol., 2017, 8, 908.
[http://dx.doi.org/10.3389/fmicb.2017.00908 ] [PMID: 28579981]
[86]
Devirgiliis, C.; Zinno, P.; Perozzi, G. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Front. Microbiol., 2013, 4, 301.
[http://dx.doi.org/10.3389/fmicb.2013.00301 ] [PMID: 24115946]
[87]
Kataria, J.; Li, N.; Wynn, J.L.; Neu, J. Probiotic microbes: Do they need to be alive to be beneficial? Nutr. Rev., 2009, 67(9), 546-550.
[http://dx.doi.org/10.1111/j.1753-4887.2009.00226.x ] [PMID: 19703261]
[88]
Neu, J. Perinatal and neonatal manipulation of the intestinal microbiome: A note of caution. Nutr. Rev., 2007, 65(6 Pt 1), 282-285.
[http://dx.doi.org/10.1111/j.1753-4887.2007.tb00305.x ] [PMID: 17605304]
[89]
Cohen, P.A. Probiotic safety-no guarantees. JAMA Intern. Med., 2018, 178(12), 1577-1578.
[http://dx.doi.org/10.1001/jamainternmed.2018.5403 ] [PMID: 30242393]
[90]
Good, M.; Sodhi, C.P.; Ozolek, J.A.; Buck, R.H.; Goehring, K.C.; Thomas, D.L.; Vikram, A.; Bibby, K.; Morowitz, M.J.; Firek, B.; Lu, P.; Hackam, D.J. Lactobacillus rhamnosus HN001 decreases the severity of necrotizing enterocolitis in neonatal mice and preterm piglets: Evidence in mice for a role of TLR9. Am. J. Physiol. Gastrointest. Liver Physiol., 2014, 306(11), G1021-G1032.
[http://dx.doi.org/10.1152/ajpgi.00452.2013 ] [PMID: 24742987]
[91]
Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermúdez-Humarán, L.G.; Gratadoux, J.J.; Blugeon, S.; Bridonneau, C.; Furet, J.P.; Corthier, G.; Grangette, C.; Vasquez, N.; Pochart, P.; Trugnan, G.; Thomas, G.; Blottière, H.M.; Doré, J.; Marteau, P.; Seksik, P.; Langella, P. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA, 2008, 105(43), 16731-16736.
[http://dx.doi.org/10.1073/pnas.0804812105 ] [PMID: 18936492]
[92]
Cicenia, A.; Santangelo, F.; Gambardella, L.; Pallotta, L.; Iebba, V.; Scirocco, A.; Marignani, M.; Tellan, G.; Carabotti, M.; Corazziari, E.S.; Schippa, S.; Severi, C. Protective role of postbiotic mediators secreted by Lactobacillus rhamnosus GG versus lipopolysaccharide-induced damage in human colonic smooth muscle cells. J. Clin. Gastroenterol., 2016, 50(Suppl 2, Proceedings from the 8th Probiotics, Prebiotics & New Foods for Microbiota and Human Health meeting held in Rome, Italy on September 13-15, 2015), S140-S144.
[http://dx.doi.org/10.1097/MCG.0000000000000681] [PMID: 27741159]
[93]
Zeng, J.; Jiang, J.; Zhu, W.; Chu, Y. Heat-killed yogurt-containing lactic acid bacteria prevent cytokine-induced barrier disruption in human intestinal Caco-2 cells. Ann. Microbiol., 2016, 66(1), 171-178.
[http://dx.doi.org/10.1007/s13213-015-1093-2]
[94]
Sharma, M.; Chandel, D.; Shukla, G. Antigenotoxicity and cytotoxic potentials of metabiotics extracted from isolated probiotic, Lactobacillus rhamnosus MD 14 on Caco-2 and HT-29 human colon cancer cells. Nutr. Cancer, 2019, 1-10.
[http://dx.doi.org/10.1080/01635581.2019.1651879 ] [PMID: 31266374]
[95]
Nakamura, F.; Ishida, Y.; Sawada, D.; Ashida, N.; Sugawara, T.; Sakai, M.; Goto, T.; Kawada, T.; Fujiwara, S. Fragmented lactic acid bacterial cells activate peroxisome proliferator-activated receptors and ameliorate Dyslipidemia in obese mice. J. Agric. Food Chem., 2016, 64(12), 2549-2559.
[http://dx.doi.org/10.1021/acs.jafc.5b05827 ] [PMID: 26927959]
[96]
Wang, C.; Chuprom, J.; Wang, Y.; Fu, L. Beneficial bacteria for aquaculture: Nutrition, bacteriostasis and immunoregulation. J. Appl. Microbiol., 2020, 128(1), 28-40.
[http://dx.doi.org/10.1111/jam.14383 ] [PMID: 31306569]
[97]
Kamilya, D.; Baruah, A.; Sangma, T.; Chowdhury, S.; Pal, P. Inactivated probiotic bacteria stimulate cellular immune responses of catla, Catla catla (Hamilton) in vitro. Probiotics Antimicrob. Proteins, 2015, 7(2), 101-106.
[http://dx.doi.org/10.1007/s12602-015-9191-9 ] [PMID: 25736432]
[98]
Chuah, L-O.; Foo, H.L.; Loh, T.C.; Mohammed Alitheen, N.B.; Yeap, S.K.; Abdul Mutalib, N.E.; Abdul Rahim, R.; Yusoff, K. Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells. BMC Complement. Altern. Med., 2019, 19(1), 114.
[http://dx.doi.org/10.1186/s12906-019-2528-2 ] [PMID: 31159791]
[99]
Yang, H-L.; Xia, H-Q.; Ye, Y-D.; Zou, W-C.; Sun, Y-Z. Probiotic Bacillus pumilus SE5 shapes the intestinal microbiota and mucosal immunity in grouper Epinephelus coioides. Dis. Aquat. Organ., 2014, 111(2), 119-127.
[http://dx.doi.org/10.3354/dao02772 ] [PMID: 25266899]
[100]
Grześkowiak, Ł.; Collado, M.C.; Beasley, S.; Salminen, S. Pathogen exclusion properties of canine probiotics are influenced by the growth media and physical treatments simulating industrial processes. J. Appl. Microbiol., 2014, 116(5), 1308-1314.
[http://dx.doi.org/10.1111/jam.12477 ] [PMID: 24779583]
[101]
Vijayabaskar, P.; Somasundaram, S. Isolation of bacteriocin producing lactic acid bacteria from fish gut and probiotic activity against common fresh water fish pathogen Aeromonas hydrophila. Biotechnology (Faisalabad), 2008, 7(1), 124-128.
[http://dx.doi.org/10.3923/biotech.2008.124.128]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy