Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Perspective

In Vitro Data of Current Therapies for SARS-CoV-2

Author(s): Ioanna A. Anastasiou, Ioanna Eleftheriadou, Anastasios Tentolouris, Dimitrios Tsilingiris and Nikolaos Tentolouris*

Volume 27, Issue 27, 2020

Page: [4542 - 4548] Pages: 7

DOI: 10.2174/0929867327666200513075430

Price: $65

Abstract

Background: In December 2019, a new coronavirus, named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), emerged from China, causing pneumonia outbreaks first in the Wuhan region and then spread worldwide. Due to a lack of efficient and specific treatments and the need to contain the epidemic, drug repurposing appears to be the most efficient tool to find a therapeutic solution.

Objectives: The aim of this study was to summarize in vitro data of current agents used for the management of SARS-CoV-2 all over the world.

Methods: A literature search of articles from January 2000 until April 2020 was performed using MEDLINE, EMBASE and the Cochrane Library to assess in vitro data of current or putative therapies for SARS-CoV-2.

Results: Although in vitro studies are scarce, data regarding chloroquine, hydroxychloroquine, remdesivir, nitazoxanide, teicoplanin, ivermectin, lopinavir, homoharringtonine, and emetine seem promising.

Conclusion: Scientists all over the world should work together and increase their efforts in order to find feasible and efficient solutions against this new global viral threat.

Keywords: SARS-CoV-2 (COVID-19), in vitro studies, VeroE6 Cells, therapies, vaccines, ACE2 receptor.

[1]
Yin, Y.; Wunderink, R.G. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology, 2018, 23(2), 130-137.
[http://dx.doi.org/10.1111/resp.13196] [PMID: 29052924]
[2]
Weiss, S.R.; Leibowitz, J.L. Coronavirus pathogenesis. Adv. Virus Res., 2011, 81, 85-164.
[http://dx.doi.org/10.1016/B978-0-12-385885-6.00009-2] [PMID: 22094080]
[3]
Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res., 2020, 24, 91-98.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[4]
Kulcsar, K.A.; Coleman, C.M.; Beck, S.E.; Frieman, M.B. Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection. JCI Insight, 2019, 4(20) 131774
[http://dx.doi.org/10.1172/jci.insight.131774] [PMID: 31550243]
[5]
Aguiar, A.C.C.; Murce, E.; Cortopassi, W.A.; Pimentel, A.S.; Almeida, M.M.F.S.; Barros, D.C.S.; Guedes, J.S.; Meneghetti, M.R.; Krettli, A.U. Chloroquine analogs as antimalarial candidates with potent in vitro and in vivo activity. Int. J. Parasitol. Drugs Drug Resist., 2018, 8(3), 459-464.
[http://dx.doi.org/10.1016/j.ijpddr.2018.10.002] [PMID: 30396013]
[6]
Savarino, A.; Di Trani, L.; Donatelli, I.; Cauda, R.; Cassone, A. New insights into the antiviral effects of chloroquine. Lancet Infect. Dis., 2006, 6(2), 67-69.
[http://dx.doi.org/10.1016/S1473-3099(06)70361-9] [PMID: 16439323]
[7]
Savarino, A.; Boelaert, J.R.; Cassone, A.; Majori, G.; Cauda, R. Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect. Dis., 2003, 3(11), 722-727.
[http://dx.doi.org/10.1016/S1473-3099(03)00806-5] [PMID: 14592603]
[8]
Golden, E.B.; Cho, H.Y.; Hofman, F.M.; Louie, S.G.; Schönthal, A.H.; Chen, T.C. Quinoline-based antimalarial drugs: a novel class of autophagy inhibitors. Neurosurg. Focus, 2015, 38(3) E12
[http://dx.doi.org/10.3171/2014.12.FOCUS14748] [PMID: 25727221]
[9]
McChesney, E.W. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am. J. Med., 1983, 75(1A), 11-18.
[http://dx.doi.org/10.1016/0002-9343(83)91265-2] [PMID: 6408923]
[10]
World Health Organization World Health Organization model list of essential medicines: 21st list, No., WHO/MVP/EMP/IAU/2019.06,. 2019. Available at:https://www.who.int/medicines/publications/essentialmedicines/en/
[11]
Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov., 2020, 6, 16.
[http://dx.doi.org/10.1038/s41421-020-0156-0] [PMID: 32194981]
[12]
Yao, X. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 2020. ciaa237.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[13]
Agostini, M.L.; Andres, E.L.; Sims, A.C.; Graham, R.L.; Sheahan, T.P.; Lu, X.; Smith, E.C.; Case, J.B.; Feng, J.Y.; Jordan, R.; Ray, A.S.; Cihlar, T.; Siegel, D.; Mackman, R.L.; Clarke, M.O.; Baric, R.S.; Denison, M.R. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio, 2018, 9(2), e00221-e18.
[http://dx.doi.org/10.1128/mBio.00221-18] [PMID: 29511076]
[14]
Mulangu, S.; Dodd, L.E.; Davey, R.T., Jr; Tshiani Mbaya, O.; Proschan, M.; Mukadi, D.; Lusakibanza Manzo, M.; Nzolo, D.; Tshomba Oloma, A.; Ibanda, A.; Ali, R.; Coulibaly, S.; Levine, A.C.; Grais, R.; Diaz, J.; Lane, H.C.; Muyembe-Tamfum, J.J.; Sivahera, B.; Camara, M.; Kojan, R.; Walker, R.; Dighero-Kemp, B.; Cao, H.; Mukumbayi, P.; Mbala-Kingebeni, P.; Ahuka, S.; Albert, S.; Bonnett, T.; Crozier, I.; Duvenhage, M.; Proffitt, C.; Teitelbaum, M.; Moench, T.; Aboulhab, J.; Barrett, K.; Cahill, K.; Cone, K.; Eckes, R.; Hensley, L.; Herpin, B.; Higgs, E.; Ledgerwood, J.; Pierson, J.; Smolskis, M.; Sow, Y.; Tierney, J.; Sivapalasingam, S.; Holman, W.; Gettinger, N.; Vallée, D.; Nordwall, J.; Nordwall, J.; Team, P.C.S.A. PALM Writing Group. PALM Consortium Study Team. A randomized, controlled trial of ebola virus disease therapeutics. N. Engl. J. Med., 2019, 381(24), 2293-2303.
[http://dx.doi.org/10.1056/NEJMoa1910993] [PMID: 31774950]
[15]
Gordon, C.; Tchesnokov, E.; Feng, J.; Porter, D.; Gotte, M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem., 2020, 295(15), 4773-4779.
[http://dx.doi.org/10.1074/jbc.ac120.013056] [PMID: 32094225]
[16]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[17]
Choy, K.T.; Wong, A.Y.L.; Kaewpreedee, P.; Sia, S.F.; Chen, D.; Hui, K.P.Y.; Chu, D.K.W.; Chan, M.C.W.; Cheung, P.P.H.; Huang, X.; Peiris, M.; Yen, H.L. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res., 2020, 178104786
[http://dx.doi.org/10.1016/j.antiviral.2020.104786] [PMID: 32251767]
[18]
Zhang, J.; Ma, X.; Yu, F.; Liu, J.; Zou, F.; Pan, T.; Zhang, H. Teicoplanin potently blocks the cell entry of 2019-nCoV. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.02.05.935387]
[19]
Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178104787
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[20]
Ganjhu, R.K.; Mudgal, P.P.; Maity, H.; Dowarha, D.; Devadiga, S.; Nag, S.; Arunkumar, G. Herbal plants and plant preparations as remedial approach for viral diseases. Virusdisease, 2015, 26(4), 225-236.
[http://dx.doi.org/10.1007/s13337-015-0276-6] [PMID: 26645032]
[21]
Sohail, M.; Rasul, F.; Karim, A.; Kanwal, U.; Attitalla, I. Plant as a source of natural antiviral agents. Asian J. Anim. Vet. Adv., 2011, 6, 1125-1152.
[http://dx.doi.org/10.3923/ajava.2011.1125.1152]
[22]
Balzarini, J.; Schols, D.; Neyts, J.; Van Damme, E.; Peumans, W.; De Clercq, E. Alpha-(1-3)- and alpha-(1-6)-D-mannose-specific plant lectins are markedly inhibitory to human immunodeficiency virus and cytomegalovirus infections in vitro. Antimicrob. Agents Chemother., 1991, 35(3), 410-416.
[http://dx.doi.org/10.1128/AAC.35.3.410] [PMID: 1645507]
[23]
Keyaerts, E.; Vijgen, L.; Pannecouque, C.; Van Damme, E.; Peumans, W.; Egberink, H.; Balzarini, J.; Van Ranst, M. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res., 2007, 75(3), 179-187.
[http://dx.doi.org/10.1016/j.antiviral.2007.03.003] [PMID: 17428553]
[24]
Runfeng, L.; Yunlong, H.; Jicheng, H.; Weiqi, P.; Qinhai, M.; Yongxia, S.; Chufang, L.; Jin, Z.; Zhenhua, J.; Haiming, J.; Kui, Z.; Shuxiang, H.; Jun, D.; Xiaobo, L.; Xiaotao, H.; Lin, W.; Nanshan, Z.; Zifeng, Y. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol. Res., 2020, 156, 104761
[http://dx.doi.org/10.1016/j.phrs.2020.104761] [PMID: 32205232]
[25]
Ma, Y.; Chen, M.; Guo, Y.; Liu, J.; Chen, W.; Guan, M.; Wang, Y.; Zhao, X.; Wang, X.; Li, H.; Meng, L.; Wen, Y.; Wang, Y. Prevention and treatment of infectious diseases by traditional Chinese medicine: a commentary. APMIS, 2019, 127(5), 372-384.
[http://dx.doi.org/10.1111/apm.12928] [PMID: 31124203]
[26]
Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med., 2020, 46(4), 586-590.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[27]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[28]
Yang, X.H.; Deng, W.; Tong, Z.; Liu, Y.X.; Zhang, L.F.; Zhu, H.; Gao, H.; Huang, L.; Liu, Y.L.; Ma, C.M.; Xu, Y.F.; Ding, M.X.; Deng, H.K.; Qin, C. Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection. Comp. Med., 2007, 57(5), 450-459.
[PMID: 17974127]
[29]
Monteil, V.; Kwon, H.; Prado, P.; Hagelkrüys, A.; Wimmer, R.A.; Stahl, M.; Leopoldi, A.; Garreta, E.; Hurtado Del Pozo, C.; Prosper, F.; Romero, J.P.; Wirnsberger, G.; Zhang, H.; Slutsky, A.S.; Conder, R.; Montserrat, N.; Mirazimi, A.; Penninger, J.M. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell, 2020, 181(4), 905-913.e7.
[http://dx.doi.org/10.1016/j.cell.2020.04.004] [PMID: 32333836]
[30]
Imai, Y.; Kuba, K.; Rao, S.; Huan, Y.; Guo, F.; Guan, B.; Yang, P.; Sarao, R.; Wada, T.; Leong-Poi, H.; Crackower, M.A.; Fukamizu, A.; Hui, C.C.; Hein, L.; Uhlig, S.; Slutsky, A.S.; Jiang, C.; Penninger, J.M. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature, 2005, 436(7047), 112-116.
[http://dx.doi.org/10.1038/nature03712] [PMID: 16001071]
[31]
Yang, J.K.; Lin, S.S.; Ji, X.J.; Guo, L.M. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol., 2010, 47(3), 193-199.
[http://dx.doi.org/10.1007/s00592-009-0109-4] [PMID: 19333547]
[32]
Bornstein, S.R.; Rubino, F.; Khunti, K.; Mingrone, G.; Hopkins, D.; Birkenfeld, A.L.; Boehm, B.; Amiel, S.; Holt, R.I.; Skyler, J.S.; DeVries, J.H.; Renard, E.; Eckel, R.H.; Zimmet, P.; Alberti, K.G.; Vidal, J.; Geloneze, B.; Chan, J.C.; Ji, L.; Ludwig, B. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol., 2020, 8(6), 546-550.
[http://dx.doi.org/10.1016/s2213-8587(20)30152-2] [PMID: 32334646]
[33]
Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med., 2020, 8(4) e21
[http://dx.doi.org/10.1016/S2213-2600(20)30116-8] [PMID: 32171062]
[34]
Angeli, F.; Reboldi, G.; Verdecchia, P. Hypertensive urgencies and emergencies: Misconceptions and pitfalls. Eur. J. Intern. Med., 2020, 71, 15-17.
[http://dx.doi.org/10.1016/j.ejim.2019.10.031] [PMID: 31706707]
[35]
Drucker, D.J. Coronavirus infections and type 2 diabetesshared pathways with therapeutic implications. Endocr.Rev., 2020, 41(3) bnaa011.
[http://dx.doi.org/10.1210/endrev/bnaa011] [PMID: 32294179]
[36]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 2020, 368(6489), 409-412.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[37]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[38]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy