Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Synthesis, Chemical Reactivities, and Biological Properties of Pyrazolone/ Pyrazolinone as a Blocking Unit for Building Various Heterobicyclic Systems: A Review

Author(s): Abdulrahman S. Alharbi*, Reda M. Abdel-Rahman, Nawaa A. Alshammari and Khaled M. El-Avia

Volume 18, Issue 2, 2021

Published on: 11 May, 2020

Page: [221 - 236] Pages: 16

DOI: 10.2174/1570193X17999200511132328

Price: $65

Abstract

This review reports various synthetic routes of pyrazolone/ pyrazolinone derivatives via the addition of cycloaddition, condensation, cyclocondensation, modification, alkylation, as well as formylation, regioselective, and ring-opening reactions under reflux, microwave irradiation, and/ or ultrasonication conditions. It also presents critical chemical behaviors towards nucleophilic and electrophilic reagents. The chemical reactivities of pyrazolone/ pyrazolinone derivatives involve alkylation, acylation, condensation, catalyzed diazo coupling, oxidation, heteroarylation, phosphorylation, stereoselective alkenylation, enantioselective alkylation, addition, and complexation reactions. The review also summarizes the significant biological activity of pyrazolone/ pyrazolinone derivatives as antibacterial, antifungal, anti-inflammatory, anticancer, antitumor, anthelmintic, analgesic, as well as antioxidant, anthelmintic, antibiofilm, and anti-HIV. Moreover, some pyrazolone/ pyrazolinone derivatives used to remove various metal or soft metal ions from the wastewater. Besides, they exhibited stable complexes with some metals, for example, Ag (I), Cu (I), Cu (II), Hg (II), Pb (II), Sn (II), and Sb (V) as new materials, catalysis, and precursors for CVD in the microelectronic industry and as potential antitumoral.

Keywords: Antipyrine, biological activities, chemical reactivity, edaravone, polyfunctional pyrazolones, synthesis.

Graphical Abstract

[1]
Nauduri, D.; Reddy, G.B.S. Antibacterials and antimycotics: Part 1: Synthesis and activity of 2-pyrazoline derivatives. Chem. Pharm. Bull. (Tokyo), 1998, 46(8), 1254-1260.
[http://dx.doi.org/10.1248/cpb.46.1254] [PMID: 9734312]
[2]
Korgaokar, S.S.; Patel, H.P.M.; J., Shah H., H. P. Studies on pyrazolines: Preparation and antimicrobial activity of 3-(3′(p-chlorophenyl sulphonamido phenyl)-5 aryl-1H/acetyl pyrazolines. Indian J. Pharm. Sci., 1996, 58(6), 222-225.
[3]
Udupi, R.H.; Kushnoor, A.S.; Bhat, A.R. Synthesis and biological evaluation of certain pyrazoline derivatives of 2-[6-methoxy-naphthyl]-propionic acid (naproxen). Indian J. Heterocycl. Chem., 1998, 8(1), 63-66.
[4]
Bilgin, A.A.; Palaska, E.; Sunal, R. Studies on the synthesis and antidepressant activity of some 1-thiocarbamoyl-3,5-diphenyl-2-pyrazolines. Arzneimittelforschung, 1993, 43(10), 1041-1044.
[PMID: 8267665]
[5]
Pathak, V.; Maurya, H.K.; Sharma, S.; Srivastava, K.K.; Gupta, A. Synthesis and biological evaluation of substituted 4,6-diarylpyrimi-dines and 3,5-diphenyl-4,5-dihydro-1H-pyrazoles as anti-tubercular agents. Bioorg. Med. Chem. Lett., 2014, 24(13), 2892-2896.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.094] [PMID: 24835631]
[6]
Gökhan-Kelekçi, N.; Yabanoğlu, S.; Küpeli, E.; Salgin, U.; Özgen, O.; Uçar, G.; Yeşilada, E.; Kendi, E.; Yeşilada, A.; Bilgin, A.A. A new therapeutic approach in Alzheimer disease: Some novel pyrazole derivatives as dual MAO-B inhibitors and antiinflammatory analgesics. Bioorg. Med. Chem., 2007, 15(17), 5775-5786.
[http://dx.doi.org/10.1016/j.bmc.2007.06.004] [PMID: 17611112]
[7]
el-Sabbagh, O.I.; Baraka, M.M.; Ibrahim, S.M.; Pannecouque, C.; Andrei, G.; Snoeck, R.; Balzarini, J.; Rashad, A.A. Synthesis and antiviral activity of new pyrazole and thiazole derivatives. Eur. J. Med. Chem., 2009, 44(9), 3746-3753.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.038] [PMID: 19419804]
[8]
Pasin, J.S.M.; Ferreira, A.P.O.; Saraiva, A.L.L.; Ratzlaff, V.; Andrighetto, R.; Machado, P.; Marchesan, S.; Zanette, R.A.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A.P.; Ferreira, J.; Mello, C.F. Antipyretic and antioxidant activities of 5-trifluoromethyl-4,5- dihydro-1H-pyrazoles in rats. Braz. J. Med. Biol. Res., 2010, 43(12), 1193-1202..
[http://dx.doi.org/10.1590/S0100-879X2010007500139] [PMID: 21140097]
[9]
Bekhit, A.A.; Abdel-Aziem, T. Design, synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatory-antimicrobial agents. Bioorg. Med. Chem., 2004, 12(8), 1935-1945.
[http://dx.doi.org/10.1016/j.bmc.2004.01.037] [PMID: 15051061]
[10]
Mathew, B.; Suresh, J.; Anbazhagan, S. Synthesis, preclinical evaluation and antidepressant activity of 5-substituted phenyl-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazole-1-carbothioamides. EXCLI J., 2014, 13, 437-445.
[PMID: 26417270]
[11]
Trindade, N.R.; Lopes, P.R.; Naves, L.M.; Fajemiroye, J.O.; Alves, P.H.; Amaral, N.O.; Lião, L.M.; Rebelo, A.C.S.; Castro, C.H.; Braga, V.A.; Menegatti, R.; Pedrino, G.R. The Newly synthesized pyrazole derivative 5-(1-(3-fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole reduces blood pressure of spontaneously hypertensive rats via NO/cGMO pathway. Front. Physiol., 2018, 9(1073), 1073.
[http://dx.doi.org/10.3389/fphys.2018.01073] [PMID: 30131720]
[12]
Giornal, F.; Pazenok, S.; Rodefeld, L.; Lui, N.; Vors, J-P.; Leroux, F.R. Synthesis of diversely fluorinated pyrazoles as novel active agrochemical ingredients. J. Fluor. Chem., 2013, 152, 2-11.
[http://dx.doi.org/10.1016/j.jfluchem.2012.11.008]
[13]
Karcı, F.; Bakan, E. New disazo pyrazole disperse dyes: Synthesis, spectroscopic studies, and tautomeric structures. J. Mol. Liq., 2015, 206, 309-315.
[http://dx.doi.org/10.1016/j.molliq.2015.02.032]
[14]
Demirçalı, A.; Karcı, F.; Avinc, O.; Kahrıman, A.U.; Gedik, G.; Bakan, E. The synthesis, characterization, and investigation of absorption properties of disperse disazo dyes containing pyrazole and isoxazole. J. Mol. Struct., 2019, 1181, 8-13.
[http://dx.doi.org/10.1016/j.molstruc.2018.12.033]
[15]
Kalaria, P.N.; Satasia, S.P.; Raval, D.K. Synthesis, characterization and pharmacological screening of some novel 5-imidazopyrazole incorporated polyhydroquinoline derivatives. Eur. J. Med. Chem., 2014, 78, 207-216.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.015] [PMID: 24681985]
[16]
Loupy, A. Solvent-free Reactions. In: Modern Solvents in Organic Synthesis; Knochel, P., Ed.; Springer: Heidelberg, 1999, pp. 153-207.
[http://dx.doi.org/10.1007/3-540-48664-X_7]
[17]
Althagafi, I.I.; Shaaban, M.R. Microwave-assisted regioselective synthesis of novel pyrazoles and pyrazolopyridazines via fluorine-containing building blocks. J. Mol. Struct., 2017, 1142, 122-129.
[http://dx.doi.org/10.1016/j.molstruc.2017.04.047]
[18]
Ganapathi, M.; Jayaseelan, D.; Guhanathan, S. Microwave assisted efficient synthesis of diphenyl substituted pyrazoles using PEG-600 as solvent - A green approach. Ecotoxicol. Environ. Saf., 2015, 121, 87-92.
[http://dx.doi.org/10.1016/j.ecoenv.2015.05.002] [PMID: 25979455]
[19]
Khan, S.A.; Asiri, A.M.; Al-Ghamdi, N.S.M.; Asad, M.; Zayed, M.E.M.; Elroby, S.A.K.; Aqlan, F.M.; Wani, M.Y.; Sharma, K. Microwave-assisted synthesis of chalcone and its polycyclic heterocyclic analogs as promising antibacterial agents: in vitro, in silico and DFT studies. J. Mol. Struct., 2019, 1190, 77-85.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.046]
[20]
Schmidlehner, M.; Kuhn, P-S.; Hackl, C.M.; Roller, A.; Kandioller, W.; Keppler, B.K. Microwave-assisted synthesis of N-heterocycle-based organometallics. J. Organomet. Chem., 2014, 772-773, 93-99.
[http://dx.doi.org/10.1016/j.jorganchem.2014.08.013]
[21]
Parihar, S.; Jadeja, R.N.; Gupta, V.K. Novel oxovanadium(iv) complexes with 4-acyl pyrazolone ligands: Synthesis, crystal structure, and catalytic activity towards the oxidation of benzylic alcohols. RSC Advances, 2014, 4(20), 10295-10302.
[http://dx.doi.org/10.1039/c3ra46896h]
[22]
Holzer, W.; Kautsch, C.; Laggner, C.; Claramunt, R.M.; Pérez-Torralba, M.; Alkorta, I.; Elguero, J. On the tautomerism of pyrazolones: the geminal 2J [pyrazole C-4, H-3(5)] spin coupling constant as a diagnostic tool. Tetrahedron, 2004, 60(32), 6791-6805.
[http://dx.doi.org/10.1016/j.tet.2004.06.039]
[23]
Al-Mutairi, A.A.; El-Baih, F.E.M.; Al-Hazimi, H.M. Microwave versus ultrasound-assisted synthesis of some new heterocycles based on pyrazolone moiety. J. Saudi Chem. Soc., 2010, 14(3), 287-299.
[http://dx.doi.org/10.1016/j.jscs.2010.02.010]
[24]
Vijayv, D. Rahulp G. A microwave-catalyzed rapid, efficient, and eco-friendly synthesis of substituted pyrazol-5-ones. J. Serb. Chem. Soc., 2003, 68(10), 723-727.
[http://dx.doi.org/10.2298/JSC0310723D]
[25]
Shvarts, G.Y. Achievements in the study of the mechanism of action and development of new nonsteroid anti-inflammatory drugs. Khim. Farm. Zh., 1980, 14(9), 22-41.
[26]
Erkin, A.V.; Krutikov, V.I.; Chubraev, M.A. Synthesis of 2-(pyrazol-1-yl)pyrimidine derivatives by cyclocondensation of ethyl acetoacetate (6-methyl-4-oxo-3,4-dihydropyrimidin-2-yl)hydrazone with aromatic aldehydes. Russ. J. Gen. Chem., 2004, 74(3), 423-427.
[http://dx.doi.org/10.1023/B:RUGC.0000030401.30369.4d]
[27]
Vasile, D.; Jian-Ming, L. Synthesis of new trifluoromethyl-containing 1-(3,5-dialkyl-4-hydroxybenzyl)-pyrazole and -pyrazol-5-one derivatives and their corresponding aroxyls. J. Serb. Chem. Soc., 2006, 71(4), 323-330.
[http://dx.doi.org/10.2298/JSC0604323D]
[28]
El-Gazzar, A.B.A.; Hassan, N.A. Synthesis of polynuclear heterocyclic compounds derived from thieno[2,3-d]pyrimidine derivatives. Molecules, 2000, 5(6), 835-850.
[http://dx.doi.org/10.3390/50600835]
[29]
Saleh, M.A.; Abdel-Megeed, M.F.; Abdo, M.A.; Shokr, A-B.M. Synthesis of novel 3H-quinazolin-4-ones containing pyrazolinone, pyrazole, and pyrimidinone moieties. Molecules, 2003, 8(4), 363-373.
[http://dx.doi.org/10.3390/80400363]
[30]
El-Mariah, F.A.A.S.H.A.; Allimony, H.A.; Abdel-Rahman, R.M. Synthesis and antimicrobial activity of-some nitrogen heterobicyclic systems: Part III. Indian J. Chem., 2000, 39B(1), 36-41.
[31]
Makki, M.S.T.; Abdel-Rahman, R.M.; Alharbi, A.S. Synthetic strategies, chemical reactivities and biological activities of 3-thioxo-1,2,4-triazin-5-ones and their derivatives. Mini Rev. Org. Chem., 2019, 16(4), 308-322.
[http://dx.doi.org/10.2174/1570193X15666180807124325]
[32]
Rostom, S.A.F.; Badr, M.H.; Abd El Razik, H.A.; Ashour, H.M.A.; Abdel Wahab, A.E. Synthesis of some pyrazolines and pyrimidines derived from polymethoxy chalcones as anticancer and antimicrobial agents. Arch. Pharm. (Weinheim), 2011, 344(9), 572-587.
[http://dx.doi.org/10.1002/ardp.201100077] [PMID: 21755528]
[33]
Šimůnek, P.; Svobodová, M.; Macháček, V. Synthesis and characterization of some 3-acyl-4-amino-1-aryl-1H-pyrazoles. J. Heterocycl. Chem., 2009, 46(4), 650-655.
[http://dx.doi.org/10.1002/jhet.127]
[34]
Attanasi, O.A.; De Crescentini, L.; Filippone, P.; Mantellini, F.; Tietze, L.F. Solid-phase synthesis of 4-triphenylphosphoranyli-dene-4,5-dihydropyrazol-5-ones, 4-aminocarbonyl-pyrroles, 4-methoxy-1H-pyrazol-5(2H)-ones and 2-thiazolin-4-ones from polymer-bound 1,2-diaza-1,3-butadienes. Tetrahedron, 2001, 57(27), 5855-5863.
[http://dx.doi.org/10.1016/S0040-4020(01)00523-3]
[35]
Rasapalli, S.; Fan, Y.; Yu, M.; Rees, C.; Harris, J.T.; Golen, J.A.; Jasinski, J.P.; Rheingold, A.L.; Kwasny, S.M.; Opperman, T.J. Detour of prenostodione synthesis towards pyrazolones for antibacterial activity. Bioorg. Med. Chem. Lett., 2013, 23(11), 3235-3238.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.123] [PMID: 23611730]
[36]
Pinto, D.C.G.A.; Silva, A.M.S. Lévai, A.; Cavaleiro, José A. S.; Patonay, T.; Elguero, J. Synthesis of 3-benzoyl-4-styryl-2-pyrazolines and their oxidation to the corresponding pyrazoles. Eur. J. Org. Chem., 2000, 2000(14), 2593-2599.
[http://dx.doi.org/10.1002/1099-0690(200007)2000:14<2593:AID-EJOC2593>3.0.CO;2-Y]
[37]
Pinto, D.C.G.A.; Silva, A.M.S.; Almeida, L.M.P.M.; Cavaleiro, J.A.S. Elguero, J. 3-Aroyl-5-hydroxyflavones: Synthesis and transformation into aroylpyrazoles. Eur. J. Org. Chem., 2002, 2002(22), 3807-3815.
[http://dx.doi.org/10.1002/1099-0690(200211)2002:22<3807:AID-EJOC3807>3.0.CO;2-2]
[38]
Rosa, F.A.; Machado, P.; Vargas, P.S.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A.P. Straightforward and regiospecific synthesis of pyrazole-5-carboxylates from unsymmetrical enaminodiketones. Synlett, 2008, 2008(11), 1673-1678.
[http://dx.doi.org/10.1055/s-2008-1078482]
[39]
Song, L-P.; Chu, Q-L.; Zhu, S-Z. Synthesis of fluorinated pyrazole derivatives from β-alkoxyvinyl trifluoroketones. J. Fluor. Chem., 2001, 107(1), 107-112.
[http://dx.doi.org/10.1016/S0022-1139(00)00348-1]
[40]
Adib, M.; Sayahi, M.H.; Aghaaliakbari, B.; Bijanzadeh, H.R. Reaction between isocyanides and dialkyl acetylenedicarboxylates in the presence of 2,4-dihydro-3H-pyrazol-3-ones. One-pot synthesis of highly functionalized 7-oxo-1H,7H-pyrazolo[1,2-a]pyrazoles. Tetrahedron, 2005, 61(16), 3963-3966.
[http://dx.doi.org/10.1016/j.tet.2005.02.050]
[41]
de la Hoz, A.; Díaz, A.; Elguero, J.; Jiménez, A.; Moreno, A.; Ruiz, A.; Sánchez-Migallón, A. Microwave-assisted synthesis of bipyrazolyls and pyrazolyl-substituted pyrimidines. Tetrahedron, 2007, 63(3), 748-753.
[http://dx.doi.org/10.1016/j.tet.2006.10.080]
[42]
Dawood, K.M. Regio- and stereoselective synthesis of bis-spiropyrazoline-5,3′-chroman(thiochroman)-4-one derivatives via bis-nitrilimines. Tetrahedron, 2005, 61(22), 5229-5233.
[http://dx.doi.org/10.1016/j.tet.2005.03.083]
[43]
El-Sakka, I.A.; Kandil, A.; El-Moghayar, M.H. Reactions with 3-pyrazolin-5-ones: Synthesis of some 4-substituted 2,3-dimethyl-1-phenyl-3-pyrazolin-5-ones. Arch. Pharm. (Weinheim), 1983, 316(1), 76-82.
[http://dx.doi.org/10.1002/ardp.19833160115]
[44]
Simha Pulla, R.; Ummadi, N.; Gudi, Y.; Venkatapuram, P.; Adivireddy, P. Synthesis and antimicrobial activity of some new 3,4-disubstituted pyrroles and pyrazoles. J. Heterocycl. Chem., 2018, 55(1), 115-124.
[http://dx.doi.org/10.1002/jhet.3012]
[45]
Suram, D.; Thatha, S.; Venkatapuram, P.; Adivireddy, P. Synthesis and antimicrobial activity of a new class of benzazolyl pyrazoles. J. Heterocycl. Chem., 2017, 54(6), 3152-3162.
[http://dx.doi.org/10.1002/jhet.2929]
[46]
Turki, H.; Kamoun, M.; Lahiani, S.; El Gharbi, R. A simple efficient procedure for the synthesis of benzopyrano[2,3-c]pyrazoles. J. Heterocycl. Chem., 2016, 53(5), 1356-1362.
[http://dx.doi.org/10.1002/jhet.1759]
[47]
Shawali, A.S.; Farghaly, T.A.; Al-Dahshoury, R.A. Synthesis, reactions and antitumor activity of new β-aminovinyl 3-pyrazolyl ketones. ARKIVOC, 2009, xiv, 88-99.
[48]
Masaret, G.S. Synthesis, structure elucidation, and biological activities of pyrazoles against human lung and hepatocellular cancer. J. Heterocycl. Chem., 2018, 55(9), 2123-2129.
[http://dx.doi.org/10.1002/jhet.3257]
[49]
Kadasi, S.; Yerroju, R.; Gaddam, S.; Pullanagiri, N.; Chary, M.; Pingili, D.; Raj, S.; Raghavendra, N. M. Discovery of N-pyridoyl-Δ2-pyrazolines as Hsp90 inhibitors. Arch. Pharm. n/a (n/a), e1900192..
[50]
Belmar, J.; Alderete, J.; Zuniga, C.; Jimenez, C.; Jimenez, V.; Nunez, H.; Grandy, R.; Yori, A. Synthesis of 1-n-alkyl-3-methyl- and 1-n-alkyl-3-phenyl-5-pyrazolones and formyl derivatives. Bol. Soc. Chil. Quím., 2001, 46, 458-470.
[http://dx.doi.org/10.4067/S0366-16442001000400010]
[51]
Li, J-H.; Feng, T-F.; Du, D-M. Construction of spirocyclopropane-linked heterocycles containing both pyrazolones and oxindoles through Michael/alkylation cascade reactions. J. Org. Chem., 2015, 80(22), 11369-11377.
[http://dx.doi.org/10.1021/acs.joc.5b01940] [PMID: 26491953]
[52]
Thorne, J.R.G.; Rey, J.M.; Denning, R.G.; Watkins, S.E.; Etchells, M.; Green, M.; Christou, V. Excited-state dynamics of organo-Lanthanide electroluminescent phosphors:The properties of Tb(tb-pmp)3 and Gd(tb-pmp)3. J. Phys. Chem. A, 2002, 106(16), 4014-4021.
[http://dx.doi.org/10.1021/jp013955s]
[53]
Xiao, Y.; Wu, X.; Teng, J.; Sun, S.; Yu, J-T.; Cheng, J. Copper-catalyzed acylation of pyrazolones with aldehydes to afford 4-acylpyrazolones. Org. Biomol. Chem., 2019, 17(32), 7552-7557.
[http://dx.doi.org/10.1039/C9OB01486A] [PMID: 31372617]
[54]
Belmar, J.; Pérez, F.R.; Alderete, J.; Zúñiga, C. Synthesis, and tautomeric studies of enamines from 1-(n-hexyl)-3-methyl-2-pyrazolin-5-one. J. Braz. Chem. Soc., 2005, 16, 179-189.
[http://dx.doi.org/10.1590/S0103-50532005000200009]
[55]
Khalil, A.K.; Hassan, M.A.; Mohamed, M.M.; El-Sayed, A.M. Metal salt-catalyzed diazo coupling of 3-substituted-1H-pyrazol-2-in-5-ones in aqueous medium. Dyes Pigm., 2005, 66(3), 241-245.
[http://dx.doi.org/10.1016/j.dyepig.2004.10.005]
[56]
Watanabe, T.; Tahara, M.; Todo, S. The novel antioxidant edaravone: from bench to bedside., Cardiovasc. Ther., 2008, 26(2), 101- 114..
[http://dx.doi.org/ 10.1111/j.1527-3466.2008.00041.x] [PMID: 18485133]
[57]
Turan-Zitouni, G.; Sivaci, M.; Kiliç, F.S.; Erol, K. Synthesis of some triazolyl-antipyrine derivatives and investigation of analgesic activity., Eur. J. Med. Chem., 2001, 36(7-8), 685-689..
[http://dx.doi.org/10.1016/S0223-5234(01)01252-1] [PMID: 11600237]
[58]
Cerchiaro, G.; Da Costa Ferreira, A.M.; Teixeira, A.B.; Magalhães, H.M.; Cunha, A.C.; Ferreira, V.F.; Santos, L.S.; Eberlin, M.N.; Skakle, J.M.S.; Wardell, S.M.S.V.; Wardell, J.L. Synthesis and crystal structure of 2,4-dihydro-4-[(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)imino]-5-methyl-2-phenyl-3H-pyrazol-3-one and it’s copper(II) complex. Polyhedron, 2006, 25(10), 2055-2064.
[http://dx.doi.org/10.1016/j.poly.2006.01.002]
[59]
Lizai, G.; Run-Qiu, H.; Hui-Ying, L. The synthesis of 1-(4-antipyrylamino)-1-arylmethylphosphonic acid. Phosphorus Sulfur Silicon Relat. Elem., 1999, 147(1), 455-455.
[http://dx.doi.org/10.1080/10426509908053707]
[60]
Sil, D.; Kumar, R.; Sharon, A.; Maulik, P.R.; Ram, V.J. Stereoselective alkenylation of a 1,3-disubstituted pyrazol-5-one through ring transformation of 2H-pyran-2-ones. Tetrahedron Lett., 2005, 46(22), 3807-3809.
[http://dx.doi.org/10.1016/j.tetlet.2005.03.207]
[61]
Liang, J.; Chen, Q.; Liu, L.; Jiang, X.; Wang, R. An organocatalytic asymmetric double Michael cascade reaction of unsaturated ketones and unsaturated pyrazolones: Highly efficient synthesis of spiropyrazolone derivatives. Org. Biomol. Chem., 2013, 11(9), 1441-1445.
[http://dx.doi.org/10.1039/C2OB27095A] [PMID: 23262465]
[62]
Eweas, A.F.; El-Nezhawy, A.O.; Abdel-Rahman, R.F.R,B.A. Design synthesis, in vivo anti-inflammatory, analgesic activities and molecular docking of some novel pyrazolone derivatives. Med. Chem., 2015, 5(10), 458-466.
[63]
Riyadh, S.M. Enaminones as building blocks for the synthesis of substituted pyrazoles with antitumor and antimicrobial activities. Molecules, 2011, 16(2), 1834-1853.
[http://dx.doi.org/10.3390/molecules16021834] [PMID: 21343888]
[64]
Lorenzotti, A.; Marchetti, F.; Pettinari, C.; Pettinari, R.; Skelton, B.W.; White, A.H. Synthesis and characterization of silver(I) derivatives containing acylpyrazolonate and phosphino ligands: X-ray crystal structures of monomeric [Ag(QnPe)(PPh3)2] and of dimeric [{Ag(QnPe)(PiBu3)}2] (QnPe=1-phenyl-3-methyl-4-tert-butylace-tylpyrazolon-5-ato). Inorg. Chim. Acta, 2005, 358(11), 3190-3200.
[http://dx.doi.org/10.1016/j.ica.2005.04.017]
[65]
Pettinari, C.; Marchetti, F.; Drozdov, A. β-Diketones, and Related Ligands.In Comprehensive Coordination Chemistry II; McCleverty, J. A.; Meyer, T. J., Eds.; Pergamon: Oxford, 2003, pp. 97-115..
[66]
Cingolani, A.; Effendy, E.; Marchetti, F.; Pettinari, C.; Pettinari, R.; Skelton, B.W.; White, A.H. Silver coordination chemistry of a new versatile “Janus”-type N(2),O(2)-bichelating donor, formation of an unprecedented supramolecular network of binuclear silver building blocks containing a five-coordinate β-diketonate, and isolation of unexpected silver-tin-silver heterotrimetallic complexes from silver metathesis reactions. Inorg. Chem., 2004, 43(14), 4387-4399.
[http://dx.doi.org/10.1021/ic0497376] [PMID: 15236552]
[67]
Pettinari, C.; Marchetti, F.; Santini, C.; Pettinari, R.; Drozdov, A.; Troyanov, S.; Battiston, G.A.; Gerbasi, R. Structure, and volatility of copper complexes containing pyrazolyl-based ligands. Inorg. Chim. Acta, 2001, 315(1), 88-95.
[http://dx.doi.org/10.1016/S0020-1693(01)00330-9]
[68]
Mahon, M.F.; Molloy, K.C.; Omotowa, B.A.; Mesubi, M.A. Organomercury (II) and diorganothallium (III) derivatives of 4-acylpyrazol-5-ones. J. Organomet. Chem., 1996, 525(1), 239-246.
[http://dx.doi.org/10.1016/S0022-328X(96)06452-2]
[69]
Pettinari, C.; Marchetti, F.; Pettinari, R.; Cingolani, A.; Rivarola, E.; Phillips, C.; Tanski, J.; Rossi, M.; Caruso, F. Tin(II) and lead(II) 4-acyl-5-pyrazolonates: Synthesis, spectroscopic and x-ray structural characterization. Eur. J. Inorg. Chem., 2004, 2004(17), 3484-3497.
[http://dx.doi.org/10.1002/ejic.200400225]
[70]
Pettinari, C.; Marchetti, F.; Cingolani, A.; Marciante, C.; Spagna, R.; Colapietro, M. Synthesis, and characterization of some tin (II) and tin (IV) derivatives of 4-acyl-5-pyrazolones. Crystal structure of bis(1-phenyl-3-methyl-4-acetyl-pyrazolon-5-ato) tin (II). Polyhedron, 1994, 13(6), 939-950.
[http://dx.doi.org/10.1016/S0277-5387(00)83014-4]
[71]
Mahon, M.F.; Molloy, K.C.; Omotowa, B.A.; Mesubi, M.A. Triphenylantimony(V) derivatives of acylpyrazol-5-ones. J. Organomet. Chem., 1998, 560(1), 95-101.
[http://dx.doi.org/10.1016/S0022-328X(98)00488-4]
[72]
Elbanowski, M.; Mąkowska, B.; Staninski, K.; Kaczmarek, M. Chemiluminescence of systems containing lanthanide ions. J. Photochem. Photobiol., 2000, 130(2), 75-81.
[http://dx.doi.org/10.1016/S1010-6030(99)00222-1]
[73]
Dobrzyński, P.; Kasperczyk, J.; Bero, M. Application of calcium acetylacetonate to the polymerization of glycolide and copolymerization of glycolide with ε-caprolactone and l-lactide. Macromolecules, 1999, 32(14), 4735-4737.
[http://dx.doi.org/10.1021/ma981969z]
[74]
Hampden-Smith, M.J.; Kodas, T.T. Chemical vapor deposition of copper from (hfac)CuL compounds. Polyhedron, 1995, 14(6), 699-732.
[http://dx.doi.org/10.1016/0277-5387(94)00401-Y]
[75]
Keppler, B. K.; Friesen, C.; Vongerichten, H.; Vogel, E. Budotitane, a new tumor-inhibiting titanium compound in preclinical and clinical development., Met. Compl. Can. Chemother., 1993, 297-323..
[76]
De Souza, Í.P.; Machado, B.D.P.; De Carvalho, A.B.; Binatti, I.; Krambrock, K.; Molphy, Z.; Kellett, A.; Pereira-Maia, E.C.; Silva-Caldeira, P.P. Exploring the DNA binding, oxidative cleavage, and cytotoxic properties of new ternary copper (II) compounds containing 4-aminoantipyrine and N,N-heterocyclic co-ligands. J. Mol. Struct., 2019, 1178, 18-28.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.004]
[77]
Manjunath, M.; Kulkarni, A.D.; Bagihalli, G.B.; Malladi, S.; Patil, S.A. Bio-important antipyrine derived Schiff bases and their transition metal complexes: Synthesis, spectroscopic characterization, antimicrobial, anthelmintic and DNA cleavage investigation. J. Mol. Struct., 2017, 1127, 314-321.
[http://dx.doi.org/10.1016/j.molstruc.2016.07.123]
[78]
Gürsoy, A.; Demirayak, S.; Çapan, G.; Erol, K.; Vural, K. Synthesis and preliminary evaluation of new 5-pyrazolinone derivatives as analgesic agents. Eur. J. Med. Chem., 2000, 35(3), 359-364. .
[http://dx.doi.org/10.1016/S0223-5234(00)00117-3 ] [PMID: 10785562]
[79]
Badawey, E-S.A.M.; El-Ashmawey, I.M. Nonsteroidal anti-inflammatory agents - Part 1: Anti-inflammatory, analgesic, and antipyretic activity of some new 1-(pyrimidin-2-yl)-3-pyrazolin-5-ones and 2-(pyrimidin-2-yl)-1,2,4,5,6,7-hexahydro-3H-indazol-3-ones. Eur. J. Med. Chem., 1998, 33(5), 349-361.
[http://dx.doi.org/10.1016/S0223-5234(98)80002-0]
[80]
Anzai, K.; Furuse, M.; Yoshida, A.; Matsuyama, A.; Moritake, T.; Tsuboi, K.; Ikota, N. In vivo radioprotection of mice by 3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone; Radicut), a clinical drug. J. Radiat. Res. (Tokyo), 2004, 45(2), 319-323.
[http://dx.doi.org/10.1269/jrr.45.319] [PMID: 15304976]
[81]
Qi, X.; Okuma, Y.; Hosoi, T.; Nomura, Y. Edaravone protects against hypoxia/ischemia-induced endoplasmic reticulum dysfunction. J. Pharmacol. Exp. Ther., 2004, 311(1), 388-393.
[http://dx.doi.org/10.1124/jpet.104.069088] [PMID: 15178695]
[82]
Abe, S.; Kirima, K.; Tsuchiya, K.; Okamoto, M.; Hasegawa, T.; Houchi, H.; Yoshizumi, M.; Tamaki, T. The reaction rate of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186)) with hydroxyl radical. Chem. Pharm. Bull. (Tokyo), 2004, 52(2), 186-191.
[http://dx.doi.org/10.1248/cpb.52.186] [PMID: 14758002]
[83]
Akama, Y.; Tong, A.; Ishima, S.; Kajitani, M. Determination of indium in metallic zinc by flame atomic absorption spectrometry after extraction with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone. Anal. Sci., 1992, 8(1), 41-44.
[http://dx.doi.org/10.2116/analsci.8.41]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy