Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Human Papillomavirus Induced Cervical and Oropharyngeal Cancers: From Mechanisms to Potential Immuno-therapeutic Strategies

Author(s): Mohd. Saeed*, Syed Mohd Faisal, Firoz Akhtar, Saheem Ahmad, Mousa M. Alreshidi, Mohd. Adnan Kausar, Shadab Kazmi, Amir Saeed, Mohd. Adnan and Ghulam Md Ashraf*

Volume 21, Issue 3, 2020

Page: [167 - 177] Pages: 11

DOI: 10.2174/1389200221666200421121228

Price: $65

Abstract

The human papillomavirus (HPV) associated infections are the hallmark of cervical and neck cancer. Almost all the cases of cervical cancer (CC) and 70% of oropharyngeal cancer (OC) are, more or less, caused by the persistent infection of HPV. CC is the fourth most common cancer globally, and is commenced by the persistent infection with human papillomaviruses (HPVs), predominantly HPV types; 16 and 18. In the light of the above facts, there is an immediate requirement to develop novel preventive and innovative therapeutic strategies that may help in lower occurrences of HPV mediated cancers. Currently, only radiation and chemical-based therapies are the treatment for HPV mediated neck cancer (NC) and CC. Recent advances in the field of immunotherapy are underway, which are expected to unravel the optimal treatment strategies for the growing HPV mediated cancers. In this review, we decipher the mechanism of pathogenesis with current immunotherapeutic advances in regressing the NC and CC, with an emphasis on immune-therapeutic strategies being tested in clinical trials and predominantly focus on defining the efficacy and limitations. Taken together, these immunological advances have enhanced the effectiveness of immunotherapy and promises better treatment results in coming future.

Keywords: Cervical cancer, Human papillomaviruses (HPVs), cytokines, immunotherapy, neck cancer, oropharyngeal cancer.

Graphical Abstract

[1]
Giuliano, A.R.; Lee, J-H.; Fulp, W.; Villa, L.L.; Lazcano, E.; Papenfuss, M.R.; Abrahamsen, M.; Salmeron, J.; Anic, G.M.; Rollison, D.E.; Smith, D. Incidence and clearance of genital human papillomavirus infection in men (HIM): a cohort study. Lancet, 2011, 377(9769), 932-940.
[http://dx.doi.org/10.1016/S0140-6736(10)62342-2] [PMID: 21367446]
[2]
Muñoz, N.; Castellsagué, X.; de González, A.B.; Gissmann, L. HPV in the etiology of human cancer. Vaccine, 2006, 24(Suppl. 3), S3-, 1-10.
[http://dx.doi.org/10.1016/j.vaccine.2006.05.115] [PMID: 16949995]
[3]
de Sanjose, S.; Quint, W.G.; Alemany, L.; Geraets, D.T.; Klaustermeier, J.E.; Lloveras, B.; Tous, S.; Felix, A.; Bravo, L.E.; Shin, H-R.; Vallejos, C.S.; de Ruiz, P.A.; Lima, M.A.; Guimera, N.; Clavero, O.; Alejo, M.; Llombart-Bosch, A.; Cheng-Yang, C.; Tatti, S.A.; Kasamatsu, E.; Iljazovic, E.; Odida, M.; Prado, R.; Seoud, M.; Grce, M.; Usubutun, A.; Jain, A.; Suarez, G.A.; Lombardi, L.E.; Banjo, A.; Menéndez, C.; Domingo, E.J.; Velasco, J.; Nessa, A.; Chichareon, S.C.; Qiao, Y.L.; Lerma, E.; Garland, S.M.; Sasagawa, T.; Ferrera, A.; Hammouda, D.; Mariani, L.; Pelayo, A.; Steiner, I.; Oliva, E.; Meijer, C.J.; Al-Jassar, W.F.; Cruz, E.; Wright, T.C.; Puras, A.; Llave, C.L.; Tzardi, M.; Agorastos, T.; Garcia-Barriola, V.; Clavel, C.; Ordi, J.; Andújar, M.; Castellsagué, X.; Sánchez, G.I.; Nowakowski, A.M.; Bornstein, J.; Muñoz, N.; Bosch, F.X. Retrospective International Survey and HPV Time Trends Study Group. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol., 2010, 11(11), 1048-1056.
[http://dx.doi.org/10.1016/S1470-2045(10)70230-8] [PMID: 20952254]
[4]
de Martel, C.; Plummer, M.; Vignat, J.; Franceschi, S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer, 2017, 141(4), 664-670.
[http://dx.doi.org/10.1002/ijc.30716] [PMID: 28369882]
[5]
Society, A.C. Cancer Facts & Figures 2016; American Cancer Society: Atlanta, 2016.
[6]
Orav, M.; Henno, L.; Isok-Paas, H.; Geimanen, J.; Ustav, M.; Ustav, E. Recombination-dependent oligomerization of the human papillomavirus genomes upon transient DNA replication. J. Virol.,, 2013. JVI, 01798-01713.
[7]
Braaten, K.P.; Laufer, M.R. Human papillomavirus (HPV), HPV-related disease, and the HPV vaccine. Rev. Obstet. Gynecol., 2008, 1(1), 2-10.
[PMID: 18701931]
[8]
Rashed, S.; Ahrens, P.M.; Maruthainar, N.; Garlick, N.; Saeed, M.Z. The role of arthroscopic simulation in teaching surgical skills: a systematic review of the literature. JBJS Rev., 2018, 6(9) e8, 1-11.
[http://dx.doi.org/10.2106/JBJS.RVW.17.00201] [PMID: 30252719]
[9]
Nielsen, A.; Munk, C.; Kjaer, S.K. Trends in incidence of anal cancer and high-grade anal intraepithelial neoplasia in Denmark, 1978-2008. Int. J. Cancer, 2012, 130(5), 1168-1173.
[http://dx.doi.org/10.1002/ijc.26115] [PMID: 21469144]
[10]
Miller, D.L.; Puricelli, M.D.; Stack, M.S. Virology and molecular pathogenesis of HPV (human papillomavirus)-associated oropharyngeal squamous cell carcinoma. Biochem. J., 2012, 443(2), 339-353.
[http://dx.doi.org/10.1042/BJ20112017] [PMID: 22452816]
[11]
McLaughlin-Drubin, M.E.; Münger, K. The human papillomavirus E7 oncoprotein. Virology, 2009, 384(2), 335-344.
[http://dx.doi.org/10.1016/j.virol.2008.10.006] [PMID: 19007963]
[12]
Mesri, E.A.; Feitelson, M.A.; Munger, K. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe, 2014, 15(3), 266-282.
[http://dx.doi.org/10.1016/j.chom.2014.02.011] [PMID: 24629334]
[13]
Bodily, J.; Laimins, L.A. Persistence of human papillomavirus infection: keys to malignant progression. Trends Microbiol., 2011, 19(1), 33-39.
[http://dx.doi.org/10.1016/j.tim.2010.10.002] [PMID: 21050765]
[14]
Franco, E.L. Cancer causes revisited: human papillomavirus and cervical neoplasia; Oxford University Press, 1995.
[15]
Hwang, E-S.; Nottoli, T.; Dimaio, D. The HPV16 E5 protein: expression, detection, and stable complex formation with transmembrane proteins in COS cells. Virology, 1995, 211(1), 227-233.
[http://dx.doi.org/10.1006/viro.1995.1395] [PMID: 7645215]
[16]
Bookstein, J.J.; Lurie, A.L. Transluminal penile venoablation for impotence: a progress report. Cardiovasc. Intervent. Radiol., 1988, 11(4), 253-260.
[http://dx.doi.org/10.1007/BF02577012] [PMID: 3147140]
[17]
Franco, E.L.; Duarte-Franco, E.; Ferenczy, A. Cervical cancer: epidemiology, prevention and the role of human papillomavirus infection. CMAJ, 2001, 164(7), 1017-1025.
[PMID: 11314432]
[18]
Rezaei, N.; Hedayat, M.; Aghamohammadi, A.; Nichols, K.E. Primary immunodeficiency diseases associated with increased susceptibility to viral infections and malignancies. J. Allergy Clin. Immunol., 2011, 127(6), 1329-41 .
[19]
Park, T.W.; Fujiwara, H.; Wright, T.C. Molecular biology of cervical cancer and its precursors. Cancer, 1995, 76(10)(Suppl.), 1902-1913.
[http://dx.doi.org/10.1002/1097-0142(19951115)76:10+<1902:AID-CNCR2820761306>3.0.CO;2-0] [PMID: 8634981]
[20]
Crusius, K.; Auvinen, E.; Alonso, A. Enhancement of EGF- and PMA-mediated MAP kinase activation in cells expressing the human papillomavirus type 16 E5 protein. Oncogene, 1997, 15(12), 1437-1444.
[http://dx.doi.org/10.1038/sj.onc.1201312] [PMID: 9333019]
[21]
Bosch, F.X.; Munoz, N.; Shah, K.V.; Meheus, A. Second international workshop on the epidemiology of cervical cancer and human papillomavirus. Int. J. Cancer, 1992, 52(2), 171-173.
[http://dx.doi.org/10.1002/ijc.2910520202] [PMID: 1325948]
[22]
Doorbar, J.; Ely, S.; Sterling, J.; McLean, C.; Crawford, L. Specific interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature, 1991, 352(6338), 824-827.
[http://dx.doi.org/10.1038/352824a0] [PMID: 1715519]
[23]
Phelps, W.C.; Yee, C.L.; Münger, K.; Howley, P.M. The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1A. Cell, 1988, 53(4), 539-547.
[http://dx.doi.org/10.1016/0092-8674(88)90570-3] [PMID: 2836062]
[24]
Turek, L.P.; Smith, E.M. The genetic program of genital human papillomaviruses in infection and cancer. Obstet. Gynecol. Clin. North Am., 1996, 23(4), 735-758.
[http://dx.doi.org/10.1016/S0889-8545(05)70275-8] [PMID: 8989774]
[25]
Ward, P.; Coleman, D.V.; Malcolm, A.D. Regulatory mechanisms of the papillomaviruses. Trends Genet., 1989, 5(4), 97-99.
[http://dx.doi.org/10.1016/0168-9525(89)90037-1] [PMID: 2543107]
[26]
Costello, R.T.; Rey, J.; Fauriat, C.; Gastaut, J.A.; Olive, D. New approaches in the immunotherapy of haematological malignancies. Eur. J. Haematol., 2003, 70(5), 333-345.
[http://dx.doi.org/10.1034/j.1600-0609.2003.00065.x] [PMID: 12694173]
[27]
Frankel, A.E.; Neville, D.M.; Bugge, T.A.; Kreitman, R.J.; Leppla, S.H. Immunotoxin therapy of hematologic malignancies, Seminars in oncology; Fojo, A.T., Ed.; Elsevier: Amsterdam, 2003, pp. 545-557.
[28]
Kwak, L.W. Translational development of active immunotherapy for hematologic malignancies, Seminars in oncology; Fojo, A.T., Ed.; Elsevier: Amsterdam, 2003, pp. 17-22.
[29]
Murthy, V.H.; Krumholz, H.M.; Gross, C.P. Participation in cancer clinical trials: race-, sex-, and age-based disparities. JAMA, 2004, 291(22), 2720-2726.
[http://dx.doi.org/10.1001/jama.291.22.2720] [PMID: 15187053]
[30]
Bray, F.; Sankila, R.; Ferlay, J.; Parkin, D.M. Estimates of cancer incidence and mortality in Europe in 1995. Eur. J. Cancer, 2002, 38(1), 99-166.
[http://dx.doi.org/10.1016/S0959-8049(01)00350-1] [PMID: 11750846]
[31]
Lundqvist, A.; Childs, R. Allogeneic hematopoietic cell transplantation as immunotherapy for solid tumors: current status and future directions. J. Immunother., 2005, 28(4), 281-288.
[http://dx.doi.org/10.1097/01.cji.0000165354.19171.8f] [PMID: 16000944]
[32]
Stein, A.P.; Saha, S.; Yu, M.; Kimple, R.J.; Lambert, P.F. Prevalence of human papillomavirus in oropharyngeal squamous cell carcinoma in the United States across time. Chem. Res. Toxicol., 2014, 27(4), 462-469.
[http://dx.doi.org/10.1021/tx500034c] [PMID: 24641254]
[33]
Oldham, R.K.; Dillman, R.O. Monoclonal antibodies in cancer therapy: 25 years of progress. J. Clin. Oncol., 2008, 26(11), 1774-1777.
[http://dx.doi.org/10.1200/JCO.2007.15.7438] [PMID: 18398141]
[34]
Prendergast, G.C.; Jaffee, E.M. Cancer immunotherapy: immune suppression and tumor growth; Academic Press: Cambridge, 2013.
[35]
Karamouzis, M.; Friedland, D.; Johnson, R.; Rajasenan, K.; Branstetter, B.; Argiris, A. Phase II trial of pemetrexed (P) and bevacizumab (B) in patients (pts) with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC): an interim analysis J. Clin. Oncol., 2007, 25(18_suppl), 6049-6049.
[36]
Thomson, K.J.; Morris, E.C.; Bloor, A.; Cook, G.; Milligan, D.; Parker, A.; Clark, F.; Yung, L.; Linch, D.C.; Chakraverty, R.; Peggs, K.S.; Mackinnon, S. Favorable long-term survival after reduced-intensity allogeneic transplantation for multiple-relapse aggressive non-Hodgkin’s lymphoma. J. Clin. Oncol., 2009, 27(3), 426-432.
[http://dx.doi.org/10.1200/JCO.2008.17.3328] [PMID: 19064981]
[37]
Chaturvedi, A.K.; Engels, E.A.; Pfeiffer, R.M.; Hernandez, B.Y.; Xiao, W.; Kim, E.; Jiang, B.; Goodman, M.T.; Sibug-Saber, M.; Cozen, W.; Liu, L.; Lynch, C.F.; Wentzensen, N.; Jordan, R.C.; Altekruse, S.; Anderson, W.F.; Rosenberg, P.S.; Gillison, M.L. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J. Clin. Oncol., 2011, 29(32), 4294-4301.
[http://dx.doi.org/10.1200/JCO.2011.36.4596] [PMID: 21969503]
[38]
Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin., 2005, 55(2), 74-108.
[http://dx.doi.org/10.3322/canjclin.55.2.74] [PMID: 15761078]
[39]
Roden, R.; Wu, T-C. How will HPV vaccines affect cervical cancer? Nat. Rev. Cancer, 2006, 6(10), 753-763.
[http://dx.doi.org/10.1038/nrc1973] [PMID: 16990853]
[40]
zur Hausen, H. Papillomaviruses and cancer: from basic studies to clinical application. Nat. Rev. Cancer, 2002, 2(5), 342-350.
[http://dx.doi.org/10.1038/nrc798] [PMID: 12044010]
[41]
Schiffman, M.H.; Bauer, H.M.; Hoover, R.N.; Glass, A.G.; Cadell, D.M.; Rush, B.B.; Scott, D.R.; Sherman, M.E.; Kurman, R.J.; Wacholder, S. Epidemiologic evidence showing that human papillomavirus infection causes most cervical intraepithelial neoplasia. J. Natl. Cancer Inst., 1993, 85(12), 958-964.
[http://dx.doi.org/10.1093/jnci/85.12.958] [PMID: 8388478]
[42]
Walboomers, J.M.; Jacobs, M.V.; Manos, M.M.; Bosch, F.X.; Kummer, J.A.; Shah, K.V.; Snijders, P.J.; Peto, J.; Meijer, C.J.; Muñoz, N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol., 1999, 189(1), 12-19.
[http://dx.doi.org/10.1002/(SICI)1096-9896(199909)189:1<12:AID-PATH431>3.0.CO;2-F] [PMID: 10451482]
[43]
Schiffman, M.; Castle, P.E.; Jeronimo, J.; Rodriguez, A.C.; Wacholder, S. Human papillomavirus and cervical cancer. Lancet, 2007, 370(9590), 890-907.
[http://dx.doi.org/10.1016/S0140-6736(07)61416-0] [PMID: 17826171]
[44]
Adnan, M.; Khan, S.; Al-Shammari, E.; Patel, M.; Saeed, M.; Hadi, S. In pursuit of cancer metastasis therapy by bacteria and its biofilms: History or future. Med. Hypotheses, 2017, 100, 78-81.
[http://dx.doi.org/10.1016/j.mehy.2017.01.018] [PMID: 28236853]
[45]
Soave, D.F.; Celes, M.R.N.; Oliveira-Costa, J.P.; da Silveira, G.G.; Zanetti, B.R.; Oliveira, L.R.; Ribeiro-Silva, A. The Role of Human Papillomavirus in Pre-Cancerous Lesions and Oral Cancers. Human Papillomavirus and Related Diseases From Bench to Bedside A Diagnostic and Preventive Perspective; Broeck, D.V., Ed.; IntechOpen: London. , 2013; p. 1871.
[46]
Goodwin, E.C.; DiMaio, D. Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc. Natl. Acad. Sci. USA, 2000, 97(23), 12513-12518.
[http://dx.doi.org/10.1073/pnas.97.23.12513] [PMID: 11070078]
[47]
Schwartz, S.M.; Daling, J.R.; Doody, D.R.; Wipf, G.C.; Carter, J.J.; Madeleine, M.M.; Mao, E.J.; Fitzgibbons, E.D.; Huang, S.; Beckmann, A.M.; McDougall, J.K.; Galloway, D.A. Oral cancer risk in relation to sexual history and evidence of human papillomavirus infection. J. Natl. Cancer Inst., 1998, 90(21), 1626-1636.
[http://dx.doi.org/10.1093/jnci/90.21.1626] [PMID: 9811312]
[48]
Goodwin, E.C.; DiMaio, D. Induced senescence in HeLa cervical carcinoma cells containing elevated telomerase activity and extended telomeres1. Cell Growth Differ., 2001, 12, 525-534.
[49]
Rosenthal, A.; Jacobs, I. Ovarian cancer screening. Semin. Oncol., 1998, 25(3), 315-325.
[PMID: 9633843]
[50]
Salzberg, M.; Thürlimann, B.; Bonnefois, H.; Fink, D.; Rochlitz, C.; von Moos, R.; Senn, H. Current concepts of treatment strategies in advanced or recurrent ovarian cancer. Oncology, 2005, 68(4-6), 293-298.
[http://dx.doi.org/10.1159/000086967] [PMID: 16020955]
[51]
Grulich, A.E.; van Leeuwen, M.T.; Falster, M.O.; Vajdic, C.M. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet, 2007, 370(9581), 59-67.
[http://dx.doi.org/10.1016/S0140-6736(07)61050-2] [PMID: 17617273]
[52]
Baig, M.H.; Ahmad, K.; Saeed, M.; Alharbi, A.M.; Barreto, G.E.; Ashraf, G.M.; Choi, I. Peptide based therapeutics and their use for the treatment of neurodegenerative and other diseases. Biomed. Pharmacother., 2018, 103, 574-581.
[http://dx.doi.org/10.1016/j.biopha.2018.04.025] [PMID: 29677544]
[53]
Salani, R.; Kurman, R.J.; Giuntoli, R., II; Gardner, G.; Bristow, R.; Wang, T.L.; Shih, I.M. Assessment of TP53 mutation using purified tissue samples of ovarian serous carcinomas reveals a higher mutation rate than previously reported and does not correlate with drug resistance. Int. J. Gynecol. Cancer, 2008, 18(3), 487-491.
[http://dx.doi.org/10.1111/j.1525-1438.2007.01039.x] [PMID: 17692090]
[54]
Ahmad, S.; Khan, M.Y.; Rafi, Z.; Khan, H.; Siddiqui, Z.; Rehman, S.; Shahab, U.; Khan, M.S.; Saeed, M.; Alouffi, S.; Khan, M.S. Oxidation, glycation and glycoxidation-The vicious cycle and lung cancer. Semin. Cancer Biol., 2018, 49, 29-36.
[http://dx.doi.org/10.1016/j.semcancer.2017.10.005] [PMID: 29055529]
[55]
Shih, IeM.; Kurman, R.J. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am. J. Pathol., 2004, 164(5), 1511-1518.
[http://dx.doi.org/10.1016/S0002-9440(10)63708-X] [PMID: 15111296]
[56]
Adnan, M.; Patel, M.; Reddy, M.N.; Alshammari, E. Formulation, evaluation and bioactive potential of Xylaria primorskensis terpenoid nanoparticles from its major compound xylaranic acid. Sci. Rep., 2018, 8(1), 1740.
[http://dx.doi.org/10.1038/s41598-018-20237-z] [PMID: 29379181]
[57]
Dubeau, L. The cell of origin of ovarian epithelial tumors and the ovarian surface epithelium dogma: does the emperor have no clothes? Gynecol. Oncol., 1999, 72(3), 437-442.
[http://dx.doi.org/10.1006/gyno.1998.5275] [PMID: 10053122]
[58]
Patel, M.; Sachidanandan, M.; Adnan, M. Serine arginine protein kinase 1 (SRPK1): a moonlighting protein with theranostic ability in cancer prevention. Mol. Biol. Rep., 2019, 46(1), 1487-1497.
[http://dx.doi.org/10.1007/s11033-018-4545-5] [PMID: 30535769]
[59]
Brodell, L.A.; Mercurio, M.G.; Brodell, R.T. The diagnosis and treatment of human papillomavirus-mediated genital lesions. Cutis, 2007, 79(4)(Suppl.), 5-10.
[PMID: 17508490]
[60]
Hussain, T.; Bajpai, S.; Saeed, M.; Moin, A.; Alafnan, A.; Khan, M.; Kamal, M.A.; Ganash, M.; Ashraf, G.M. Potentiating effect of ethnomedicinal plants against proliferation on different cancer cell lines. Curr. Drug Metab., 2018, 19(7), 584-595.
[http://dx.doi.org/10.2174/1389200219666180305144841] [PMID: 29512451]
[61]
Khan, F.; Singh, V.K.; Saeed, M.; Kausar, M.A.; Ansari, I.A. Carvacrol induced program cell death and cell cycle arrest in androgen-independent human prostate cancer cells via inhibition of notch signaling. Anticancer. Agents Med. Chem., 2019, 19(13), 1588-1608.
[http://dx.doi.org/10.2174/1871520619666190731152942] [PMID: 31364516]
[62]
Samie, H.A.A.; Saeed, M.; Faisal, S.M.; Kausar, M.A.; Kamal, M.A. Recent findings on nanotechnology-based therapeutic strategies against hepatocellular carcinoma. Curr. Drug Metab., 2019, 20(4), 283-291.
[http://dx.doi.org/10.2174/1389200220666190308134351] [PMID: 30854953]
[63]
Fausch, S.C.; Da Silva, D.M.; Kast, W.M. Heterologous papillomavirus virus-like particles and human papillomavirus virus-like particle immune complexes activate human Langerhans cells. Vaccine, 2005, 23(14), 1720-1729.
[http://dx.doi.org/10.1016/j.vaccine.2004.09.035] [PMID: 15705478]
[64]
Hung, C-F.; Ma, B.; Monie, A.; Tsen, S-W.; Wu, T.C. Therapeutic human papillomavirus vaccines: current clinical trials and future directions. Expert Opin. Biol. Ther., 2008, 8(4), 421-439.
[http://dx.doi.org/10.1517/14712598.8.4.421] [PMID: 18352847]
[65]
Weiner, L.M.; Surana, R.; Wang, S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat. Rev. Immunol., 2010, 10(5), 317-327.
[http://dx.doi.org/10.1038/nri2744] [PMID: 20414205]
[66]
Lynch, T.J.; Bondarenko, I.; Luft, A.; Serwatowski, P.; Barlesi, F.; Chacko, R.; Sebastian, M.; Neal, J.; Lu, H.; Cuillerot, J-M.; Reck, M. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J. Clin. Oncol., 2012, 30(17), 2046-2054.
[http://dx.doi.org/10.1200/JCO.2011.38.4032] [PMID: 22547592]
[67]
Miedany, Y.E. MABS: Targeted therapy tailored to the patient's need British J. Nurs., 2015, 24(Sup16a), S4-S13.
[68]
Fausch, S.C.; Da Silva, D.M.; Kast, W.M. Differential uptake and cross-presentation of human papillomavirus virus-like particles by dendritic cells and Langerhans cells. Cancer Res., 2003, 63(13), 3478-3482.
[PMID: 12839929]
[69]
Palefsky, J.M.; Gillison, M.L.; Strickler, H.D. Chapter 16: HPV vaccines in immunocompromised women and men. Vaccine, 2006, 24(Suppl. 3), S3-, 140-146.
[http://dx.doi.org/10.1016/j.vaccine.2006.05.120] [PMID: 16950001]
[70]
Tagami, H.; Takigawa, M.; Ogino, A.; Imamura, S.; Ofugi, S. Spontaneous regression of plane warts after inflammation: clinical and histologic studies in 25 cases. Arch. Dermatol., 1977, 113(9), 1209-1213.
[http://dx.doi.org/10.1001/archderm.1977.01640090057005] [PMID: 900963]
[71]
Coleman, N.; Birley, H.D.; Renton, A.M.; Hanna, N.F.; Ryait, B.K.; Byrne, M.; Taylor-Robinson, D.; Stanley, M.A. Immunological events in regressing genital warts. Am. J. Clin. Pathol., 1994, 102(6), 768-774.
[http://dx.doi.org/10.1093/ajcp/102.6.768] [PMID: 7801889]
[72]
Grassegger, A.; Rollinger-Holzinger, I.; Zelger, B.W.; Heim, K.; Zwierzina, H.; Fritsch, P.O.; Höpfl, R.M. Spontaneous or interferon-γ-induced T-cell infiltration, HLA-DR and ICAM-1 expression in genitoanal warts are associated with TH1 or mixed TH1/TH2 cytokine mRNA expression profiles. Arch. Dermatol. Res., 1997, 289(5), 243-250.
[http://dx.doi.org/10.1007/s004030050187] [PMID: 9164632]
[73]
Trimble, C.L.; Piantadosi, S.; Gravitt, P.; Ronnett, B.; Pizer, E.; Elko, A.; Wilgus, B.; Yutzy, W.; Daniel, R.; Shah, K.; Peng, S.; Hung, C.; Roden, R.; Wu, T.C.; Pardoll, D. Spontaneous regression of high-grade cervical dysplasia: effects of human papillomavirus type and HLA phenotype. Clin. Cancer Res., 2005, 11(13), 4717-4723.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2599] [PMID: 16000566]
[74]
Peng, S.; Trimble, C.; Wu, L.; Pardoll, D.; Roden, R.; Hung, C-F.; Wu, T-C. HLA-DQB1*02-restricted HPV-16 E7 peptide-specific CD4+ T-cell immune responses correlate with regression of HPV-16-associated high-grade squamous intraepithelial lesions. Clin. Cancer Res., 2007, 13(8), 2479-2487.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2916] [PMID: 17438108]
[75]
de Jong, A.; O’Neill, T.; Khan, A.Y.; Kwappenberg, K.M.; Chisholm, S.E.; Whittle, N.R.; Dobson, J.A.; Jack, L.C.; St Clair Roberts, J.A.; Offringa, R.; van der Burg, S.H.; Hickling, J.K. Enhancement of human papillomavirus (HPV) type 16 E6 and E7-specific T-cell immunity in healthy volunteers through vaccination with TA-CIN, an HPV16 L2E7E6 fusion protein vaccine. Vaccine, 2002, 20(29-30), 3456-3464.
[http://dx.doi.org/10.1016/S0264-410X(02)00350-X] [PMID: 12297390]
[76]
van der Burg, S.H.; Piersma, S.J.; de Jong, A.; van der Hulst, J.M.; Kwappenberg, K.M.; van den Hende, M.; Welters, M.J.; Van Rood, J.J.; Fleuren, G.J.; Melief, C.J.; Kenter, G.G.; Offringa, R. Association of cervical cancer with the presence of CD4+ regulatory T cells specific for human papillomavirus antigens. Proc. Natl. Acad. Sci. USA, 2007, 104(29), 12087-12092.
[http://dx.doi.org/10.1073/pnas.0704672104] [PMID: 17615234]
[77]
Piersma, S.J.; Jordanova, E.S.; van Poelgeest, M.I.; Kwappenberg, K.M.; van der Hulst, J.M.; Drijfhout, J.W.; Melief, C.J.; Kenter, G.G.; Fleuren, G.J.; Offringa, R.; van der Burg, S.H. High number of intraepithelial CD8+ tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res., 2007, 67(1), 354-361.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3388] [PMID: 17210718]
[78]
Gambhira, R.; Gravitt, P.E.; Bossis, I.; Stern, P.L.; Viscidi, R.P.; Roden, R.B. Vaccination of healthy volunteers with human papillomavirus type 16 L2E7E6 fusion protein induces serum antibody that neutralizes across papillomavirus species. Cancer Res., 2006, 66(23), 11120-11124.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2560] [PMID: 17145854]
[79]
Galluzzi, L.; Vacchelli, E.; Fridman, W.H.; Galon, J.; Sautès-Fridman, C.; Tartour, E.; Zucman-Rossi, J.; Zitvogel, L.; Kroemer, G. Trial Watch: Monoclonal antibodies in cancer therapy. OncoImmunology, 2012, 1(1), 28-37.
[http://dx.doi.org/10.4161/onci.1.1.17938] [PMID: 22720209]
[80]
Kitson, S.L.; Cuccurullo, V.; Moody, T.S.; Mansi, L. Radionuclide antibody-conjugates, a targeted therapy towards cancer. Curr. Radiopharm., 2013, 6(2), 57-71.
[http://dx.doi.org/10.2174/1874471011306020001] [PMID: 23808764]
[81]
Ozols, R. Challenges for chemotherapy in ovarian cancer Annals. Oncol., 2006, 17(suppl_5), v181-v187.
[82]
Raspollini, M.R.; Amunni, G.; Villanucci, A.; Boddi, V.; Baroni, G.; Taddei, A.; Taddei, G.L. COX-2 status in relation to tumor microvessel density and VEGF expression: analysis in ovarian carcinoma patients with low versus high survival rates. Oncol. Rep., 2004, 11(2), 309-313.
[http://dx.doi.org/10.3892/or.11.2.309] [PMID: 14719060]
[83]
Goldsmith, S.J. Bexxar and Zevalin, Seminars in nuclear medicine; Elsevier: Amsterdam, 2010.
[84]
DeSantis, C.E.; Lin, C.C.; Mariotto, A.B.; Siegel, R.L.; Stein, K.D.; Kramer, J.L.; Alteri, R.; Robbins, A.S.; Jemal, A. Cancer treatment and survivorship statistics, 2014. CA Cancer J. Clin., 2014, 64(4), 252-271.
[http://dx.doi.org/10.3322/caac.21235] [PMID: 24890451]
[85]
Anttila, M.A.; Voutilainen, K.; Merivalo, S.; Saarikoski, S.; Kosma, V-M. Prognostic significance of iNOS in epithelial ovarian cancer. Gynecol. Oncol., 2007, 105(1), 97-103.
[http://dx.doi.org/10.1016/j.ygyno.2006.10.049] [PMID: 17174383]
[86]
Ramakrishna, V.; Ross, M.M.; Petersson, M.; Gatlin, C.C.; Lyons, C.E.; Miller, C.L.; Myers, H.E.; McDaniel, M.; Karns, L.R.; Kiessling, R.; Parmiani, G.; Flyer, D.C. Naturally occurring peptides associated with HLA-A2 in ovarian cancer cell lines identified by mass spectrometry are targets of HLA-A2-restricted cytotoxic T cells. Int. Immunol., 2003, 15(6), 751-763.
[http://dx.doi.org/10.1093/intimm/dxg074] [PMID: 12750359]
[87]
Viatte, S.; Alves, P.M.; Romero, P. Reverse immunology approach for the identification of CD8 T-cell-defined antigens: advantages and hurdles. Immunol. Cell Biol., 2006, 84(3), 318-330.
[http://dx.doi.org/10.1111/j.1440-1711.2006.01447.x] [PMID: 16681829]
[88]
Auersperg, N.; Edelson, M.I.; Mok, S.C.; Johnson, S.W.; Hamilton, T.C. The biology of ovarian cancer. Semin. Oncol., 1998, 25(3), 281-304.
[PMID: 9633841]
[89]
Oshima, S.; Kisa, K.; Terashita, T.; Habara, M.; Kawabata, H.; Maezawa, M. A qualitative study of Japanese patients’ perspectives on post-treatment care for gynecological cancer. Asian Pac. J. Cancer Prev., 2011, 12(9), 2255-2261.
[PMID: 22296366]
[90]
Old, L.J.; Chen, Y-T. New paths in human cancer serology. J. Exp. Med., 1998, 187(8), 1163-1167.
[http://dx.doi.org/10.1084/jem.187.8.1163] [PMID: 9547328]
[91]
Vanhoefer, U.; Tewes, M.; Rojo, F.; Dirsch, O.; Schleucher, N.; Rosen, O.; Tillner, J.; Kovar, A.; Braun, A.H.; Trarbach, T.; Seeber, S.; Harstrick, A.; Baselga, J. Phase I study of the humanized antiepidermal growth factor receptor monoclonal antibody EMD72000 in patients with advanced solid tumors that express the epidermal growth factor receptor. J. Clin. Oncol., 2004, 22(1), 175-184.
[http://dx.doi.org/10.1200/JCO.2004.05.114] [PMID: 14701780]
[92]
Figlin, R.; Belldegrun, A.; Crawford, J.; Lohner, M.; Roskos, L.; Yang, X.; Foon, K.; Schwab, G.; Weiner, L. ABX-EGF, a fully human anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb) in patients with advanced cancer: phase 1 clinical results. Proc. Am. Soc. Clin. Oncol., 2002, 35.
[93]
Washington, C.M.; Leaver, D.T. Principles and Practice of Radiation Therapy-E-Book; Elsevier Health Sciences, 2015.
[94]
Modjtahedi, H.; Hickish, T.; Nicolson, M.; Moore, J.; Styles, J.; Eccles, S.; Jackson, E.; Salter, J.; Sloane, J.; Spencer, L.; Priest, K.; Smith, I.; Dean, C.; Gore, M. Phase I trial and tumour localisation of the anti-EGFR monoclonal antibody ICR62 in head and neck or lung cancer. Br. J. Cancer, 1996, 73(2), 228-235.
[http://dx.doi.org/10.1038/bjc.1996.40] [PMID: 8546911]
[95]
Crombet, T.; Osorio, M.; Cruz, T.; Roca, C.; del Castillo, R.; Mon, R.; Iznaga-Escobar, N.; Figueredo, R.; Koropatnick, J.; Renginfo, E.; Fernández, E.; Alvárez, D.; Torres, O.; Ramos, M.; Leonard, I.; Pérez, R.; Lage, A. Use of the humanized anti-epidermal growth factor receptor monoclonal antibody h-R3 in combination with radiotherapy in the treatment of locally advanced head and neck cancer patients. J. Clin. Oncol., 2004, 22(9), 1646-1654.
[http://dx.doi.org/10.1200/JCO.2004.03.089] [PMID: 15117987]
[96]
Kirkwood, J.M.; Butterfield, L.H.; Tarhini, A.A.; Zarour, H.; Kalinski, P.; Ferrone, S. Immunotherapy of cancer in 2012. CA Cancer J. Clin., 2012, 62(5), 309-335.
[http://dx.doi.org/10.3322/caac.20132] [PMID: 22576456]
[97]
Johns, T.G.; Mellman, I.; Cartwright, G.A.; Ritter, G.; Old, L.J.; Burgess, A.W.; Scott, A.M. The antitumor monoclonal antibody 806 recognizes a high-mannose form of the EGF receptor that reaches the cell surface when cells over-express the receptor. FASEB J., 2005, 19(7), 780-782.
[http://dx.doi.org/10.1096/fj.04-1766fje] [PMID: 15774576]
[98]
Foon, K.A. Biological therapy of cancer. Breast Cancer Res. Treat., 1986, 7(1), 5-14.
[http://dx.doi.org/10.1007/BF01886730] [PMID: 3516264]
[99]
Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature, 2011, 480(7378), 480-489.
[http://dx.doi.org/10.1038/nature10673] [PMID: 22193102]
[100]
Caponigro, F.; Formato, R.; Caraglia, M.; Normanno, N.; Iaffaioli, R.V. Monoclonal antibodies targeting epidermal growth factor receptor and vascular endothelial growth factor with a focus on head and neck tumors. Curr. Opin. Oncol., 2005, 17(3), 212-217.
[http://dx.doi.org/10.1097/01.cco.0000159623.68506.cf] [PMID: 15818163]
[101]
Kyzas, P.A.; Stefanou, D.; Batistatou, A.; Agnantis, N.J. Potential autocrine function of vascular endothelial growth factor in head and neck cancer via vascular endothelial growth factor receptor-2. Mod. Pathol., 2005, 18(4), 485-494.
[http://dx.doi.org/10.1038/modpathol.3800295] [PMID: 15475932]
[102]
Locatelli, F.; Bauquet, A.; Palumbo, G.; Moretta, F.; Bertaina, A. Negative depletion of α/β+ T cells and of CD19+ B lymphocytes: a novel frontier to optimize the effect of innate immunity in HLA-mismatched hematopoietic stem cell transplantation. Immunol. Lett., 2013, 155(1-2), 21-23.
[http://dx.doi.org/10.1016/j.imlet.2013.09.027] [PMID: 24091162]
[103]
Whitehurst, B.; Flister, M.J.; Bagaitkar, J.; Volk, L.; Bivens, C.M.; Pickett, B.; Castro-Rivera, E.; Brekken, R.A.; Gerard, R.D.; Ran, S. Anti-VEGF-A therapy reduces lymphatic vessel density and expression of VEGFR-3 in an orthotopic breast tumor model. Int. J. Cancer, 2007, 121(10), 2181-2191.
[http://dx.doi.org/10.1002/ijc.22937] [PMID: 17597103]
[104]
Walter, E.A.; Greenberg, P.D.; Gilbert, M.J.; Finch, R.J.; Watanabe, K.S.; Thomas, E.D.; Riddell, S.R. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N. Engl. J. Med., 1995, 333(16), 1038-1044.
[http://dx.doi.org/10.1056/NEJM199510193331603] [PMID: 7675046]
[105]
Abbas, A.K.; Lichtman, A.H.; Pillai, S. Cellular and molecular immunology E-book; Elsevier Health Sciences: Amsterdam, 2014.
[106]
Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[107]
Sharma, P.; Allison, J.P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell, 2015, 161(2), 205-214.
[http://dx.doi.org/10.1016/j.cell.2015.03.030] [PMID: 25860605]
[108]
Chen, D.S.; Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity, 2013, 39(1), 1-10.
[http://dx.doi.org/10.1016/j.immuni.2013.07.012] [PMID: 23890059]
[109]
Teng, M.W.; Ngiow, S.F.; Ribas, A.; Smyth, M.J. Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res., 2015, 75(11), 2139-2145.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0255] [PMID: 25977340]
[110]
Arteaga, C. Targeting HER1/EGFR: a molecular approach to cancer therapy, Seminars in oncology; Fojo, A.T., Ed.; Elsevier: Amsterdam, 2003, pp. 3-14.
[111]
Tai, W.; Mahato, R.; Cheng, K. The role of HER2 in cancer therapy and targeted drug delivery. J. Control. Release, 2010, 146(3), 264-275.
[http://dx.doi.org/10.1016/j.jconrel.2010.04.009] [PMID: 20385184]
[112]
Goldenberg, D.M.; Cardillo, T.M.; Govindan, S.V.; Rossi, E.A.; Sharkey, R.M. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget, 2015, 6(26), 22496-22512.
[http://dx.doi.org/10.18632/oncotarget.4318] [PMID: 26101915]
[113]
Dempke, W.C.M.; Heinemann, V. Resistance to EGF-R (erbB-1) and VEGF-R modulating agents. Eur. J. Cancer, 2009, 45(7), 1117-1128.
[http://dx.doi.org/10.1016/j.ejca.2008.11.038] [PMID: 19124237]
[114]
Ferrari, S.; Severi, L.; Pozzi, C.; Quotadamo, A.; Ponterini, G.; Losi, L.; Marverti, G.; Costi, M.P. Human thymidylate synthase inhibitors halting ovarian cancer growth. Vitam. Horm., 2018, 107, 473-513.
[http://dx.doi.org/10.1016/bs.vh.2017.12.002] [PMID: 29544641]
[115]
Adams, M.; Borysiewicz, L.; Fiander, A.; Man, S.; Jasani, B.; Navabi, H.; Lipetz, C.; Evans, A.S.; Mason, M. Clinical studies of human papilloma vaccines in pre-invasive and invasive cancer. Vaccine, 2001, 19(17-19), 2549-2556.
[http://dx.doi.org/10.1016/S0264-410X(00)00488-6] [PMID: 11257391]
[116]
Gubin, M.M.; Artyomov, M.N.; Mardis, E.R.; Schreiber, R.D. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J. Clin. Invest., 2015, 125(9), 3413-3421.
[http://dx.doi.org/10.1172/JCI80008] [PMID: 26258412]
[117]
Hakomori, S. Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. Adv. Exp. Med. Biol., 2001, 491, 369-402.
[http://dx.doi.org/10.1007/978-1-4615-1267-7_24] [PMID: 14533809]
[118]
Craddock, J.A.; Lu, A.; Bear, A.; Pule, M.; Brenner, M.K.; Rooney, C.M.; Foster, A.E. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J. Immunother., 2010, 33(8), 780-788.
[http://dx.doi.org/10.1097/CJI.0b013e3181ee6675] [PMID: 20842059]
[119]
Chiriva-Internati, M.; Liu, Y.; Salati, E.; Zhou, W.; Wang, Z.; Grizzi, F.; Roman, J.J.; Lim, S.H.; Hermonat, P.L. Efficient generation of cytotoxic T lymphocytes against cervical cancer cells by adeno-associated virus/human papillomavirus type 16 E7 antigen gene transduction into dendritic cells. Eur. J. Immunol., 2002, 32(1), 30-38.
[http://dx.doi.org/10.1002/1521-4141(200201)32:1<30:AID-IMMU30>3.0.CO;2-E] [PMID: 11754001]
[120]
Goodyear, O.; Agathanggelou, A.; Novitzky-Basso, I.; Siddique, S.; McSkeane, T.; Ryan, G.; Vyas, P.; Cavenagh, J.; Stankovic, T.; Moss, P.; Craddock, C. Induction of a CD8+ T-cell response to the MAGE cancer testis antigen by combined treatment with azacitidine and sodium valproate in patients with acute myeloid leukemia and myelodysplasia. Blood, 2010, 116(11), 1908-1918.
[http://dx.doi.org/10.1182/blood-2009-11-249474] [PMID: 20530795]
[121]
Adusumilli, P.S.; Cherkassky, L.; Villena-Vargas, J.; Colovos, C.; Servais, E.; Plotkin, J.; Jones, D.R.; Sadelain, M. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci. Transl. Med., 2014, 6(261)261ra151
[http://dx.doi.org/10.1126/scitranslmed.3010162] [PMID: 25378643]
[122]
Wierecky, J.; Mueller, M.; Brossart, P. Dendritic cell-based cancer immunotherapy targeting MUC-1. Cancer Immunol. Immunother., 2006, 55(1), 63-67.
[http://dx.doi.org/10.1007/s00262-005-0673-6] [PMID: 15864588]
[123]
Young, A.; Ngiow, S.F.; Barkauskas, D.S.; Sult, E.; Hay, C.; Blake, S.J.; Huang, Q.; Liu, J.; Takeda, K.; Teng, M.W.L.; Sachsenmeier, K.; Smyth, M.J. Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses. Cancer Cell, 2016, 30(3), 391-403.
[http://dx.doi.org/10.1016/j.ccell.2016.06.025] [PMID: 27622332]
[124]
Smith, B.D.; Leary, C.B.; Lu, W-P.; Kaufman, M.D.; Flynn, D.L. The highly specific CSF1R inhibitor DCC-3014 exhibits immunomodulatory and anti-invasive activities in cancer models. Cancer Res., 2016, 76(14)(Suppl.), 4889.
[125]
Reuben, J.M.; Lee, B.N.; Li, C.; Gomez-Navarro, J.; Bozon, V.A.; Parker, C.A.; Hernandez, I.M.; Gutierrez, C.; Lopez-Berestein, G.; Camacho, L.H. Biologic and immunomodulatory events after CTLA-4 blockade with ticilimumab in patients with advanced malignant melanoma. Cancer, 2006, 106(11), 2437-2444.
[http://dx.doi.org/10.1002/cncr.21854] [PMID: 16615096]
[126]
Lazzarino, D.A.; Diego, M.; Musi, E.; Hirschman, S.Z.; Alexander, R.J. CXCR4 and CCR5 expression by H9 T-cells is downregulated by a peptide-nucleic acid immunomodulator. Immunol. Lett., 2000, 74(3), 189-195.
[http://dx.doi.org/10.1016/S0165-2478(00)00258-3] [PMID: 11064099]
[127]
Van de Wall, S.; Nijman, H.W.; Daemen, T. HPV-specific immunotherapy: key role for immunomodulators. Anticancer. Agents Med. Chem., 2014, 14(2), 265-279.
[http://dx.doi.org/10.2174/187152061402140128163306] [PMID: 24237218]
[128]
Ryan, E.J.; Daly, L.M.; Mills, K.H. Immunomodulators and delivery systems for vaccination by mucosal routes. Trends Biotechnol., 2001, 19(8), 293-304.
[http://dx.doi.org/10.1016/S0167-7799(01)01670-5] [PMID: 11451471]
[129]
Choe, J-Y.; Yun, J.Y.; Jeon, Y.K.; Kim, S.H.; Park, G.; Huh, J.R.; Oh, S.; Kim, J.E. Indoleamine 2,3-dioxygenase (IDO) is frequently expressed in stromal cells of Hodgkin lymphoma and is associated with adverse clinical features: a retrospective cohort study. BMC Cancer, 2014, 14(1), 335.
[http://dx.doi.org/10.1186/1471-2407-14-335] [PMID: 24886161]
[130]
Aspeslagh, S.; Postel-Vinay, S.; Rusakiewicz, S.; Soria, J.C.; Zitvogel, L.; Marabelle, A. Rationale for anti-OX40 cancer immunotherapy. Eur. J. Cancer, 2016, 52, 50-66.
[http://dx.doi.org/10.1016/j.ejca.2015.08.021] [PMID: 26645943]
[131]
Gonzalez, R.S.; Salaria, S.N.; Bohannon, C.D.; Huber, A.R.; Feely, M.M.; Shi, C. PD-1 inhibitor gastroenterocolitis: case series and appraisal of ‘immunomodulatory gastroenterocolitis’. Histopathology, 2017, 70(4), 558-567.
[http://dx.doi.org/10.1111/his.13118] [PMID: 28000302]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy