Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

A Comparative Study on the Incidence, Aggravation, and Remission of Lupus Nephritis Based on iTRAQ Technology

Author(s): Dong-Jiang Liao, Xi-Ping Cheng*, Nan Li, Kang-Li Liang, Hui Fan, Sui-Ying Zhang, Xiao-Qian Hu, Ping Fan and Yuan-Sheng Wu*

Volume 23, Issue 7, 2020

Page: [649 - 657] Pages: 9

DOI: 10.2174/1386207323666200416151836

Price: $65

Abstract

Aim and Objective: Lupus nephritis (LN) is one of the major complications of systemic lupus erythematosus (SLE). The specific mechanisms of pathogenesis, aggravation, and remission processes in LN have not been clarified but is of great need in the clinic. Using isobaric tags for relative and absolute quantitation (iTRAQ) technology to screen the functional proteins of LN in mice. Especially under intervention factors of lipopolysaccharide (LPS) and dexamethasone.

Methods: Mrl-lps mice were intervened with LPS, dexamethasone, and normal saline (NS) using intraperitoneal injection, and c57 mice intervened with NS as control. The anti-ANA antibody enzyme-linked immunosorbent assay (ELISA) was used to verify disease severity. Kidney tissue is collected and processed for iTRAQ to screen out functional proteins closely related to the onset and development of LN. Western blot method and rt-PCR (real-time Polymerase Chain Reaction) were used for verification.

Results: We identified 136 proteins that marked quantitative information. Among them, Hp, Igkv8-27, Itgb2, Got2, and Pcx proteins showed significant abnormal manifestations.

Conclusion: Using iTRAQ methods, the functional proteins Hp, Igkv8-27, Itgb2, Got2, and Pcx were screened out for a close relationship with the pathogenesis and development of LN, which is worth further study.

Keywords: Lupus erythematosus, lupus nephritis, proteomics, iTRAQ technology, rt-PCR, pathogenesis.

[1]
Dumestre-Pérard, C.; Clavarino, G.; Colliard, S.; Cesbron, J.Y.; Thielens, N.M. Antibodies targeting circulating protective molecules in lupus nephritis: Interest as serological biomarkers. Autoimmun. Rev., 2018, 17(9), 890-899.
[http://dx.doi.org/10.1016/j.autrev.2018.03.013] [PMID: 30009962]
[2]
Jin, J.; Ye, M.; Zhao, L.; Zou, W.; Shen, W.; Zhang, H.; Gong, J.; He, Q. The novel involvement of podocyte autophagic activity in the pathogenesis of lupus nephritis. Histol. Histopathol., 2018, 33(8), 803-814.
[PMID: 29446059]
[3]
Turnier, J.L.; Brunner, H.I.; Bennett, M.; Aleed, A.; Gulati, G.; Haffey, W.D.; Thornton, S.; Wagner, M.; Devarajan, P.; Witte, D.; Greis, K.D.; Aronow, B. Discovery of SERPINA3 as a candidate urinary biomarker of lupus nephritis activity. Rheumatology (Oxford), 2019, 58(2), 321-330.
[http://dx.doi.org/10.1093/rheumatology/key301] [PMID: 30285245]
[4]
Pütz, S.M.; Boehm, A.M.; Stiewe, T.; Sickmann, A. iTRAQ analysis of a cell culture model for malignant transformation, including comparison with 2D-PAGE and SILAC. J. Proteome Res., 2012, 11(4), 2140-2153.
[http://dx.doi.org/10.1021/pr200881c] [PMID: 22313033]
[5]
Hua, Y.; Wang, S.; Liu, Z.; Liu, X.; Zou, L.; Gu, W.; Hou, Y.; Ma, Y.; Luo, Y.; Liu, J. iTRAQ-based quantitative proteomic analysis of cultivated Pseudostellaria heterophylla and its wild-type. J. Proteomics, 2016, 139, 13-25.
[http://dx.doi.org/10.1016/j.jprot.2016.02.027] [PMID: 26947553]
[6]
Aggarwal, K.; Choe, L.H.; Lee, K.H. Shotgun proteomics using the iTRAQ isobaric tags. Brief. Funct. Genomics Proteomics, 2006, 5(2), 112-120.
[http://dx.doi.org/10.1093/bfgp/ell018] [PMID: 16772272]
[7]
Wang, H.; Alvarez, S.; Hicks, L.M. Comprehensive comparison of iTRAQ and label-free LC-based quantitative proteomics approaches using two Chlamydomonas reinhardtii strains of interest for biofuels engineering. J. Proteome Res., 2012, 11(1), 487-501.
[http://dx.doi.org/10.1021/pr2008225] [PMID: 22059437]
[8]
Zeng, G. Q.; Zhang, P. F.; Deng, X.; Yu, F. L. Identification of candidate biomarkers for early detection of human lung squamous cell cancer by quantitative proteomics. Mol. Cell. Proteomics., 2012, 11, M111.013946.,
[9]
Mangé, A.; Goux, A.; Badiou, S.; Patrier, L.; Canaud, B.; Maudelonde, T.; Cristol, J.P.; Solassol, J. HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach. PLoS One, 2012, 7(3)e34107
[http://dx.doi.org/10.1371/journal.pone.0034107] [PMID: 22470525]
[10]
Cheng, S.X.; Xu, Z.W.; Yi, T.L.; Sun, H.T.; Yang, C.; Yu, Z.Q.; Yang, X.S.; Jin, X.H.; Tu, Y.; Zhang, S. iTRAQ-based quantitative proteomics reveals the new evidence base for traumatic brain injury treated with targeted temperature management. Neurotherapeutics, 2018, 15(1), 216-232.
[http://dx.doi.org/10.1007/s13311-017-0591-2] [PMID: 29247448]
[11]
Chahrour, O.; Cobice, D.; Malone, J. Stable isotope labelling methods in mass spectrometry-based quantitative proteomics. J. Pharm. Biomed. Anal., 2015, 113, 2-20.
[http://dx.doi.org/10.1016/j.jpba.2015.04.013] [PMID: 25956803]
[12]
Meng, Z.; Shi, Z.R.; Tan, G.Z.; Yin, J.; Wu, J.; Mi, X.B.; Wang, L. The association of anti-annexin1 antibodies with the occurrence of skin lesions in systemic lupus erythematosus. Lupus, 2014, 23(2), 183-187.
[http://dx.doi.org/10.1177/0961203313513820] [PMID: 24300781]
[13]
Bruschi, M.; Sinico, R.A.; Moroni, G.; Pratesi, F.; Migliorini, P.; Galetti, M.; Murtas, C.; Tincani, A.; Madaio, M.; Radice, A.; Franceschini, F.; Trezzi, B.; Bianchi, L.; Giallongo, A.; Gatti, R.; Tardanico, R.; Scaloni, A.; D’Ambrosio, C.; Carnevali, M.L.; Messa, P.; Ravani, P.; Barbano, G.; Bianco, B.; Bonanni, A.; Scolari, F.; Martini, A.; Candiano, G.; Allegri, L.; Ghiggeri, G.M. Glomerular autoimmune multicomponents of human lupus nephritis in vivo: α-enolase and annexin AI. J. Am. Soc. Nephrol., 2014, 25(11), 2483-2498.
[http://dx.doi.org/10.1681/ASN.2013090987] [PMID: 24790181]
[14]
Mihaylova, N.; Bradyanova, S.; Chipinski, P.; Herbáth, M.; Chausheva, S.; Kyurkchiev, D.; Prechl, J.; Tchorbanov, A.I. Annexin A1 as a target for managing murine pristane-induced systemic lupus erythematosus. Autoimmunity, 2017, 50(4), 257-268.
[http://dx.doi.org/10.1080/08916934.2017.1300884] [PMID: 28300427]
[15]
Boilard, E.; Fortin, P.R. Connective tissue diseases: Mitochondria drive NETosis and inflammation in SLE. Nat. Rev. Rheumatol., 2016, 12(4), 195-196.
[http://dx.doi.org/10.1038/nrrheum.2016.24] [PMID: 26935279]
[16]
Yin, J.; Han, L.; Cong, W. Alpinumisoflavone rescues glucocorticoid-induced apoptosis of osteocytes via suppressing Nox2-dependent ROS generation. Pharmacol. Rep., 2018, 70(2), 270-276.
[http://dx.doi.org/10.1016/j.pharep.2017.11.001] [PMID: 29477034]
[17]
Zhai, J.X.; Zhang, Z.X.; Feng, Y.J.; Ding, S.S.; Wang, X.H.; Zou, L.W.; Ye, D.Q. PDTC attenuate LPS-induced kidney injury in systemic lupus erythematosus-prone MRL/lpr mice. Mol. Biol. Rep., 2012, 39(6), 6763-6771.
[http://dx.doi.org/10.1007/s11033-012-1501-7] [PMID: 22318546]
[18]
Aggarwal, A.; Gupta, R.; Negi, V.S.; Rajasekhar, L.; Misra, R.; Singh, P.; Chaturvedi, V.; Sinha, S. Urinary haptoglobin, alpha-1 anti-chymotrypsin and retinol binding protein identified by proteomics as potential biomarkers for lupus nephritis. Clin. Exp. Immunol., 2017, 188(2), 254-262.
[http://dx.doi.org/10.1111/cei.12930] [PMID: 28120479]
[19]
Kazemipour, N.; Qazizadeh, H.; Sepehrimanesh, M.; Salimi, S. Biomarkers identified from serum proteomic analysis for the differential diagnosis of systemic lupus erythematosus. Lupus, 2015, 24(6), 582-587.
[http://dx.doi.org/10.1177/0961203314558860] [PMID: 25391542]
[20]
D’Armiento, J.; Dalal, S.S.; Chada, K. Tissue, temporal and inducible expression pattern of haptoglobin in mice. Gene, 1997, 195(1), 19-27.
[http://dx.doi.org/10.1016/S0378-1119(97)00123-6] [PMID: 9300815]
[21]
Kishimoto, T.K.; Hollander, N.; Roberts, T.M.; Anderson, D.C.; Springer, T.A. Heterogeneous mutations in the beta subunit common to the LFA-1, Mac-1, and p150,95 glycoproteins cause leukocyte adhesion deficiency. Cell, 1987, 50(2), 193-202.
[http://dx.doi.org/10.1016/0092-8674(87)90215-7] [PMID: 3594570]
[22]
Nakou, M.; Bertsias, G.; Stagakis, I.; Centola, M.; Tassiulas, I.; Hatziapostolou, M.; Kritikos, I.; Goulielmos, G.; Boumpas, D.T.; Iliopoulos, D. Gene network analysis of bone marrow mononuclear cells reveals activation of multiple kinase pathways in human systemic lupus erythematosus. PLoS One, 2010, 5(10)e13351
[http://dx.doi.org/10.1371/journal.pone.0013351] [PMID: 20976278]
[23]
Molad, Y.; Buyon, J.; Anderson, D.C.; Abramson, S.B.; Cronstein, B.N. Intravascular neutrophil activation in systemic lupus erythematosus (SLE): dissociation between increased expression of CD11b/CD18 and diminished expression of L-selectin on neutrophils from patients with active SLE. Clin. Immunol. Immunopathol., 1994, 71(3), 281-286.
[http://dx.doi.org/10.1006/clin.1994.1087] [PMID: 7515335]
[24]
Yang, H.; Zhou, L.; Shi, Q.; Zhao, Y.; Lin, H.; Zhang, M.; Zhao, S.; Yang, Y.; Ling, Z.Q.; Guan, K.L.; Xiong, Y.; Ye, D. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth. EMBO J., 2015, 34(8), 1110-1125.
[http://dx.doi.org/10.15252/embj.201591041] [PMID: 25755250]
[25]
Caza, T.N.; Fernandez, D.R.; Talaber, G.; Oaks, Z.; Haas, M.; Madaio, M.P.; Lai, Z.W.; Miklossy, G.; Singh, R.R.; Chudakov, D.M.; Malorni, W.; Middleton, F.; Banki, K.; Perl, A. HRES-1/Rab4-mediated depletion of Drp1 impairs mitochondrial homeostasis and represents a target for treatment in SLE. Ann. Rheum. Dis., 2014, 73(10), 1888-1897.
[http://dx.doi.org/10.1136/annrheumdis-2013-203794] [PMID: 23897774]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy