Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

Pd (II) Immobilized on Clinoptilolite as a Highly Active Heterogeneous Catalyst for Ullmann Coupling-type S-arylation of Thiols with Aryl Halides

Author(s): Abdollah Alizadeh, Mohammad A. Khalilzadeh*, Eskandar Alipour and Daryoush Zareyee

Volume 23, Issue 7, 2020

Page: [658 - 666] Pages: 9

DOI: 10.2174/1386207323666200415103239

Price: $65

Abstract

Background: There are a number of protocols for Ullmann coupling–type S-arylation reactions, many of them suffer from the use of homogenous and often corrosive catalyst, cumbersome workup procedures, and long reaction times. Besides, many of these reagents are expensive and non-recoverable, leading to the generation of a large amount of toxic waste particularly when large-scale applications are considered.

Objective: The aim of this study was to prepare a new Pd catalyst bonded on the surface of zeolite as a heterogeneous catalyst.

Methods: A heterogeneous palladium catalyst has been prepared by immobilizing Pd ions on Clinoptilolite. This novel developed heterogeneous catalyst was thoroughly examined for Ullmann coupling–type S-arylation reaction using different bases, solvents and 0.003 mg of the catalyst. The structural and morphological characterizations of the catalyst were carried out using XRD, TGA, BET and TEM techniques.

Results: Highly efficient heterogeneous palladium catalyst has been developed by immobilizing Pd ions on Clinoptilolite, as one of the most abundant naturally occurring zeolites for Ullmann Sarylation. By using this method, we provide an efficient way to a wide variety of substituted thiolic compounds. Moreover, the catalyst is easily recovered using simple filtration and reused for 5 consecutive runs.

Conclusion: In this effort, we developed a new Pd catalyst bonded on the surface of zeolite as a substrate to prepare the heterogeneous catalyst. We demonstrate that this novel catalyst offers reliable and convincing data that may offer a valuable application in further developing the science and technology of Ullmann reaction protocols and allied industries. Additionally, the catalyst was reusable and kept its high activities over a number of cycles.

Keywords: Palladium nanoparticles, heterogeneous catalyst, clinoptilolite, diaryl thioethers, C-S coupling, ullmann coupling, aryl halides, thiols.

[1]
Corbet, J.P.; Mignani, G. Selected patented cross-coupling reaction technologies. Chem. Rev., 2006, 106(7), 2651-2710.
[http://dx.doi.org/10.1021/cr0505268] [PMID: 16836296]
[2]
Salmanpour, S.; Khalilzadeh, M.A.; Hosseini, A. KF/Clinoptilolite: an efficient promoter for the synthesis of thioethers. Comb. Chem. High Throughput Screen., 2013, 16(5), 339-344.
[http://dx.doi.org/10.2174/1386207311316050002] [PMID: 23360209]
[3]
Liu, G.; Huth, J.R.; Olejniczak, E.T.; Mendoza, R.; DeVries, P.; Leitza, S.; Reilly, E.B.; Okasinski, G.F.; Fesik, S.W.; von Geldern, T.W.; Fesik, S.W.; Von Geldern, T.W. Novel p-arylthio cinnamides as antagonists of leukocyte function-associated antigen-1/intracellular adhesion molecule-1 interaction. 2. Mechanism of inhibition and structure-based improvement of pharmaceutical properties. J. Med. Chem., 2001, 44(8), 1202-1210.
[http://dx.doi.org/10.1021/jm000503f] [PMID: 11312920]
[4]
Nielsen, S.F.; Nielsen, E.O.; Olsen, G.M.; Liljefors, T.; Peters, D. Novel potent ligands for the central nicotinic acetylcholine receptor: synthesis, receptor binding, and 3D-QSAR analysis. J. Med. Chem., 2000, 43(11), 2217-2226.
[http://dx.doi.org/10.1021/jm990973d] [PMID: 10841800]
[5]
Cai, L.; Chin, F.T.; Pike, V.W.; Toyama, H.; Liow, J.S.; Zoghbi, S.S.; Modell, K.; Briard, E.; Shetty, H.U.; Sinclair, K.; Donohue, S.; Tipre, D.; Kung, M.P.; Dagostin, C.; Widdowson, D.A.; Green, M.; Gao, W.; Herman, M.M.; Ichise, M.; Innis, R.B. Synthesis and evaluation of two 18F-labeled 6-iodo-2-(4′-N,N-dimethylamino) phenylimidazo[1,2-a]pyridine derivatives as prospective radioligands for β-amyloid in Alzheimer’s disease. J. Med. Chem., 2004, 47(9), 2208-2218.
[http://dx.doi.org/10.1021/jm030477w] [PMID: 15084119]
[6]
Wang, T.; Love, J.A. An efficient strategy for the synthesis of aryl ethers. Synthesis, 2007, 2237-2239.
[7]
Kundu, S.; Snyder, B.E.R. C-S bond activation of thioethers using (dippe)Pt(NBE)2. Polyhedron, 2013, 58, 99-105.
[http://dx.doi.org/10.1016/j.poly.2012.07.071]
[8]
Firouzabadi, H.; Iranpoor, N.; Samadi, A. One-pot synthesis of aryl alkyl thioethers and diaryl disulfides using carbon disulfide as a sulfur surrogate in the presence of diethylamine catalyzed by copper(I) iodide in polyethylene glycol (PEG200). Tetrahedron Lett., 2014, 55, 1212-1217.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.001]
[9]
Ying, B.; Xu, J.; Zhu, X.; Shen, C.; Zhang, P. Catalyst‐controlled selectivity in the synthesis of C2‐ and C3‐sulfonate esters from quinoline N‐oxides and aryl sulfonyl chlorides. ChemCatChem, 2016, 8, 2604-2608.
[http://dx.doi.org/10.1002/cctc.201600555]
[10]
Xu, J.; Shen, C.; Zhu, X.; Zhang, P.; Ajitha, M.J.; Huang, K.W.; An, Z.; Liu, X. Remote C−H activation of quinolines through copper‐catalyzed radical cross‐coupling. Chem. Asian J., 2016, 11(6), 882-892.
[http://dx.doi.org/10.1002/asia.201501407] [PMID: 26756288]
[11]
Hatakeyama, T.; Nakamura, M. Iron-catalyzed selective biaryl coupling: remarkable suppression of homocoupling by the fluoride anion. J. Am. Chem. Soc., 2007, 129(32), 9844-9845.
[http://dx.doi.org/10.1021/ja073084l] [PMID: 17658810]
[12]
Velmathi, S.; Vijayaraghavan, R.; Amarendar, C.; Pal, R.P.; Vinu, A. Ligand-free palladium-catalyzed C-S coupling reactions using water as solvent and microwaves. Synlett, 2010, 18, 2733-2736.
[http://dx.doi.org/10.1055/s-0030-1258815]
[13]
Liu, Y.H.; Tang, D.; Cao, K.H.; Yu, L. Probing the support effect at the molecular level in the polyaniline-supported palladium nanoparticle-catalyzed Ullmann reaction of aryl iodides. J. Catal., 2018, 360, 250-260.
[http://dx.doi.org/10.1016/j.jcat.2018.01.026]
[14]
Bahrami, K.; Khodamorady, M. Design of BNPs-TAPC palladium complex as a reusable heterogeneous nanocatalyst for the O-arylation of phenols and N-arylation of amines. Catal. Lett., 2019, 149, 688-693.
[http://dx.doi.org/10.1007/s10562-018-2627-6]
[15]
Trzeciak, A.M.; Augustyniak, A.W. The role of palladium nanoparticles in catalytic C–C cross-coupling reactions. Coord. Chem. Rev., 2019, 384, 1-20.
[http://dx.doi.org/10.1016/j.ccr.2019.01.008]
[16]
Cheng, Y.; Peng, Q.; Fan, W.; Li, P. Room-temperature ligand-free Pd/C-catalyzed C-S bond formation: synthesis of 2-substituted benzothiazoles. J. Org. Chem., 2014, 79(12), 5812-5819.
[http://dx.doi.org/10.1021/jo5002752] [PMID: 24853248]
[17]
Ichiishi, N.; Malapit, C.A.; Woźniak, L.; Sanford, M.S. Palladium- and nickel-catalyzed decarbonylative C-S coupling to convert thioesters to thioethers. Org. Lett., 2018, 20, 44-47.
[18]
Wong, Y.C.; Jayanth, T.T.; Cheng, C.H. Cobalt-catalyzed aryl-sulfur bond formation. Org. Lett., 2006, 8(24), 5613-5616.
[http://dx.doi.org/10.1021/ol062344l] [PMID: 17107085]
[19]
Lan, M.T.; Wu, W.Y.; Huang, S.H.; Luo, K.L.; Tsai, F.Y. Reusable and efficient CoCl2•6H2O/cationic 2,2′-bipyridyl system-catalyzed S-arylation of aryl halides with thiols in water under air. RSC Adv., 2011, 1, 1751-1755.
[http://dx.doi.org/10.1039/c1ra00406a]
[20]
Leo, P.; Orcajo, G.; Briones, D.; Calleja, G.; Sánchez-Sánchez, M.; Martínez, F. Recyclable Cu-MOF-74 catalyst for the ligand-free O-arylation reaction of 4-nitrobenzaldehyde and phenol. Nanomaterials (Basel), 2017, 7(6), 149-154.
[http://dx.doi.org/10.3390/nano7060149] [PMID: 28621710]
[21]
Redy, V.P. Swapna, k.; Kumar, A.V.; Rao, K.R. Nano indium oxide as a recyclable catalyst for C−S cross-coupling of thiols with aryl halides under ligand free conditions. Org. Lett., 2009, 11, 1697-1700.
[http://dx.doi.org/10.1021/ol900009a] [PMID: 19301923]
[22]
Correa, A.; Carril, M.; Bolm, C. Iron-catalyzed S-arylation of thiols with aryl iodides. Angew. Chem. Int. Ed. Engl., 2008, 47(15), 2880-2883.
[http://dx.doi.org/10.1002/anie.200705668] [PMID: 18318033]
[23]
Wu, W.Y.; Wang, J.C.; Tsai, F.Y. A reusable FeCl3•6H2O/cationic 2,2′-bipyridyl catalytic system for the coupling of aryl iodides with thiols in water under aerobic conditions. Green Chem., 2009, 11, 326-329.
[http://dx.doi.org/10.1039/b820790a]
[24]
Bandaru, M.; Sabbavarpu, N.M.; Katla, R.; Yadavalli, V.D.N. MnCl2•4H2O-catalyzed potential protocol for the synthesis of aryl/vinyl sulfides. Chem. Lett., 2010, 39, 1149-1151.
[http://dx.doi.org/10.1246/cl.2010.1149]
[25]
Kondo, T.; Mitsudo Ta, T.A. Metal-catalyzed carbon-sulfur bond formation. Chem. Rev., 2000, 100(8), 3205-3220.
[http://dx.doi.org/10.1021/cr9902749] [PMID: 11749318]
[26]
Okamoto, K.; Housekeeper, J.B.; Luscombe, C.K. Room‐temperature carbon–sulfur bond formation from Ni(II) σ‐aryl complex via cleavage of the S–S bond of disulfide moieties. J. Am. Chem. Soc., 2013, 27, 639-643.
[27]
Gendre, F.; Yang, M.; Diaz, P. Solid-phase synthesis of diaryl sulfides: direct coupling of solid-supported aryl halides with thiols using an insoluble polymer-supported reagent. Org. Lett., 2005, 2, 2719-2722.
[http://dx.doi.org/10.1021/ol050939v] [PMID: 15957930]
[28]
Pagliaro, M.; Pandarus, V.; Ciriminna, R.; Beland, F.; Dema Carà, P. Heterogeneous versus homogeneous palladium catalysts for cross‐coupling reactions. ChemCatChem, 2012, 4, 432-436.
[http://dx.doi.org/10.1002/cctc.201100422]
[29]
Mora, M.; Jimenze-Sanchidrian, C.; Ruiz, J.R. Recent advances in the heterogeneous palladium-catalysed suzuki cross-coupling reaction. Curr. Org. Chem., 2012, 16, 1128-1150.
[http://dx.doi.org/10.2174/138527212800564358]
[30]
Molnár, Á. Efficient, selective, and recyclable palladium catalysts in carbon-carbon coupling reactions. Chem. Rev., 2011, 111(3), 2251-2320.
[http://dx.doi.org/10.1021/cr100355b] [PMID: 21391571]
[31]
Polshettiwar, V.; Len, C.; Fihri, A. Silica-supported palladium: sustainable catalysts for cross-coupling reactions. Coord. Chem. Rev., 2009, 253, 2599-2626.
[http://dx.doi.org/10.1016/j.ccr.2009.06.001]
[32]
Scheuermann, G.M.; Rumi, L.; Steurer, P.; Bannwarth, W.; Mülhaupt, R. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc., 2009, 131(23), 8262-8270.
[http://dx.doi.org/10.1021/ja901105a] [PMID: 19469566]
[33]
Nie, R.; Shi, J.; Du, W.; Hou, Z. Ni2O3-around-Pd hybrid on graphene oxide: an efficient catalyst for ligand-free Suzuki–Miyaura coupling reaction. Appl. Catal. A., 2014, 473, 1-6.
[http://dx.doi.org/10.1016/j.apcata.2013.12.029]
[34]
Nie, R.; Wang, J.; Wang, L.; Qin, Y.; Chen, P.; Hou, Z. Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes. Carbon, 2012, 50, 586-596.
[http://dx.doi.org/10.1016/j.carbon.2011.09.017]
[35]
Chanthateyanonth, R.; Alper, H. The first synthesis of stable palladium (II) PCP-type catalysts supported on silica-application to the Heck reaction. J. Mol. Catal., 2003, 201, 23-31.
[http://dx.doi.org/10.1016/S1381-1169(03)00158-4]
[36]
Liu, W.; Wang, D.; Duan, Y.; Zhang, Y.; Bian, F. Palladium supported on poly (ionic liquid) entrapped magnetic nanoparticles as a highly efficient and reusable catalyst for the solvent-free Heck reaction. Tet. Lett, 2015, 56, 1784-1789.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.047]
[37]
Karimi, B.; Zamani, A.; Mansouri, F. Activity enhancement in cyanation of aryl halides through confinement of ionic liquid in the nanospaces of SBA-15-supported Pd complex. RSC Adv., 2014, 4, 57639-57645.
[http://dx.doi.org/10.1039/C4RA09428J]
[38]
Kang, K.; Feng, Q.; Luo, M. An active and recyclable polystyrene-supported N-heterocyclic carbene-palladium catalyst for the Suzuki reaction of arylbromides with arylboronic acids under mild conditions. Synlett, 2005, 15, 2305-2308.
[39]
Chen, W.; Li, P.; Wang, L. Silica supported palladium-phosphine complex: recyclable catalyst for Suzuki–Miyaura cross-coupling reactions at ambient temperature. Tetrahedron, 2011, 67, 318-325.
[http://dx.doi.org/10.1016/j.tet.2010.11.042]
[40]
Seyednejhad, S.; Khalilzadeh, M.A.; Zareyee, D.; Sadeghifar, H.; Venditti, R.A. Cellulose nanocrystal supported palladium as a novel recyclable catalyst for Ullmann coupling reactions. Cellulose, 2019, 26, 5015-5031.
[http://dx.doi.org/10.1007/s10570-019-02436-7]
[41]
Shan, X.; Sui, N.; Liu, W.; Liu, M.; Liu, J. In situ generation of supported palladium nanoparticles from a Pd/Sn/S chalcogel and applications in 4-nitrophenol reduction and Suzuki coupling. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7, 4446-4450.
[http://dx.doi.org/10.1039/C8TA11772A]
[42]
Liu, J.; He, K.; Wu, W.; Song, T.B.; Kanatzidis, M.G. In situ synthesis of highly dispersed and ultrafine mMetal nanoparticles from chalcogels. J. Am. Chem. Soc., 2017, 139(8), 2900-2903.
[http://dx.doi.org/10.1021/jacs.6b13279] [PMID: 28191943]
[43]
Keipour, H.; Khalilzadeh, M.A.; Hosseini, A.; Pilevar, A.; Zareyee, D. An active and selective heterogeneous catalytic system for Michael addition. Chin. Chem. Lett., 2012, 23, 537-540.
[http://dx.doi.org/10.1016/j.cclet.2012.02.006]
[44]
Khalilzadeh, M.A.; Hossein, A.; Pilevar, A. Potassium fluoride supported on natural nanoporous zeolite: a new solid base for the synthesis of diaryl ethers. Eur. J. Org. Chem., 2011, 1587-1592.
[http://dx.doi.org/10.1002/ejoc.201001447]
[45]
Khalilzadeh, M.A.; Sadeghifar, H.; Venditti, R.A. Natural clinoptilolite/KOH: an efficient heterogeneous catalyst for carboxymethylation of hemicellulose. Ind. Eng. Chem. Res., 2019, 58, 11680-11688.
[http://dx.doi.org/10.1021/acs.iecr.9b02239]
[46]
Ghanaat, J.; Khalilzadeh, M.A.; Zareyee, D. KF/CP NPs as an efficient nanocatalyst for the synthesis of 1,2,4-triazoles: the study of antioxidant and antimicrobial activity. Eurasian Chem. Commun., 2020, 2(2), 202-212.
[47]
Balou, J.; Khalilzadeh, M.A.; Zareyee, D. An efficient and reusable nano catalyst for the synthesis of benzoxanthene and chromene derivatives. Sci. Rep., 2019, 9(1), 3605.
[http://dx.doi.org/10.1038/s41598-019-40431-x] [PMID: 30837615]
[48]
Balou, J.; Khalilzadeh, M.A.; Zareyee, D. KF/Nano-clinoptilolite catalyzed Aldol-type reaction of aldehydes with ethyl diazoacetate. Catal. Lett., 2017, 147, 2612-2618.
[http://dx.doi.org/10.1007/s10562-017-2158-6]
[49]
Karimi, B.; Zamani, A. SBA-15-functionalized palladium complex partially confined with ionic liquid: an efficient and reusable catalyst system for aqueous-phase Suzuki reaction. Org. Biomol. Chem., 2012, 10(23), 4531-4536.
[http://dx.doi.org/10.1039/c2ob07176b] [PMID: 22569627]
[50]
Murata, M.; Buchwald, S.L. A general and efficient method for the palladium-catalyzed cross-coupling of thiols and secondary phosphines. Tetrahedron, 2004, 60, 7397-7403.
[http://dx.doi.org/10.1016/j.tet.2004.05.044]
[51]
Ghaderi-Shekhi Abadi, P.; Rafiee, E.; Joshaghani, M. Pd-PVP-Fe (palladium-poly(N-vinylpyrrolidone)-iron) catalyzedS-arylation of thiols with -5 aryl halides in aqueous media. Inorg. Chim. Acta, 2016, 451, 162-170.
[http://dx.doi.org/10.1016/j.ica.2016.07.006]
[52]
Bastug, G.; Nolan, S.P. Carbon-sulfur bond formation catalyzed by [Pd(IPr*(OMe))(cin)Cl] (cin = cinnamyl). J. Org. Chem., 2013, 78(18), 9303-9308.
[http://dx.doi.org/10.1021/jo401492n] [PMID: 23937148]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy