Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Bioactive Peptides and Hydrolysates from Egg Proteins as a New Tool for Protection Against Cardiovascular Problems

Author(s): Marta Miguel, Dalton V. Vassallo* and Giulia A. Wiggers

Volume 26, Issue 30, 2020

Page: [3676 - 3683] Pages: 8

DOI: 10.2174/1381612826666200327181458

Price: $65

Abstract

The aim of the present work is to review the potential beneficial effects of dietary supplementation with bioactive egg protein hydrolysates or peptides on cardiometabolic changes associated with oxidative stress. The development of nutritionally improved food products designed to address specific health concerns is of particular interest because many bioactive food compounds can be potentially useful in various physiological functions such as for reducing oxidative stress. The results presented suggest that egg hydrolysates or derived peptides could be included in the diet to prevent and/or reduce some cardiometabolic complications associated with oxidative stress-related diseases.

Keywords: Bioactive food compounds, egg derived peptides, oxidative stress, toxic metals, hydrolysates, cardiometabolic.

[1]
Flora GD, Nayak MKA. A brief review of cardiovascular diseases, associated risk factors and current treatment regimes. Curr Pharm Des 2019; 25(38): 4063-84.
[http://dx.doi.org/10.2174/1381612825666190925163827] [PMID: 31553287]
[2]
Deng Y, Xu Z, Liu W, Yang H, Xu B, Wei Y. Effects of lycopene and proanthocyanidins on hepatotoxicity induced by mercuric chloride in rats. Biol Trace Elem Res 2012; 146(2): 213-23.
[http://dx.doi.org/10.1007/s12011-011-9242-3] [PMID: 22048885]
[3]
García-Niño WR, Pedraza-Chaverrí J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol 2014; 69: 182-201.
[http://dx.doi.org/10.1016/j.fct.2014.04.016] [PMID: 24751969]
[4]
Cervantes Gracia K, Llanas-Cornejo D, Husi H. CVD and oxidative stress. J Clin Med 2017; 6(2): 22.
[http://dx.doi.org/10.3390/jcm6020022] [PMID: 28230726]
[5]
Touyz RM, Anagnostopoulou A, Camargo LL, Rios FJ, Montezano AC. Vascular biology of superoxide-generating nadph oxidase 5- implications in hypertension and cardiovascular disease. Antioxid Redox Signal 2019; 30(7): 1027-40.
[http://dx.doi.org/10.1089/ars.2018.7583] [PMID: 30334629]
[6]
Pinheiro LC, Oliveira-Paula GH. Sources and effects of oxidative stress in hypertension. Curr Hypertens 2019.Online ahead of print..
[http://dx.doi.org/10.2174/1573402115666190531071924]
[7]
Hernanz R, Briones AM, Salaices M, Alonso MJ. New roles for old pathways? A circuitous relationship between reactive oxygen species and cyclo-oxygenase in hypertension. Clin Sci (Lond) 2014; 126(2): 111-21.
[http://dx.doi.org/10.1042/CS20120651] [PMID: 24059588]
[8]
Hartmann R, Meisel H. Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol 2007; 18(2): 163-9.
[http://dx.doi.org/10.1016/j.copbio.2007.01.013] [PMID: 17292602]
[9]
Yuliana ND, Iqbal M, Jahangir M, et al. Screening of selected Asian spices for anti obesity-related bioactivities. Food Chem 2011; 126(4): 1724-9.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.066] [PMID: 25213950]
[10]
Kumar S. Free radicals and antioxidants: human and food system. Advances in Appl Sci Res 2011; 2: 129-35.
[11]
Arauna D, Furrianca M, Espinosa-Parrilla Y, Fuentes E, Alarcón M, Palomo I. Natural bioactive compounds as protectors of mitochondrial dysfunction in cardiovascular diseases and aging. Molecules 2019; 24(23): E4259.
[http://dx.doi.org/10.3390/molecules24234259] [PMID: 31766727]
[12]
Zhu F, Du B, Xu B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Crit Rev Food Sci Nutr 2018; 58(8): 1260-70.
[http://dx.doi.org/10.1080/10408398.2016.1251390] [PMID: 28605204]
[13]
Tota S, Awasthi H, Kamat PK, Nath C, Hanif K. Protective effect of quercetin against intracerebral streptozotocin induced reduction in cerebral blood flow and impairment of memory in mice. Behav Brain Res 2010; 209(1): 73-9.
[http://dx.doi.org/10.1016/j.bbr.2010.01.017] [PMID: 20096732]
[14]
Marunaka Y, Marunaka R, Sun H, et al. Actions of quercetin, a polyphenol, on blood pressure. Molecules 2017; 22(2): E209.
[http://dx.doi.org/10.3390/molecules22020209] [PMID: 28146071]
[15]
Liu W, Xu Z, Yang H, Deng Y, Xu B, Wei Y. The protective effects of tea polyphenols and schisandrin B on nephrotoxicity of mercury. Biol Trace Elem Res 2011; 143(3): 1651-65.
[http://dx.doi.org/10.1007/s12011-011-8996-y] [PMID: 21369715]
[16]
Chen C, Chi YJ, Zhao MY, Lv L. Purification and identification of antioxidant peptides from egg white protein hydrolysate. Amino Acids 2012; 43(1): 457-66.
[http://dx.doi.org/10.1007/s00726-011-1102-0] [PMID: 21964984]
[17]
Zakaria MMH, Hajipour B, Estakhri R, Saleh BM. Anti-oxidative effect of resveratrol on aluminum induced toxicity in rat cerebral tissue. Bratisl Lek Listy 2017; 118(5): 269-72.
[http://dx.doi.org/10.4149/BLL_2017_053] [PMID: 28516788]
[18]
Lorenzo JM, Munekata PES, Gómez B, et al. Bioactive peptides as natural antioxidants in food products - A review. Trends Food Sci Technol 2008; 79: 136-47.
[http://dx.doi.org/10.1016/j.tifs.2018.07.003]
[19]
Martínez Leo EE, Acevedo Fernández JJ, Segura Campos MR. Biopeptides with antioxidant and anti-inflammatory potential in the prevention and treatment of diabesity disease. Biomed Pharmacother 2016; 83: 816-26.
[http://dx.doi.org/10.1016/j.biopha.2016.07.051] [PMID: 27501499]
[20]
Jain S, Anal AK. Production and characterization of functional properties of protein hydrolysates from egg shell membranes by lactic acid bacteria fermentation. J Food Sci Technol 2017; 54(5): 1062-72.
[http://dx.doi.org/10.1007/s13197-017-2530-y] [PMID: 28416855]
[21]
Oparil S, Acelajado MC, Bakris GL, et al. Hypertension. Nat Rev Dis Primers 2018; 4: 18014.
[http://dx.doi.org/10.1038/nrdp.2018.14] [PMID: 29565029]
[22]
Sack MN, Fyhrquist FY, Saijonmaa OJ, Fuster V, Kovacic JC. Basic biology of oxidative stress and the cardiovascular system: part 1 of a 3-part series. J Am Coll Cardiol 2017; 70(2): 196-211.
[http://dx.doi.org/10.1016/j.jacc.2017.05.034] [PMID: 28683968]
[23]
Galán M, Miguel M, Beltrán AE, et al. Angiotensin II differentially modulates cyclooxygenase-2, microsomal prostaglandin E2 synthase- 1 and prostaglandin I2 synthase expression in adventitial fibroblasts exposed to inflammatory stimuli. J Hypertens 2011; 29(3): 529-36.
[http://dx.doi.org/10.1097/HJH.0b013e328342b271] [PMID: 21169864]
[24]
Martínez-Revelles S, Avendaño MS, García-Redondo AB, et al. Reciprocal relationship between reactive oxygen species and cyclooxygenase- 2 and vascular dysfunction in hypertension. Antioxid Redox Signal 2013; 18(1): 51-65.
[http://dx.doi.org/10.1089/ars.2011.4335] [PMID: 22671943]
[25]
Manrique C, Lastra G, Gardner M, Sowers JR. The renin angiotensin aldosterone system in hypertension: roles of insulin resistance and oxidative stress. Med Clin North Am 2009; 93(3): 569-82.
[http://dx.doi.org/10.1016/j.mcna.2009.02.014] [PMID: 19427492]
[26]
García-Redondo AB, Aguado A, Briones AM, Salaices M. NADPH oxidases and vascular remodeling in cardiovascular diseases. Pharmacol Res 2016; 114: 110-20.
[http://dx.doi.org/10.1016/j.phrs.2016.10.015] [PMID: 27773825]
[27]
Martin-Ventura JL, Rodrigues-Diez R, Martinez-Lopez D, Salaices M, Blanco-Colio LM, Briones AM. Oxidative stress in human atherothrombosis: sources, markers and therapeutic targets. Int J Mol Sci 2017; 18(11): 2315.
[http://dx.doi.org/10.3390/ijms18112315] [PMID: 29099757]
[28]
Fujita H, Usui H, Kurahashi K, Yoshikawa M. Isolation and characterization of ovokinin, a bradykinin B1 agonist peptide derived from ovalbumin. Peptides 1995; 16(5): 785-90.
[http://dx.doi.org/10.1016/0196-9781(95)00054-N] [PMID: 7479316]
[29]
Matoba N, Usui H, Fujita H, Yoshikawa M. A novel anti-hypertensive peptide derived from ovalbumin induces nitric oxide-mediated vasorelaxation in an isolated SHR mesenteric artery. FEBS Lett 1999; 452(3): 181-4.
[http://dx.doi.org/10.1016/S0014-5793(99)00587-6] [PMID: 10386586]
[30]
Fujita H, Yokoyama K, Yoshikawa M. Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. J Food Sci 2000; 65: 564-9.
[http://dx.doi.org/10.1111/j.1365-2621.2000.tb16049.x]
[31]
Miguel M, Recio I, Gómez-Ruiz JA, Ramos M, López-Fandiño R. Angiotensin I-converting enzyme inhibitory activity of peptides derived from egg white proteins by enzymatic hydrolysis. J Food Prot 2004; 67(9): 1914-20.
[http://dx.doi.org/10.4315/0362-028X-67.9.1914] [PMID: 15453581]
[32]
Dávalos A, Miguel M, Bartolomé B, López-Fandiño R. Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. J Food Prot 2004; 67(9): 1939-44.
[http://dx.doi.org/10.4315/0362-028X-67.9.1939] [PMID: 15453585]
[33]
Miguel M, López-Fandiño R, Ramos M, Aleixandre A. Short-term effect of egg-white hydrolysate products on the arterial blood pressure of hypertensive rats. Br J Nutr 2005; 94(5): 731-7.
[http://dx.doi.org/10.1079/BJN20051570] [PMID: 16277776]
[34]
Miguel M, López-Fandiño R, Ramos M, Aleixandre A. Long-term intake of egg white hydrolysate attenuates the development of hypertension in spontaneously hypertensive rats. Life Sci 2006; 78(25): 2960-6.
[http://dx.doi.org/10.1016/j.lfs.2005.11.025] [PMID: 16386762]
[35]
Miguel M, Manso M, Aleixandre A, Alonso MJ, Salaices M, López-Fandiño R. Vascular effects, angiotensin I-converting enzyme (ACE)-inhibitory activity, and antihypertensive properties of peptides derived from egg white. J Agric Food Chem 2007; 55(26): 10615-21.
[http://dx.doi.org/10.1021/jf072307o] [PMID: 18047278]
[36]
Miguel M, Manso MA, Martín-Alvarez PJ, Aleixandre A, López-Fandiño R. Angiotensin-converting enzyme activity in plasma and tissues of spontaneously hypertensive rats after the short and long term intake of hydrolysed egg white. Mol Nutr Food Res 2007; 51(5): 555-63.
[http://dx.doi.org/10.1002/mnfr.200700012] [PMID: 17440999]
[37]
Miguel M, Alvarez Y, López-Fandiño R, Alonso MJ, Salaices M. Vasodilator effects of peptides derived from egg white proteins. Regul Pept 2007; 140(3): 131-5.
[http://dx.doi.org/10.1016/j.regpep.2006.11.029] [PMID: 17222924]
[38]
Garcia-Redondo AB, Roque FR, Miguel M, López-Fandiño R, Salaices M. Vascular effects of egg white-derived peptides in resistance arteries from rats. Structure-activity relationships. J Sci Food Agric 2010; 90(12): 1988-93.
[http://dx.doi.org/10.1002/jsfa.4037] [PMID: 20572060]
[39]
Saleh AS, Zhang Q, Shen Q. Recent research in antihypertensive activity of food protein-derived hydrolyzates and peptides. Crit Rev Food Sci Nutr 2016; 56(5): 760-87.
[http://dx.doi.org/10.1080/10408398.2012.724478] [PMID: 25036695]
[40]
Chen C, Chi YJ, Xu W. Comparisons on the functional properties and antioxidant activity of spray-dried and freeze-dried egg white protein hydrolysate. Food Bioprocess Technol 2012; 5: 2342-52.
[http://dx.doi.org/10.1007/s11947-011-0606-7]
[41]
Abeyrathne EDNS, Lee HY, Jo C, Suh JW, Ahn DU. Enzymatic hydrolysis of ovomucoid and the functional properties of its hydrolysates. Poult Sci 2015; 94(9): 2280-7.
[http://dx.doi.org/10.3382/ps/pev196] [PMID: 26195809]
[42]
Abeyrathne EDNS, Huang X, Ahn DU. Antioxidant, angiotensin converting enzyme inhibitory activity and other functional properties of egg white proteins and their derived peptides - A review. Poult Sci 2018; 97(4): 1462-8.
[http://dx.doi.org/10.3382/ps/pex399] [PMID: 29340654]
[43]
Liu J, Ju Z, Zhao W, et al. Isolation and identification of angiotensin-converting enzyme inhibitory peptides from egg white protein hydrolysates. Food Chem 2010; 122: 1159-63.
[http://dx.doi.org/10.1016/j.foodchem.2010.03.108]
[44]
Yu Z, Zhao W, Liu J, Lu J, Chen F. QIGLF, a novel angiotensin I-converting enzyme-inhibitory peptide from egg white protein. J Sci Food Agric 2011; 91(5): 921-6.
[http://dx.doi.org/10.1002/jsfa.4266] [PMID: 21384361]
[45]
Yu Z, Liu B, Zhao W, Yin Y, Liu J, Chen F. Primary and secondary structure of novel ACE-inhibitory peptides from egg white protein. Food Chem 2012; 133(2): 315-22.
[http://dx.doi.org/10.1016/j.foodchem.2012.01.032] [PMID: 25683401]
[46]
Yu Z, Zhao W, Ding L, Yu Y, Liu J. Anxiolytic effects of ACE inhibitory peptides on the behavior of rats in an elevated plus-maze. Food Funct 2016; 7(1): 491-7.
[http://dx.doi.org/10.1039/C5FO00697J] [PMID: 26527235]
[47]
Jahandideh F, Chakrabarti S, Majumder K, et al. Egg white protein hydrolysate reduces blood pressure, improves vascular relaxation and modifies aortic angiotensin II receptors expression in spontaneously hypertensive rats. J Funct Foods 2016; 27: 667-73.
[http://dx.doi.org/10.1016/j.jff.2016.10.019]
[48]
Majumder K, Wu J. Purification and characterisation of angiotensin I converting enzyme (ACE) inhibitory peptides derived from enzymatic hydrolysate of ovotransferrin. Food Chem 2011; 126(4): 1614-9.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.039] [PMID: 25213935]
[49]
Majumder K, Chakrabarti S, Morton JS, et al. Egg-derived tripeptide IRW exerts antihypertensive effects in spontaneously hypertensive rats. PLoS One 2013; 8(11): e82829.
[http://dx.doi.org/10.1371/journal.pone.0082829] [PMID: 24312436]
[50]
Majumder K, Liang G, Chen Y, Guan L, Davidge ST, Wu J. Egg ovotransferrin-derived ACE inhibitory peptide IRW increases ACE2 but decreases proinflammatory genes expression in mesenteric artery of spontaneously hypertensive rats. Mol Nutr Food Res 2015; 59(9): 1735-44.
[http://dx.doi.org/10.1002/mnfr.201500050] [PMID: 26016560]
[51]
Liao W, Jahandideh F, Fan H, Son M, Wu J. Egg protein-derived bioactive peptides: Preparation, efficacy and absorption. Adv Food Nutr Res 2018; 85: 1-58.
[http://dx.doi.org/10.1016/bs.afnr.2018.02.001] [PMID: 29860972]
[52]
Plat J, Severins N, Morrison S, Mensink RP. Effects of NWT-03, an egg-protein hydrolysate, on blood pressure in normotensive, high normotensive and mild-hypertensive men and women: a dose finding study. Br J Nutr 2017; 117(7): 942-50.
[http://dx.doi.org/10.1017/S0007114517000836] [PMID: 28485264]
[53]
Chay Pak Ting BP, Mine Y, Juneja LR, Okubo T, Gauthier SF, Pouliot Y. Comparative composition and antioxidant activity of Peptide fractions obtained by ultrafiltration of egg yolk protein enzymatic hydrolysates. Membranes (Basel) 2011; 1(3): 149-61.
[http://dx.doi.org/10.3390/membranes1030149] [PMID: 24957729]
[54]
Park PJ, Jung WK, Nam KS, Shahidi F, Kim SK. Purification and characterization of antioxidative peptides from protein hydrolysate of lecithin-free egg yolk. J Am Oil Chem Soc 2001; 278: 51-6.
[55]
Young D, Fan MZ, Mine Y. Egg yolk peptides up-regulate glutathione synthesis and antioxidant enzyme activities in a porcine model of intestinal oxidative stress. J Agric Food Chem 2010; 58(13): 7624-33.
[http://dx.doi.org/10.1021/jf1011598] [PMID: 20540508]
[56]
Eckert E, Zambrowicz A, Pokora M, et al. Egg-yolk protein by product as a source of ACE-inhibitory peptides obtained with using unconventional proteinase from Asian pumpkin (Cucurbita ficifolia). J Proteomics 2014; 110: 107-16.
[http://dx.doi.org/10.1016/j.jprot.2014.08.003] [PMID: 25138009]
[57]
Eckert E, Zambrowicz A, Bobak Ł, Zabłocka A, Chrzanowska J, Trziszka T. Production and identification of biologically active peptides derived from by-product of hen egg-yolk phospholipid extraction. Int J Pept Res Ther 2019; 25: 669-80.
[http://dx.doi.org/10.1007/s10989-018-9713-x]
[58]
Santana A, Melo A, Tavares T, Ferreira IM. Biological activities of peptide concentrates obtained from hydrolysed eggshell membrane byproduct by optimisation with response surface methodology. Food Funct 2016; 7(11): 4597-604.
[http://dx.doi.org/10.1039/C6FO00954A] [PMID: 27747356]
[59]
Seravalle G, Grassi G. Obesity and hypertension. Pharmacol Res 2017; 122: 1-7.
[http://dx.doi.org/10.1016/j.phrs.2017.05.013] [PMID: 28532816]
[60]
Victorio JA, Davel AP. Perivascular adipose tissue oxidative stress on the pathophysiology of cardiometabolic diseases. Curr Hypertens Rev 2019; 15: 1-8.
[http://dx.doi.org/10.2174/1573402115666190410153634] [PMID: 30968777]
[61]
Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative stress in atherosclerosis CurrAtheroscler Rep 2017. 18; 19(11): 42.
[62]
Eringa EC, Bakker W, van Hinsbergh VW. Paracrine regulation of vascular tone, inflammation and insulin sensitivity by perivascular adipose tissue. Vascul Pharmacol 2012; 56(5-6): 204-9.
[http://dx.doi.org/10.1016/j.vph.2012.02.003] [PMID: 22366250]
[63]
Zaborska KE, Wareing M, Austin C. Comparisons between perivascular adipose tissue and the endothelium in their modulation of vascular tone. Br J Pharmacol 2017; 174(20): 3388-97.
[http://dx.doi.org/10.1111/bph.13648] [PMID: 27747871]
[64]
Victorio JA, Fontes MT, Rossoni LV, Davel AP. Different Anti contractile function and nitric oxide production of thoracic and abdominal perivascular adipose tissues. Front Physiol 2016; 7: 295.
[http://dx.doi.org/10.3389/fphys.2016.00295] [PMID: 27462277]
[65]
Yu Z, Zhao W, Liu J, Lu J, Chen F. Novel peptides derived from egg White protein inhibiting alpha-glucosidase. Food Chem 2011; 129: 1376-82.
[http://dx.doi.org/10.1016/j.foodchem.2011.05.067]
[66]
Jahandideh F, Chakrabarti S, Davidge ST, Wu J. Egg white hydrolysate shows insulin mimetic and sensitizing effects in 3T3-F442A pre-adipocytes. PLoS One 2017; 12(10): e0185653.
[http://dx.doi.org/10.1371/journal.pone.0185653] [PMID: 28972997]
[67]
Jahandideh F, Liu P, Wu J. Purification and identification of adipogenic- differentiating peptides from egg white hydrolysate. Food Chem 2018; 259: 25-30.
[http://dx.doi.org/10.1016/j.foodchem.2018.03.099] [PMID: 29680051]
[68]
Jahandideh F, Zani SCC, Son M, et al. Egg white hydrolysate enhances insulin sensitivity in high-fat diet-induced insulin-resistant rats via Akt activation. Br J Nutr 2019; 122(1): 14-24.
[http://dx.doi.org/10.1017/S0007114519000837] [PMID: 30982477]
[69]
Plat J, Severins N, Mensink RP. Improvement of pulse wave velocity and metabolic cardiovascular risk parameters through egg protein hydrolysate intake: A randomized trial in overweight or obese subjects with impaired glucose tolerance or type 2 diabetes. J Funct Foods 2019; 52: 418-23.
[http://dx.doi.org/10.1016/j.jff.2018.11.020]
[70]
Garcés-Rimón M, López-Expósito I, López-Fandiño R, Miguel M. Egg white hydrolysates with in vitro biological multiactivities to control complications associated with the metabolic syndrome. Eur Food Res Technol 2016; 242: 61-9.
[http://dx.doi.org/10.1007/s00217-015-2518-7]
[71]
Garcés-Rimón M, González C, Uranga JA, López-Miranda V, López-Fandiño R, Miguel M. Pepsin egg white hydrolysate ameliorates obesity-related oxidative stress, inflammation and steatosis in zucker fatty rats. PLoSOne 2016 17; 11(3): e0151193.
[72]
Garcés-Rimón M, González C, Vera G, et al. Pepsinegg White hydrolysate improves glucose metabolismcomplicationsrelatedtometabolicsyndrome in Zuckerfattyrats. Nutrients 2018; 10(4): 441.
[http://dx.doi.org/10.3390/nu10040441] [PMID: 29614007]
[73]
Garcés-RimónM. González C, Uranga JA, López-Miranda V, Vera G, Miguel M Pepsinegg white hydrolysate ameliorates metabolic syndrome in high-fat/high-dextrose fedrats. Food Funct 2018; 9: 78-86.
[http://dx.doi.org/10.1039/c7fo01280b] [PMID: 29114652]
[74]
Moreno-Fernández S, Garcés-Rimón M, Uranga JA, Astier J, Landrier JF, Miguel M. Expression enhancement in brown adipose tissue of genes related to thermogenesis and mitochondrial dynamics after administration of pepsin egg white hydrolysate. Food Funct 2018; 9(12): 6599-607.b.
[http://dx.doi.org/10.1039/C8FO01754A] [PMID: 30489585]
[75]
Garcés-Rimón M, González C, Hernanz R, et al. Egg white hydrolysates improve vascular damage in obese Zucker rats by its antioxidant properties. J Food Biochem 2019; 43(12)e13062
[http://dx.doi.org/10.1111/jfbc.13062] [PMID: 31571257]
[76]
Zambrowicz A, Eckert E, Pokora M, et al. Antioxidant and antidiabetic activities of peptides isolated from a hydrolysate of an eggyolk protein by-product prepared with a proteinase from Asian pumpkin (Cucurbita ficifolia) RSC Advances 2015; 5: 10460-7.a..
[http://dx.doi.org/10.1039/C4RA12943A]
[77]
Zambrowicz A, Pokora M, Setner B, et al. Multifunctional peptides derived from an egg yolk protein hydrolysate: isolation and characterization Amino Acids . 2015; 47(2): 369-80.b.
[http://dx.doi.org/10.1007/s00726-014-1869-x] [PMID: 25408464]
[78]
Peto MV. Aluminium and iron in humans: bioaccumulation, pathology, and removal. Rejuvenation Res 2010; 13(5): 589-98.
[http://dx.doi.org/10.1089/rej.2009.0995] [PMID: 21142669]
[79]
Exley C. Human exposure to aluminium. Environ Sci Process Impacts 2013; 15(10): 1807-16.
[http://dx.doi.org/10.1039/C3EM00374D] [PMID: 23982047]
[80]
Bjørklund G, Dadar M, Mutter J, Aaseth J. The toxicology of mercury: Current research and emerging trends. Environ Res 2017; 159: 545-54.
[http://dx.doi.org/10.1016/j.envres.2017.08.051] [PMID: 28889024]
[81]
Massaroni L, Rossoni LV, Amaral SM, Stefanon I, Oliveira EM, Vassallo DV. Haemodynamic and electrophysiological acute toxic effects of mercury in anaesthetized rats and in langendorff perfused rat hearts. Pharmacol Res 1995; 32(1-2): 27-36.
[http://dx.doi.org/10.1016/S1043-6618(95)80005-0] [PMID: 8668644]
[82]
Rossoni LV, Amaral SM, Vassallo PF, et al. Effects of mercury on the arterial blood pressure of anesthetized rats. Braz J Med Biol Res 1999; 32(8): 989-97.
[http://dx.doi.org/10.1590/S0100-879X1999000800009] [PMID: 10454761]
[83]
de Assis GP, Silva CE, Stefanon I, Vassallo DV. Effects of small concentrations of mercury on the contractile activity of the rat ventricular myocardium. Comp Biochem Physiol C Toxicol Pharmacol 2003; 134(3): 375-83.
[http://dx.doi.org/10.1016/S1532-0456(03)00005-X] [PMID: 12643984]
[84]
Machado AC, Padilha AS, Wiggers GA, Siman FDM, Stefanon I, Vassallo DV. Small doses of mercury increase arterial pressure reactivity to phenylephrine in rats. Environ Toxicol Pharmacol 2007; 24(2): 92-7.
[http://dx.doi.org/10.1016/j.etap.2007.02.005] [PMID: 21783795]
[85]
Blanco-Rivero J, Furieri LB, Vassallo DV, Salaices M, Balfagón G. Chronic HgCl(2) treatment increases vasoconstriction induced by electrical field stimulation: role of adrenergic and nitrergic innervation. Clin Sci (Lond) 2011; 121(8): 331-41.
[http://dx.doi.org/10.1042/CS20110072] [PMID: 21554244]
[86]
Wiggers GA, Peçanha FM, Briones AM, et al. Low mercury concentrations cause oxidative stress and endothelial dysfunction in conductance and resistance arteries Am J Physiol Heart Circ Physiol. 2008; 295(3): H1033-43.a..
[http://dx.doi.org/10.1152/ajpheart.00430.2008] [PMID: 18599595]
[87]
Wiggers GA, Stefanon I, Padilha AS, Peçanha FM, Vassallo DV, Oliveira EM. Low nanomolar concentration of mercury chloride increases vascular reactivity to phenylephrine and local angiotensin production in rats. Comp Biochem Physiol C Toxicol Pharmacol 2008; 147(2): 252-60.b.
[http://dx.doi.org/10.1016/j.cbpc.2007.10.003] [PMID: 18093879]
[88]
Peçanha FM, Wiggers GA, Briones AM, et al. The role of cyclooxygenase (COX)-2 derived prostanoids on vasoconstrictor responses to phenylephrine is increased by exposure to low mercury concentration. J Physiol Pharmacol 2010; 61(1): 29-36.
[PMID: 20228412]
[89]
Furieri LB, Galán M, Avendaño MS, et al. Endothelial dysfunction of rat coronary arteries after exposure to low concentrations of mercury is dependent on reactive oxygen species. Br J Pharmacol 2011; 162(8): 1819-31.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01203.x] [PMID: 21232032]
[90]
Rizzetti DA, Torres JGD, Escobar AG, et al. Apocynin prevents vascular effects caused by chronic exposure to low concentrations of mercury. PLoS One 2013; 8(2): e55806.
[http://dx.doi.org/10.1371/journal.pone.0055806] [PMID: 23390552]
[91]
Rizzetti DA, Martín Á, Corrales P, et al. Egg white-derived peptides prevent cardiovascular disorders induced by mercury in rats: Role of angiotensin-converting enzyme (ACE) and NADPH oxidase. Toxicol Lett 2017; 281(281): 158-74.
[http://dx.doi.org/10.1016/j.toxlet.2017.10.001] [PMID: 28987480]
[92]
El-Sayed WM, Al-Kahtani MA, Abdel-Moneim AM. Prophylactic and therapeutic effects of taurine against aluminum-induced acute hepatotoxicity in mice. J Hazard Mater 2011 30; 192(2): 880-6.
[93]
Gura KM. Aluminum contamination in products used in parenteral nutrition: has anything changed? Nutrition 2010; 26(6): 585-94.
[http://dx.doi.org/10.1016/j.nut.2009.10.015] [PMID: 20363591]
[94]
Sun J, Wang S, Zhao D, Hun FH, Weng L, Liu H. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells: cytotoxicity, permeability, and inflammation of metal oxide nanoparticles. Cell Biol Toxicol 2011; 27(5): 333-42.
[http://dx.doi.org/10.1007/s10565-011-9191-9] [PMID: 21681618]
[95]
Niu Q. Overview of the relationship between aluminum exposure and health of human being. Adv Exp Med Biol 2018; 1091: 1-31.
[http://dx.doi.org/10.1007/978-981-13-1370-7_1] [PMID: 30315446]
[96]
Lind PM, Olsén L, Lind L. Circulating levels of metals are related to carotid atherosclerosis in elderly. Sci Total Environ 2012; 416(416): 80-8.
[http://dx.doi.org/10.1016/j.scitotenv.2011.11.064] [PMID: 22178028]
[97]
Zhang Q, Cao Z, Sun X, Zuang C, Huang W, Li Y. Aluminum trichloride induces hypertension and disturbs the function of erythrocyte membrane in male rats. Biol Trace Elem Res 2016; 171(1): 116-23.
[http://dx.doi.org/10.1007/s12011-015-0504-3] [PMID: 26354416]
[98]
Gomes MG, Moreira CA, Mill JG, et al. Effects of aluminum on the mechanical and electrical activity of the Langendorff-perfused rat heart. Braz J Med Biol Res 1994; 27(1): 95-100.
[PMID: 8173535]
[99]
Schmidt PM, Escobar AG, Torres JG, et al. Aluminum exposure for one hour decreases vascular reactivity in conductance and resistance arteries in rats. Toxicol Appl Pharmacol 2016; 313: 109-18.
[http://dx.doi.org/10.1016/j.taap.2016.10.023] [PMID: 27984129]
[100]
Rizzetti DA, Torres JG, Escobar AG, et al. The cessation of the long-term exposure to low doses of mercury ameliorates the increase in systolic blood pressure and vascular damage in rats. Environ Res 2017; 155: 182-92.
[http://dx.doi.org/10.1016/j.envres.2017.02.022] [PMID: 28222365]
[101]
Rizzetti DA, Corrales P, Piagette JT, et al. Chronic mercury at low doses impairs white adipose tissue plasticity. Toxicology 2019; 418(418): 41-50.
[http://dx.doi.org/10.1016/j.tox.2019.02.013] [PMID: 30807803]
[102]
Martinez CS, Piagette JT, Escobar AG, et al. Egg white hydrolysate: A new putative agent to prevent vascular dysfunction in rats following long-term exposure to aluminum. Food Chem Toxicol 2019; 133: 110799.
[http://dx.doi.org/10.1016/j.fct.2019.110799] [PMID: 31493463]
[103]
Rizzetti DA, Fernandez F, Moreno S, et al. Egg white hydrolysate promotes neuroprotection for neuropathic disorders induced by chronic exposure to low concentrations of mercury. Brain Res 2016; 1646: 482-9.
[http://dx.doi.org/10.1016/j.brainres.2016.06.037] [PMID: 27350078]
[104]
Rizzetti DA, Martinez CS, Escobar AG, et al. Egg white-derived peptides prevent male reproductive dysfunction induced by mercury in rats. Food Chem Toxicol 2017; 100: 253-64.
[http://dx.doi.org/10.1016/j.fct.2016.12.038] [PMID: 28043836]
[105]
Martinez CS, Alterman CDC, Peçanha FM, et al. Aluminum exposure at human dietary levels for 60 days reaches a threshold sufficient to promote memory impairment in rats. Neurotox Res 2017; 31(1): 20-30.
[http://dx.doi.org/10.1007/s12640-016-9656-y] [PMID: 27473855]
[106]
Rizzetti DA, Altermann CD, Martinez CS, et al. Ameliorative effects of egg white hydrolysate on recognition memory impairments associated with chronic exposure to low mercury concentration. Neurochem Int 2016; 101: 30-7.
[http://dx.doi.org/10.1016/j.neuint.2016.10.002] [PMID: 27732885]
[107]
Miguel M, Dávalos A, Manso MA, de la Peña G, Lasunción MA, López-Fandiño R. Transepithelial transport across Caco-2 cell monolayers of antihypertensive egg-derived peptides. PepT1-mediated flux of Tyr-Pro-Ile. Mol Nutr Food Res 2008; 52(12): 1507-13.
[http://dx.doi.org/10.1002/mnfr.200700503] [PMID: 18727013]
[108]
Requena T, Miguel M, Garcés-Rimón M, Martínez-Cuesta MC, López-Fandiño R, Peláez C. Pepsin egg white hydrolysate modulates gut microbiota in Zucker obese rats. Food Funct 2017; 8(1): 437-43.
[http://dx.doi.org/10.1039/C6FO01571A] [PMID: 28091678]
[109]
Ding L, Zhang Y, Jiang Y, Wang L, Liu B, Liu J. Transport of egg white ACE-inhibitory peptide, gln-ile-gly-leu-phe, in human intestinal caco-2 cell monolayers with cytoprotective effect. J Agric Food Chem 2014; 62(14): 3177-82.
[http://dx.doi.org/10.1021/jf405639w] [PMID: 24670259]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy