Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Effect of Topography on Maize Grains Elemental Profile: A Chemometric Approach

Author(s): Jorgelina Z. Heredia, Carlos A. Moldes , Raúl A. Gil and José M. Camiña *

Volume 16, Issue 8, 2020

Page: [1079 - 1087] Pages: 9

DOI: 10.2174/1573411016666200319095312

Price: $65

Abstract

Background: The elemental composition of maize grains depends on the soil, land and environment characteristics where the crop grows. These effects are important to evaluate the availability of nutrients with complex dynamics, such as the concentration of macro and micronutrients in soils, which can vary according to different topographies. There is available scarce information about the influence of topographic characteristics (upland and lowland) where culture is developed with the mineral composition of crop products, in the present case, maize seeds. On the other hand, the study of the topographic effect on crops using multivariate analysis tools has not been reported.

Objective: This paper assesses the effect of topographic conditions on plants, analyzing the mineral profiles in maize seeds obtained in two land conditions: uplands and lowlands.

Material and Methods: The mineral profile was studied by microwave plasma atomic emission spectrometry. Samples were collected from lowlands and uplands of cultivable lands of the north-east of La Pampa province, Argentina.

Results: Differentiation of maize seeds collected from both topographical areas was achieved by principal components analysis (PCA), cluster analysis (CA) and linear discriminant analysis (LDA). PCA model based on mineral profile allowed to differentiate seeds from upland and lowlands by the influence of Cr and Mg variables. A significant accumulation of Cr and Mg in seeds from lowlands was observed. Cluster analysis confirmed such grouping but also, linear discriminant analysis achieved a correct classification of both the crops, showing the effect of topography on elemental profile.

Conclusion: Multi-elemental analysis combined with chemometric tools proved useful to assess the effect of topographic characteristics on crops.

Keywords: Argentina, chemometrics, maize, mineral, MPAES, topography.

Graphical Abstract

[1]
Organización de las Naciones Unidas para la Alimentación y la Agricultura. http://faostat.fao.org/2015 (Accessed May 20, 2019).
[2]
Muñoz, J.D.; Steibel, J.P.; Snappa, S.; Kravchenkoa, A.N. Cover crop effect on corn growth and yield as influenced by topography. Agric. Ecosyst. Environ., 2004, 189, 229-239.
[http://dx.doi.org/10.1016/j.agee.2014.03.045]
[3]
Nosetto, M.D.; Acosta, A.M.; Jayawickreme, D.H.; Ballesteros, S.I.; Jackson, R.B.; Jobbágy, E.G. Land-use and topography shape soil and groundwater salinity in central Argentina. Agric. Water Manage., 2013, 129, 120-129.
[http://dx.doi.org/10.1016/j.agwat.2013.07.017]
[4]
Zhu, Q.; Schmidt, J.P.; Bryant, R.B. Maize (Zea mays L.) yield response to nitrogen as influenced by spatiotemporal variations of soil-water-topography dynamics. Soil Tillage Res., 2015, 146, 174-183.
[http://dx.doi.org/10.1016/j.still.2014.10.006]
[5]
Ahmed, N.; Masood, S.; Ahmad, S.; Bashir, S.; Hussain, S.; Hassan, W.; Khandekar, R.I. Soil Management for Better Crop Production and Sustainable Agriculture. In: Agronomic Crops. Management Practices; ; Springer, Singapore, , 2019, 2 , pp. 47-71.
[6]
Singh, A.K.; Hasnain, S.I.; Banerjee, D.K. Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River a tributary of the lower Ganga, India. Environ. Geosci., 1999, 39(1), 90-98.
[7]
Loomis, R.S.; Connor, D.J. Crop ecology: Productivity and management in agricultural systems; Cambridge University Press: Cambridge, 2002.
[8]
Azcón-Bieto, J.; Talón, M. Fundamentos de fisiología vegetal; Mc Graw-Hill Interamericana: Madrid, 2008.
[9]
Jia, L.; Wang, W.; Li, Y.; Yang, L. Heavy metals in soil and crops of an intensively farmed area: a case study in Yucheng City, Shandong Province, China. Int. J. Environ. Res. Public Health, 2010, 7(2), 395-412.
[http://dx.doi.org/10.3390/ijerph7020395] [PMID: 20616981]
[10]
Karlsson, S.; Sjöberg, V.; Ogar, A. Comparison of MP AES and ICP-MS for analysis of principal and selected trace elements in nitric acid digests of sunflower (Helianthus annuus). Talanta, 2015, 135, 124-132.
[http://dx.doi.org/10.1016/j.talanta.2014.12.015] [PMID: 25640135]
[11]
Opaluwa, O.D.; Aremu, M.O.; Ogbo, L.O.; Abiola, K.A.; Odiba, I.E.; Abubakar, M.M.; Nweze, N.O. Heavy metal concentrations in soils, plant leaves and crops grown around dump sites in Lafia metropolis, Nasarawa state, Nigeria. Adv. Appl. Sci. Res., 2012, 3, 780-784.
[12]
Wheal, M.S.; Fowles, T.O.; Palm, L.T. A cost-effective acid digestion method using closed polypropylene tubes for inductively coupled plasma optical emission spectrometry (ICP-OES) analysis of plant essential elements. Anal. Methods, 2011, 3, 2854-2863.
[http://dx.doi.org/10.1039/c1ay05430a]
[13]
Fan, M.S.; Zhao, F.J.; Fairweather-Tait, S.J.; Poulton, P.R.; Dunham, S.J.; McGrath, S.P. Evidence of decreasing mineral density in wheat grain over the last 160 years. J. Trace Elem. Med. Biol., 2008, 22(4), 315-324.
[http://dx.doi.org/10.1016/j.jtemb.2008.07.002] [PMID: 19013359]
[14]
Svecnjak, Z.; Jenel, M.; Bujan, M.; Vitali, D.; Dragojevic, I.V. Trace element concentrations in the grain of wheat cultivars as affected by nitrogen fertilization. Agric. Food Sci., 2013, 22, 445-451.
[http://dx.doi.org/10.23986/afsci.8230]
[15]
Zhao, F.J.; Su, Y.H.; Dunham, S.J.; Rakszegi, M.; Bedo, Z.; McGrath, S.P.; Shewry, P.R. Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J. Cereal Sci., 2009, 49, 290-295.
[http://dx.doi.org/10.1016/j.jcs.2008.11.007]
[16]
Gooding, M.J.; Fan, M.; McGrath, S.P.; Shewry, P.R.; Zhao, F.J. Contrasting effects of dwarfing alleles and nitrogen availability on mineral concentrations in wheat grain. Plant Soil, 2012, 360, 93-107.
[http://dx.doi.org/10.1007/s11104-012-1203-x]
[17]
Kutman, U.B.; Yildiz, B.; Cakmak, I. Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. J. Cereal Sci., 2011, 53, 118-125.
[http://dx.doi.org/10.1016/j.jcs.2010.10.006]
[18]
Shi, R.; Zhang, Y.; Chen, X.; Sun, Q.; Zhang, F.; Reomheld, V.; Zou, C. Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). J. Cereal Sci., 2010, 51, 165-170.
[http://dx.doi.org/10.1016/j.jcs.2009.11.008]
[19]
Suarez-Tapia, A.; Kucheryavskiy, S.V.; Christensen, B.T.; Thomsen, I.K.; Rasmussen, J. Limitation of multi-elemental fingerprinting of wheat grains: Effect of cultivar, sowing date, and nutrient management. J. Cereal Sci., 2017, 76, 76-84.
[http://dx.doi.org/10.1016/j.jcs.2017.05.015]
[20]
Hongxing, Z.; Yu-Kui, R. Determination of trace elements, heavy metals and rare earth elements in corn seeds from Beijing by ICP-MS simultaneously. J. Chem., 2011, 8(2), 782-786.
[21]
Bolaños, D.; Marchevsky, E.J.; Camiña, J.M. Elemental analysis of amaranth, chia, sesame, linen, and quinoa seeds by ICP-OES: Assessment of classification by chemometrics. Food Anal. Methods, 2016, 9, 477-484.
[http://dx.doi.org/10.1007/s12161-015-0217-4]
[22]
Ozbek, N.; Tinas, H.; Atespare, E. A procedure for the determination of trace metals in rice varieties using microwave induced plasma atomic emission spectrometry. Microchem. J., 2019, 144, 474-478.
[http://dx.doi.org/10.1016/j.microc.2018.10.010]
[23]
Ozbek, N.; Akman, S. Microwave plasma atomic emission spectrometric determination of Ca, K and Mg in various cheese varieties. Food Chem., 2016, 192, 295-298.
[http://dx.doi.org/10.1016/j.foodchem.2015.07.011] [PMID: 26304350]
[24]
Hidalgo, M.; Sgroppo, J.; Camiña, J.M.; Marchevsky, E.J.; Pellerano, R.G. Trace element concentrations in commercial gluten-free amaranth bars. J. Food Meas., 2015, 9, 416-424.
[http://dx.doi.org/10.1007/s11694-015-9250-7]
[25]
São Bernardo Carvalho, L.; Santos Silva, C.; Araújo Nóbrega, J.; Santos Boa Morte, E.; Muniz Batista Santos, D.C.; Andrade Korn, M.G. Microwave induced plasma optical emission spectrometry for multielement determination in instant soups. J. Food Compos. Anal., 2020, 86, 103376
[http://dx.doi.org/10.1016/j.jfca.2019.103376]
[26]
Lal, R. Soil erosion on Alfisols in Western Nigeria: IV. Nutrient element losses in runoff and eroded sediments. Geoderma, 1976, 16, 403-417.
[http://dx.doi.org/10.1016/0016-7061(76)90004-5]
[27]
Arvanitoyannis, I.S.; Vlachos, A. Maize authentication: quality control methods and multivariate analysis (chemometrics). Crit. Rev. Food Sci. Nutr., 2009, 49(6), 501-537.
[http://dx.doi.org/10.1080/10408390802068140] [PMID: 19484633]
[28]
Williams, P.; Geladi, P.; Fox, G.; Manley, M. Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis. Anal. Chim. Acta, 2009, 653(2), 121-130.
[http://dx.doi.org/10.1016/j.aca.2009.09.005] [PMID: 19808104]
[29]
Huang, M.; Tang, J.; Yang, B.; Zhu, Q. Classification of maize seeds of different years based on hyperspectral imaging and model updating. Comput. Electron. Agric., 2016, 122, 139-145.
[http://dx.doi.org/10.1016/j.compag.2016.01.029]
[30]
Zaldarriaga-Heredia, J.; Moldes, C.A.; Savio, M.; Azcarate, S.M.; Gil, R.A.; Camiña, J.M. Assessment of agricultural practices in maize crops (Zea mays) based on elemental profile and chemometrics analysis. Asian J. Crop Sci., 2019, 3(2), 1-9.
[31]
Garcia, W.J.; Blessin, C.W.; Inglett, G.E.; Carlson, R.O. Physical-chemical characteristics and heavy metal content of corn grown on sludge-treated strip-mine soil. J. Agric. Food Chem., 1974, 22(5), 810-815.
[http://dx.doi.org/10.1021/jf60195a018] [PMID: 4421055]
[32]
Zaldarriaga-Heredia, J.; Cina, M.; Savio, M.; Gil, R.A.; Camiña, J.M. Ultrasound-assisted pretreatment for multielement determination in maize seed samples by microwave plasma atomic emission spectrometry (MPAES). Microchem. J., 2016, 129, 78-82.
[http://dx.doi.org/10.1016/j.microc.2016.06.002]
[33]
Poudel, D.D.; Midmore, D.J.; West, L.T. Erosion and productivity of vegetable systems on sloping volcanic ash derived Philippine soils. Soil Sci. Soc. Am. J., 1999, 69, 1376-1376.
[http://dx.doi.org/10.2136/sssaj1999.6351366x]
[34]
Hamilton, A. Vegetation, climate and soil: Altitudinal relationships on the East Usambara Mountains, Tanzania. J. East Afr. Nat. Hist.,, 1998 , 87(1), 85-89.
[http://dx.doi.org/10.2982/0012-8317(1998)87[85:VCASAR]2.0.CO;2]
[35]
Maitima, J.M.; Mugatha, S.M.; Reid, R.S.; Gachimbi, L.N.; Majule, A.; Lyaruu, H.; Pomery, D.; Mathai, S. The linkages between landuse change, land degradation and biodiversity across East Africa. Afr. J. Environ. Sci. Technol., 2009, 3(10), 310-325.
[36]
Mathew, M.M.; Majule, A.E.; Marchant, R.; Sinclair, F. Variability of soil micronutrients concentration along the Slopes of Mount Kilimanjaro, Tanzania. Appl. Environ. Soil Sci.. , 2016, ID 9814316
[http://dx.doi.org/10.1155/2016/9814316]
[37]
Zhang, M.; Zhang, X.K.; Liang, W.J.; Jiang, Y.; Dai, G.H.; Wang, X.G.; Han, S.J. Distribution of soil organic carbon fractions along the altitudinal gradient in Changbai Mountain, China. Pedosphere, 2011, 21(5), 615-620.
[http://dx.doi.org/10.1016/S1002-0160(11)60163-X]
[38]
Yamamoto, F.; Kozlowski, T.T. Effect of flooding, tilting of stem, and ethrel application on growth, stem anatomy, and ethylene production of Acer platanoides seedlings. Scand. J. For. Res., 1987, 2, 141-156.
[http://dx.doi.org/10.1080/02827588709382453]
[39]
Plumlee, G. Environmental geology models of mineral deposits. SEG Newsletter, 1994, 16, 5-6.
[40]
Burt, R.; Wilson, M.A.; Keck, T.J.; Dougherty, B.D.; Strom, D.E.; Lindahl, J.A. Trace element speciation in selected smelter-contaminated soils in anaconda and deer lodge valley, Montana, USA. Adv. Environ. Res., 2003, 8, 51-67.
[http://dx.doi.org/10.1016/S1093-0191(02)00140-5]
[41]
Lavado, R.S.; Zubillaga, M.S.; Alvarez, R.; Taboada, M.A. Baseline levels of potentially toxic elements in pampas soils. Soil Sediment Contam., 2004, 13, 329-339.
[http://dx.doi.org/10.1080/10588330490500383]
[42]
González-Alejandre, M.; González-Cortés, J.C.; Carreón-Abud, Y.; Martínez-Trujillo, M. total chromium captured by maize (zea mays) plants is increased by phosphate and iron supplementation in the soil. Commun. Soil Sci. Plant, 2017, 49, 615-625.
[http://dx.doi.org/10.1080/00103624.2018.1432638]
[43]
Ley 24.051, decreto 831/93, anexo II. Ley sobre residuos peligrosos - Generación, manipulación, transporte y tratamiento. Argentina. ,
[44]
Trace Elements in Human nutrition and Health; , Geneva . 1996.
[45]
James, B. Chemical transformations of chromium in soils: Relevance to mobility, bioavailability and remediation. International Chromium Development Association. Chromium File, 2002, 8, 1-8.
[46]
Kabata-Pendias, A. Trace elements in soils and plants. Third edition ; CRC Press Book, CRC Press LLC: New York, USA . , 2001.
[47]
Hayat, S.; Khalique, G.; Irfan, M.; Wani, A.S.; Tripathi, B.N.; Ahmad, A. Physiological changes induced by chromium stress in plants: an overview. Protoplasma, 2012, 249(3), 599-611.
[http://dx.doi.org/10.1007/s00709-011-0331-0] [PMID: 22002742]
[48]
Ghosh, M.; Singh, S.P. A review on phytoremediation of heavy metals and utilization of its byproducts. Appl. Ecol. Environ. Res., 2005, 3, 1-18.
[http://dx.doi.org/10.15666/aeer/0301_001018]
[49]
Zayed, A.M.; Terry, N. Chromium in the environment: factors affecting biological remediation. Plant Soil, 2003, 249, 139-156.
[http://dx.doi.org/10.1023/A:1022504826342]
[50]
Barceló, J.; Poschenrieder, C.; Vazquez, M.D.; Gunse, B.; Vernet, J.P. Beneficial and toxic effects of chromium in plants: solution culture, pot and field studies. Stud. Environ. Sci., 1993, 55, 147-171.
[http://dx.doi.org/10.1016/S0166-1116(08)70290-5]
[51]
Maguire, M.E.; Cowan, J.A. Magnesium chemistry and biochemistry. Biometals, 2002, 15(3), 203-210.
[http://dx.doi.org/10.1023/A:1016058229972] [PMID: 12206387]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy