Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Multivariate Analysis Reveals Different Responses of Antioxidant Defense in Wheat Plants Exposed to Arsenic (As) and Cadmium (Cd)

Author(s): Carlos A. Moldes, Miguel A. Cantarelli , Jorgelina Z. Heredia and José M. Camiña *

Volume 16, Issue 8, 2020

Page: [1071 - 1078] Pages: 8

DOI: 10.2174/1573411016666200324115218

Price: $65

Abstract

Background: Multivariate analysis is a chemometric tool that has been little explored to determine physiological status under heavy metal stress. Nevertheless, PCA has an unexplored potential to determine the plant physiologic status and its modification under stress factors like heavy metals.

Objectives: This work aims to assess the physiological and biochemical effects and responses of wheat plants under the different exposition of As and Cd using multivariate models.

Material and Methods: Wheat plants growing in a greenhouse were exposed to 0, 10 and 50 mg kg-1 soil of As and 0, 10 and 33 50 mg kg-1 soil of Cd until growth stage 5. After 56 days, wheat leaves and roots were collected to determine dry weight, lipid peroxidation and the activity of three enzymes: catalase, ascorbate peroxidase and guaiacol peroxidase. These measures were considered as the variables of three performed multivariate models to determine physiological status.

Results: Through the interpretation of score plot and loading plot in combination, it was possible to determine that both As and Cd affect chlorophyll content and antioxidant response. However, a chlorophyll decrease and a lipid peroxidation increase were observed together with an inhibition of antioxidant response more accentuated in wheat plants exposed to As than those exposed to Cd.

Conclusion: Multivariate analysis allows us to determine the differences between the physiological behavior of both stressors, which turn this chemometric tools useful for the characterization of a physiological response.

Keywords: Antioxidant response, arsenic, cadmium, multivariate analysis, oxidative stress, wheat.

Graphical Abstract

[1]
Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett., 2010, 8, 199-216.
[http://dx.doi.org/10.1007/s10311-010-0297-8]
[2]
Liu, W.; Zhang, X.; Liang, L.; Chen, C.; Wei, S.; Zhou, Q. Phytochelatin and oxidative stress under heavy metal stress tolerance in plants.Reactive oxygen species and oxidative damage in plants under stress, , 1° ed.; Ed.; ; Springer International Publishing: Switzerland,, 2015, pp. 191-217.
[http://dx.doi.org/10.1007/978-3-319-20421-5_8]
[3]
Al Mahmud, J.; Borhannuddin Bhuyan, M.H.M.; Anee, T.I.; Nahar, K.; Fujita, M.; Hasanuzzaman, M. Hasanuzzaman, M. ; Reactive oxygen species metabolism and antioxidant defense in plants under metal/metalloid stress. In: Plant abiotic stress tolerance , 1° ed.; Ed ; Springer Nature: Switzerland, . , 2019, pp. 221-257.
[4]
Sytar, O.; Kumar, A.; Latowski, D.; Kuczynska, P.; Strzałka, K.; Prasad, M.N.V. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol. Plant., 2013, 35, 985-999.
[http://dx.doi.org/10.1007/s11738-012-1169-6]
[5]
Anjum, S.A.; Tanveer, M.; Hussain, S.; Ashraf, U.; Khan, I.; Wang, L. Alteration in growth, leaf gas exchange, and photosynthetic pigments of maize plants under combined cadmium and arsenic stress. Water Air Soil Pollut., 2017, 228, 13.
[http://dx.doi.org/10.1007/s11270-016-3187-2]
[6]
Mishra, S.; Alfeld, M.; Sobotka, R.; Andresen, E.; Falkenberg, G.; Küpper, H. Analysis of sublethal arsenic toxicity to Ceratophyllum demersum: subcellular distribution of arsenic and inhibition of chlorophyll biosynthesis. J. Exp. Bot., 2016, 67(15), 4639-4646.
[http://dx.doi.org/10.1093/jxb/erw238] [PMID: 27340233]
[7]
Gusman, G.S.; Oliveira, J.A.; Farnese, F.S.; Cambraia, J. Arsenate and arsenite: the toxic effects on photosynthesis and growth of lettuce plants. Acta Physiol. Plant., 2013, 35, 1201-1209.
[http://dx.doi.org/10.1007/s11738-012-1159-8]
[8]
Farooq, M.A.; Li, L.; Ali, B.; Gill, R.A.; Wang, J.; Ali, S.; Gill, M.B.; Zhou, W. Oxidative injury and antioxidant enzymes regulation in arsenic-exposed seedlings of four Brassica napus L. cultivars. Environ. Sci. Pollut. Res. Int., 2015, 22(14), 10699-10712.
[http://dx.doi.org/10.1007/s11356-015-4269-1] [PMID: 25752633]
[9]
Pospíšil, P. Production of reactive oxygen species by photosystem II as a response to light and temperature stress. Front. Plant Sci., 2016, 7, 1950.
[http://dx.doi.org/10.3389/fpls.2016.01950] [PMID: 28082998]
[10]
Chandrakar, V.; Naithani, S.C.; Keshavkant, S. Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: A review. Biologia, 2016, 71(4), 367-377.
[http://dx.doi.org/10.1515/biolog-2016-0052]
[11]
Yue, J.Y.; Wei, X.J.; Wang, H.Z. Cadmium tolerant and sensitive wheat lines: their differences in pollutant accumulation, cell damage, and autophagy. Biol. Plant., 2018, 62(2), 379-387.
[http://dx.doi.org/10.1007/s10535-018-0785-4]
[12]
Mittler, R. ROS are good. Trends Plant Sci., 2017, 22(1), 11-19.
[http://dx.doi.org/10.1016/j.tplants.2016.08.002] [PMID: 27666517]
[13]
Shanying, H.E.; Yang, X.; Zhenli, H.E.; Baligar, V.C. Morphological and physiological responses of plants to cadmium toxicity: a review. Pedosphere, 2017, 27(3), 421-438.
[http://dx.doi.org/10.1016/S1002-0160(17)60339-4]
[14]
Lavine, B. Workman, J. Chemometrics. Anal. Chem., 2008, 80(12), 4519-4531.
[http://dx.doi.org/10.1021/ac800728t] [PMID: 18484744]
[15]
Dago, À.; González, I.; Ariño, C.; Díaz-Cruz, J.M.; Esteban, M. Chemometrics applied to the analysis of induced phytochelatins in Hordeum vulgare plants stressed with various toxic non-essential metals and metalloids. Talanta, 2014, 118, 201-209.
[http://dx.doi.org/10.1016/j.talanta.2013.09.058] [PMID: 24274289]
[16]
Sinha, S.; Basant, A.; Malik, A.; Singh, K.P. Iron-induced oxidative stress in a macrophyte: A chemometric approach. Ecotoxicol. Environ. Saf., 2009, 72(2), 585-595.
[http://dx.doi.org/10.1016/j.ecoenv.2008.04.017] [PMID: 18706694]
[17]
Moldes, C.A.; Fontão de Lima Filho, O.; Merini, L.J.; Tsai, S.M.; Camiña, J.M. Occurrence of powdery mildew disease in wheat fertilized with increasing silicon doses: A chemometric analysis of antioxidant response. Acta Physiol. Plant., 2016, 38, 206.
[http://dx.doi.org/10.1007/s11738-016-2217-4]
[18]
Alberto Moldes, C.; Fontão de Lima Filho, O.; Manuel Camiña, J.; Gabriela Kiriachek, S.; Lia Molas, M.; Mui Tsai, S. Assessment of the effect of silicon on antioxidant enzymes in cotton plants by multivariate analysis. J. Agric. Food Chem., 2013, 61(47), 11243-11249.
[http://dx.doi.org/10.1021/jf4039088] [PMID: 24188169]
[19]
Shi, G.L.; Zhu, S.; Bai, S.N.; Xia, Y.; Lou, L.Q.; Cai, Q.S. The transportation and accumulation of arsenic, cadmium, and phosphorus in 12 wheat cultivars and their relationships with each other. J. Hazard. Mater., 2015, 299, 94-102.
[http://dx.doi.org/10.1016/j.jhazmat.2015.06.009] [PMID: 26094242]
[20]
Li, C.X.; Feng, S.L.; Shao, Y.; Jiang, L.N.; Lu, X.Y.; Hou, X.L. Effects of arsenic on seed germination and physiological activities of wheat seedlings. J. Environ. Sci. (China), 2007, 19(6), 725-732.
[http://dx.doi.org/10.1016/S1001-0742(07)60121-1] [PMID: 17969647]
[21]
Lin, R.; Wang, X.; Luo, Y.; Du, W.; Guo, H.; Yin, D. Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere, 2007, 69(1), 89-98.
[http://dx.doi.org/10.1016/j.chemosphere.2007.04.041] [PMID: 17568654]
[22]
Praveen, A.; Mehrotra, S.; Singh, N. Mixed plantation of wheat and accumulators in arsenic contaminated plots: A novel way to reduce the uptake of arsenic in wheat and load on antioxidative defense of plant. Ecotoxicol. Environ. Saf., 2019, 1, 109462
[23]
Guo, J.; Qin, S.; Rengel, Z.; Gao, W.; Nie, Z.; Liu, H.; Li, C.; Zhao, P. Cadmium stress increases antioxidant enzyme activities and decreases endogenous hormone concentrations more in Cd-tolerant than Cd-sensitive wheat varieties. Ecotoxicol. Environ. Saf., 2019, 172, 380-387.
[http://dx.doi.org/10.1016/j.ecoenv.2019.01.069] [PMID: 30731269]
[24]
Moldes, C.A.; Oliveira Medici, L.; Silva Abrahao, O.; Tsai, S.M.; Antunes Azevedo, R. Biochemical responses of glyphosate resistant and susceptible soybean plants exposed to glyphosate. Acta Physiol. Plant., 2008, 30, 469-479.
[http://dx.doi.org/10.1007/s11738-008-0144-8]
[25]
Gomes-Junior, R.A.; Gratao, P.L.; Gaziola, S.A.; Mazzafera, P.; Lea, P.J.; Azevedo, R.A. Selenium-induced oxidative stress in coffee cell suspension cultures. Funct. Plant Biol., 2007, 34, 449-456.
[http://dx.doi.org/10.1071/FP07010]
[26]
Zámocký, M.; Hofbauer, S.; Schaffner, I.; Gasselhuber, B.; Nicolussi, A.; Soudi, M.; Pirker, K.F.; Furtmüller, P.G.; Obinger, C. Independent evolution of four heme peroxidase superfamilies. Arch. Biochem. Biophys., 2015, 574, 108-119.
[http://dx.doi.org/10.1016/j.abb.2014.12.025] [PMID: 25575902]
[27]
Brzezowski, P.; Richter, A.S.; Grimm, B. Regulation and function of tetrapyrrole biosynthesis in plants and algae. Biochim. Biophys. Acta, 2015, 1847(9), 968-985.
[http://dx.doi.org/10.1016/j.bbabio.2015.05.007] [PMID: 25979235]
[28]
Noriega, G.O.; Balestrasse, K.B.; Batlle, A.; Tomaro, M.L. Cadmium induced oxidative stress in soybean plants also by the accumulation of δ-aminolevulinic acid. Biometals, 2007, 20(6), 841-851.
[http://dx.doi.org/10.1007/s10534-006-9077-0] [PMID: 17216352]
[29]
Verbruggen, N.; Hermans, C.; Schat, H. Mechanisms to cope with arsenic or cadmium excess in plants. Curr. Opin. Plant Biol., 2009, 12(3), 364-372.
[http://dx.doi.org/10.1016/j.pbi.2009.05.001] [PMID: 19501016]
[30]
Garg, N.; Singla, P.; Bhandari, P. Metal uptake, oxidative metabolism, and mycorrhization in pigeonpea and pea under arsenic and cadmium stress. Turk. J. Agric. For., 2015, 39, 234-250.
[http://dx.doi.org/10.3906/tar-1406-121]
[31]
Anjum, N.A.; Hasanuzzaman, M.; Hossain, M.A.; Thangavel, P.; Roychoudhury, A.; Gill, S.S.; Rodrigo, M.A.M.; Adam, V.; Fujita, M.; Kizek, R.; Duarte, A.C.; Pereira, E.; Ahmad, I. Jacks of metal/metalloid chelation trade in plants-an overview. Front. Plant Sci., 2015, 6, 192.
[http://dx.doi.org/10.3389/fpls.2015.00192] [PMID: 25883598]
[32]
Deng, F.; Yu, M.; Martinoia, E.; Song, W.Y. Ideal cereals with lower arsenic and cadmium by accurately enhancing vacuolar sequestration capacity. Front. Genet., 2019, 10, 322.
[http://dx.doi.org/10.3389/fgene.2019.00322] [PMID: 31024630]
[33]
Vázquez, S.; Goldsbrough, P.; Carpena, R.O. Comparative analysis of the contribution of phytochelatins to cadmium and arsenic tolerance in soybean and white lupin. Plant Physiol. Biochem., 2009, 47(1), 63-67.
[http://dx.doi.org/10.1016/j.plaphy.2008.09.010] [PMID: 19006673]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy