Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Decoding Novel Mechanisms and Emerging Therapeutic Strategies in Breast Cancer Resistance

Author(s): Sadat Shafi, Sana Khan, Farazul Hoda, Faizana Fayaz, Archu Singh, Mohammad Ahmed Khan*, Ruhi Ali, Faheem Hyder Pottoo, Sana Tariq and Abul Kalam Najmi

Volume 21, Issue 3, 2020

Page: [199 - 210] Pages: 12

DOI: 10.2174/1389200221666200303124946

Price: $65

Abstract

Breast cancer (BC), an intricate and highly heterogeneous disorder, has presently afflicted 2.09 million females globally. Chemoresistance remains a paramount challenge in the treatment of BC. Owing to its assorted nature, the chemoresistant mechanisms of BC still need intensive research. Accumulating evidence suggests that abnormalities related to the biogenesis of cancer stem cells (CSCs) and microRNAs (miRNAs) are associated with BC progression and chemoresistance. The presently available interventions are inadequate to target chemoresistance, therefore more efficient alternatives are urgently needed to improvise existing therapeutic regimens. A myriad of strategies is being explored, such as immunotherapy, gene therapy, and combination treatment to surmount chemoresistance. Additionally, nanoparticles as chemotherapeutic carriers put forward the options to encapsulate numerous drugs, alone as well as in combination for cancer theranostics. This review summarizes the chemoresistance mechanisms of miRNAs and CSCs as well as the most recently documented therapeutic approaches for the treatment of chemoresistance in BC. By unraveling the underpinning mechanism of BC chemoresistance, researchers could possibly develop more efficient treatment strategies towards BC.

Keywords: Breast cancer, chemoresistance, cancer stem cells, nanoparticles, immunotherapy, microRNAs.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[3]
Hwang, K-T.; Kim, E-K.; Jung, S.H.; Lee, E.S.; Kim, S.I.; Lee, S.; Park, H.K.; Kim, J.; Oh, S.; Kim, Y.A. Tamoxifen therapy improves overall survival in luminal A subtype of ductal carcinoma in situ: a study based on nationwide Korean Breast Cancer Registry database. Breast Cancer Res. Treat., 2018, 169(2), 311-322.
[http://dx.doi.org/10.1007/s10549-018-4681-6] [PMID: 29383628]
[4]
Moiseenko, F.; Volkov, N.; Bogdanov, A.; Dubina, M.; Moiseyenko, V. Resistance mechanisms to drug therapy in breast cancer and other solid tumors: An opinion. F1000 Res., 2017, 6, 288.
[http://dx.doi.org/10.12688/f1000research.10992.1] [PMID: 28751966]
[5]
Nikolaou, M.; Pavlopoulou, A.; Georgakilas, A.G.; Kyrodimos, E. The challenge of drug resistance in cancer treatment: a current overview. Clin. Exp. Metastasis, 2018, 35(4), 309-318.
[http://dx.doi.org/10.1007/s10585-018-9903-0] [PMID: 29799080]
[6]
Meijer, C.; Mulder, N.H.; Timmer-Bosscha, H.; Sluiter, W.J.; Meersma, G.J.; de Vries, E.G. Relationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compounds. Cancer Res., 1992, 52(24), 6885-6889.
[PMID: 1458477]
[7]
Mehta, K.; Fok, J.Y. Targeting Transglutaminase-2 to Overcome Chemoresistance in Cancer Cells. In: Drug Resistance in Cancer Cells; Siddik, Z.H.; Mehta, K., Eds.; Springer Nature: Switzerland, 2009, pp. 95-114.
[http://dx.doi.org/10.1007/978-0-387-89445-4_5]
[8]
Michael, M.; Doherty, M.M. Tumoral drug metabolism: overview and its implications for cancer therapy. J. Clin. Oncol., 2005, 23(1), 205-229.
[http://dx.doi.org/10.1200/JCO.2005.02.120] [PMID: 15625375]
[9]
Plastaras, J.P.; Guengerich, F.P.; Nebert, D.W.; Marnett, L.J. Xenobiotic-metabolizing cytochromes P450 convert prostaglandin endoperoxide to hydroxyheptadecatrienoic acid and the mutagen, malondialdehyde. J. Biol. Chem., 2000, 275(16), 11784-11790.
[http://dx.doi.org/10.1074/jbc.275.16.11784] [PMID: 10766802]
[10]
Shen, H.; He, M.M.; Liu, H.; Wrighton, S.A.; Wang, L.; Guo, B.; Li, C. Comparative metabolic capabilities and inhibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17. Drug Metab. Dispos., 2007, 35(8), 1292-1300.
[http://dx.doi.org/10.1124/dmd.107.015354] [PMID: 17470523]
[11]
Rodriguez-Antona, C.; Ingelman-Sundberg, M. Cytochrome P450 pharmacogenetics and cancer. Oncogene, 2006, 25(11), 1679-1691.
[http://dx.doi.org/10.1038/sj.onc.1209377] [PMID: 16550168]
[12]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: an overview. Cancers (Basel), 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[13]
Heerboth, S.; Housman, G.; Leary, M.; Longacre, M.; Byler, S.; Lapinska, K.; Willbanks, A.; Sarkar, S. EMT and tumor metastasis. Clin. Transl. Med., 2015, 4(1), 6.
[http://dx.doi.org/10.1186/s40169-015-0048-3] [PMID: 25852822]
[14]
Fuchs, B.C.; Fujii, T.; Dorfman, J.D.; Goodwin, J.M.; Zhu, A.X.; Lanuti, M.; Tanabe, K.K. Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res., 2008, 68(7), 2391-2399.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2460] [PMID: 18381447]
[15]
Yao, Z.; Fenoglio, S.; Gao, D.C.; Camiolo, M.; Stiles, B.; Lindsted, T.; Schlederer, M.; Johns, C.; Altorki, N.; Mittal, V.; Kenner, L.; Sordella, R. TGF-beta IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc. Natl. Acad. Sci. USA, 2010, 107(35), 15535-15540.
[http://dx.doi.org/10.1073/pnas.1009472107] [PMID: 20713723]
[16]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[17]
Aktas, B.; Tewes, M.; Fehm, T.; Hauch, S.; Kimmig, R.; Kasimir-Bauer, S. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res., 2009, 11(4), R46.
[http://dx.doi.org/10.1186/bcr2333] [PMID: 19589136]
[18]
Haslehurst, A.M.; Koti, M.; Dharsee, M.; Nuin, P.; Evans, K.; Geraci, J.; Childs, T.; Chen, J.; Li, J.; Weberpals, J.; Davey, S.; Squire, J.; Park, P.C.; Feilotter, H. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer, 2012, 12, 91.
[http://dx.doi.org/10.1186/1471-2407-12-91] [PMID: 22429801]
[19]
Deng, J.J.; Zhang, W.; Xu, X.M.; Zhang, F.; Tao, W.P.; Ye, J.J.; Ge, W. Twist mediates an aggressive phenotype in human colorectal cancer cells. Int. J. Oncol., 2016, 48(3), 1117-1124.
[http://dx.doi.org/10.3892/ijo.2016.3342] [PMID: 26782761]
[20]
Thomas, H.; Coley, H.M. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Contr., 2003, 10(2), 159-165.
[http://dx.doi.org/10.1177/107327480301000207] [PMID: 12712010]
[21]
Pao, W.; Miller, V.A.; Politi, K.A.; Riely, G.J.; Somwar, R.; Zakowski, M.F.; Kris, M.G.; Varmus, H. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med., 2005, 2(3)e73
[http://dx.doi.org/10.1371/journal.pmed.0020073] [PMID: 15737014]
[22]
Mehta, K.; Siddik, Z.H. Drug Resistance in Cancer Cells; Springer: USA, 2009.
[23]
Martin, L.P.; Hamilton, T.C.; Schilder, R.J. Platinum resistance: the role of DNA repair pathways. Clin. Cancer Res., 2008, 14(5), 1291-1295.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-2238] [PMID: 18316546]
[24]
Maier, P.; Spier, I.; Laufs, S.; Veldwijk, M.R.; Fruehauf, S.; Wenz, F.; Zeller, W.J. Chemoprotection of human hematopoietic stem cells by simultaneous lentiviral overexpression of multidrug resistance 1 and O(6)-methylguanine-DNA methyltransferase(P140K). Gene Ther., 2010, 17(3), 389-399.
[http://dx.doi.org/10.1038/gt.2009.133] [PMID: 19865182]
[25]
Sethi, T.; Rintoul, R.C.; Moore, S.M.; MacKinnon, A.C.; Salter, D.; Choo, C.; Chilvers, E.R.; Dransfield, I.; Donnelly, S.C.; Strieter, R.; Haslett, C. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat. Med., 1999, 5(6), 662-668.
[http://dx.doi.org/10.1038/9511] [PMID: 10371505]
[26]
Byler, S.; Goldgar, S.; Heerboth, S.; Leary, M.; Housman, G.; Moulton, K.; Sarkar, S. Genetic and epigenetic aspects of breast cancer progression and therapy. Anticancer Res., 2014, 34(3), 1071-1077.
[27]
Byler, S.; Sarkar, S. Do epigenetic drug treatments hold the key to killing cancer progenitor cells? Epigenomics, 2014, 6(2), 161-165.
[http://dx.doi.org/10.2217/epi.14.4] [PMID: 24811783]
[28]
Ji, X.; Lu, Y.; Tian, H.; Meng, X.; Wei, M.; Cho, W.C. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed. Pharmacother., 2019, 114108800
[http://dx.doi.org/10.1016/j.biopha.2019.108800] [PMID: 30921705]
[29]
Magee, P.; Shi, L.; Garofalo, M. Role of microRNAs in chemoresistance. Ann. Transl. Med., 2015, 3(21), 332.
[http://dx.doi.org/10.3978/j.issn.2305-5839.2015.11.32] [PMID: 26734642]
[30]
Phi, L.T.H.; Sari, I.N.; Yang, Y-G.; Lee, S-H.; Jun, N.; Kim, K.S.; Lee, Y.K.; Kwon, H.Y. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int., 2018, 20185416923
[http://dx.doi.org/10.1155/2018/5416923] [PMID: 29681949]
[31]
Visvader, J.E.; Lindeman, G.J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer, 2008, 8(10), 755-768.
[http://dx.doi.org/10.1038/nrc2499] [PMID: 18784658]
[32]
Bousquet, G.; El Bouchtaoui, M.; Sophie, T.; Leboeuf, C.; de Bazelaire, C.; Ratajczak, P.; Giacchetti, S.; de Roquancourt, A.; Bertheau, P.; Verneuil, L.; Feugeas, J.P.; Espié, M.; Janin, A. Targeting autophagic cancer stem-cells to reverse chemoresistance in human triple negative breast cancer. Oncotarget, 2017, 8(21), 35205-35221.
[http://dx.doi.org/10.18632/oncotarget.16925] [PMID: 28445132]
[33]
Ayob, A.Z.; Ramasamy, T.S. Cancer stem cells as key drivers of tumour progression. J. Biomed. Sci., 2018, 25(1), 20.
[http://dx.doi.org/10.1186/s12929-018-0426-4] [PMID: 29506506]
[34]
Varna, M.; Gapihan, G.; Feugeas, J-P.; Ratajczak, P.; Tan, S.; Ferreira, I.; Leboeuf, C.; Setterblad, N.; Duval, A.; Verine, J.; Germain, S.; Mongiat-Artus, P.; Janin, A.; Bousquet, G. Stem cells increase in numbers in perinecrotic areas in human renal cancer. Clin. Cancer Res., 2015, 21(4), 916-924.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0666] [PMID: 25501128]
[35]
Lathia, J.D.; Heddleston, J.M.; Venere, M.; Rich, J.N. Deadly teamwork: neural cancer stem cells and the tumor microenvironment. Cell Stem Cell, 2011, 8(5), 482-485.
[http://dx.doi.org/10.1016/j.stem.2011.04.013] [PMID: 21549324]
[36]
Charles, N.; Ozawa, T.; Squatrito, M.; Bleau, A-M.; Brennan, C.W.; Hambardzumyan, D.; Holland, E.C. Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell, 2010, 6(2), 141-152.
[http://dx.doi.org/10.1016/j.stem.2010.01.001] [PMID: 20144787]
[37]
Schito, L.; Semenza, G.L. Hypoxia-inducible factors: master regulators of cancer progression. Trends Cancer, 2016, 2(12), 758-770.
[http://dx.doi.org/10.1016/j.trecan.2016.10.016] [PMID: 28741521]
[38]
Moen, I.; Øyan, A.M.; Kalland, K-H.; Tronstad, K.J.; Akslen, L.A.; Chekenya, M.; Sakariassen, P.Ø.; Reed, R.K.; Stuhr, L.E.B. Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat adenocarcinoma model. PLoS One, 2009, 4(7)e6381
[http://dx.doi.org/10.1371/journal.pone.0006381] [PMID: 19636430]
[39]
Bleau, A-M.; Hambardzumyan, D.; Ozawa, T.; Fomchenko, E.I.; Huse, J.T.; Brennan, C.W.; Holland, E.C. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell, 2009, 4(3), 226-235.
[http://dx.doi.org/10.1016/j.stem.2009.01.007] [PMID: 19265662]
[40]
Begicevic, R-R.; Falasca, M. ABC Transporters in cancer stem cells: beyond chemoresistance. Int. J. Mol. Sci., 2017, 18(11)E2362
[http://dx.doi.org/10.3390/ijms18112362] [PMID: 29117122]
[41]
Kathawala, R.J.; Gupta, P.; Ashby, C.R., Jr; Chen, Z-S. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist. Updat., 2015, 18, 1-17.
[http://dx.doi.org/10.1016/j.drup.2014.11.002] [PMID: 25554624]
[42]
Huang, L.; Hu, C.; DI Benedetto, M.; Varin, R.; Liu, J.; Jin, J.; Wang, L.; Vannier, J.P.; Janin, A.; Lu, H.; Li, H. Cross-drug resistance to sunitinib induced by doxorubicin in endothelial cells. Oncol. Lett., 2015, 9(3), 1287-1292.
[http://dx.doi.org/10.3892/ol.2014.2819] [PMID: 25663899]
[43]
Huang, L.; Perrault, C.; Coelho-Martins, J.; Hu, C.; Dulong, C.; Varna, M.; Liu, J.; Jin, J.; Soria, C.; Cazin, L.; Janin, A.; Li, H.; Varin, R.; Lu, H. Induction of acquired drug resistance in endothelial cells and its involvement in anticancer therapy. J. Hematol. Oncol., 2013, 6(1), 49.
[http://dx.doi.org/10.1186/1756-8722-6-49] [PMID: 23837843]
[44]
Tanei, T.; Morimoto, K.; Shimazu, K.; Kim, S.J.; Tanji, Y.; Taguchi, T.; Tamaki, Y.; Noguchi, S. Clinical cancer research. Clin. Cancer Res., 2009, 11(3), 1154-1159.
[http://dx.doi.org/10.1158/1078-0432.ccr-08-1479] [PMID: 15958606]
[45]
Lim, Y.C.; Roberts, T.L.; Day, B.W.; Harding, A.; Kozlov, S.; Kijas, A.W.; Ensbey, K.S.; Walker, D.G.; Lavin, M.F. A role for homologous recombination and abnormal cell-cycle progression in radioresistance of glioma-initiating cells. Mol. Cancer Ther., 2012, 11(9), 1863-1872.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-1044] [PMID: 22772423]
[46]
Srivastava, A.K.; Han, C.; Zhao, R.; Cui, T.; Dai, Y.; Mao, C.; Zhao, W.; Zhang, X.; Yu, J.; Wang, Q-E. Enhanced expression of DNA polymerase eta contributes to cisplatin resistance of ovarian cancer stem cells. Proc. Natl. Acad. Sci. USA, 2015, 112(14), 4411-4416.
[http://dx.doi.org/10.1073/pnas.1421365112] [PMID: 25831546]
[47]
Gelmon, K.A.; Tischkowitz, M.; Mackay, H.; Swenerton, K.; Robidoux, A.; Tonkin, K.; Hirte, H.; Huntsman, D.; Clemons, M.; Gilks, B.; Yerushalmi, R.; Macpherson, E.; Carmichael, J.; Oza, A. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol., 2011, 12(9), 852-861.
[http://dx.doi.org/10.1016/S1470-2045(11)70214-5] [PMID: 21862407]
[48]
Balmaña, J.; Tung, N.M.; Isakoff, S.J.; Graña, B.; Ryan, P.D.; Saura, C.; Lowe, E.S.; Frewer, P.; Winer, E.; Baselga, J.; Garber, J.E. Phase I trial of olaparib in combination with cisplatin for the treatment of patients with advanced breast, ovarian and other solid tumors. Ann. Oncol., 2014, 25(8), 1656-1663.
[http://dx.doi.org/10.1093/annonc/mdu187] [PMID: 24827126]
[49]
Takahashi, R.U.; Miyazaki, H.; Ochiya, T. The roles of microRNAs in breast cancer. Cancers (Basel), 2015, 7(2), 598-616.
[http://dx.doi.org/10.3390/cancers7020598] [PMID: 25860815]
[50]
Wang, Y-W.; Zhang, W.; Ma, R. Bioinformatic identification of chemoresistance-associated microRNAs in breast cancer based on microarray data. Oncol. Rep., 2018, 39(3), 1003-1010.
[http://dx.doi.org/10.3892/or.2018.6205] [PMID: 29328395]
[51]
Gottesman, M.M.; Ling, V. The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett., 2006, 580(4), 998-1009.
[http://dx.doi.org/10.1016/j.febslet.2005.12.060] [PMID: 16405967]
[52]
Kovalchuk, O.; Filkowski, J.; Meservy, J.; Ilnytskyy, Y.; Tryndyak, V.P.; Chekhun, V.F.; Pogribny, I.P. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol. Cancer Ther., 2008, 7(7), 2152-2159.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0021] [PMID: 18645025]
[53]
König, J.; Nies, A.T.; Cui, Y.; Leier, I.; Keppler, D. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim. Biophys. Acta, 1999, 1461(2), 377-394.
[http://dx.doi.org/10.1016/S0005-2736(99)00169-8] [PMID: 10581368]
[54]
Siddik, Z.H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene, 2003, 22(47), 7265-7279.
[http://dx.doi.org/10.1038/sj.onc.1206933] [PMID: 14576837]
[55]
Pogribny, I.P.; Filkowski, J.N.; Tryndyak, V.P.; Golubov, A.; Shpyleva, S.I.; Kovalchuk, O. Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int. J. Cancer, 2010, 127(8), 1785-1794.
[http://dx.doi.org/10.1002/ijc.25191] [PMID: 20099276]
[56]
Liang, Z.; Wu, H.; Xia, J.; Li, Y.; Zhang, Y.; Huang, K.; Wagar, N.; Yoon, Y.; Cho, H.T.; Scala, S.; Shim, H. Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem. Pharmacol., 2010, 79(6), 817-824.
[http://dx.doi.org/10.1016/j.bcp.2009.10.017] [PMID: 19883630]
[57]
Ingelman-Sundberg, M.; Rodriguez-Antona, C. Pharmacogenetics of drug-metabolizing enzymes: implications for a safer and more effective drug therapy. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2005, 360(1460), 1563-1570.
[http://dx.doi.org/10.1098/rstb.2005.1685] [PMID: 16096104]
[58]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[59]
Winograd-Katz, S.E.; Levitzki, A. Cisplatin induces PKB/Akt activation and p38(MAPK) phosphorylation of the EGF receptor. Oncogene, 2006, 25(56), 7381-7390.
[http://dx.doi.org/10.1038/sj.onc.1209737] [PMID: 16785992]
[60]
Bar, N.; Dikstein, R. miR-22 forms a regulatory loop in PTEN/AKT pathway and modulates signaling kinetics. PLoS One, 2010, 5(5)e10859
[http://dx.doi.org/10.1371/journal.pone.0010859] [PMID: 20523723]
[61]
Garofalo, M.; Di Leva, G.; Romano, G.; Nuovo, G.; Suh, S-S.; Ngankeu, A.; Taccioli, C.; Pichiorri, F.; Alder, H.; Secchiero, P.; Gasparini, P.; Gonelli, A.; Costinean, S.; Acunzo, M.; Condorelli, G.; Croce, C.M. miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell, 2009, 16(6), 498-509.
[http://dx.doi.org/10.1016/j.ccr.2009.10.014] [PMID: 19962668]
[62]
Greene, S.B.; Gunaratne, P.H.; Hammond, S.M.; Rosen, J.M. A putative role for microRNA-205 in mammary epithelial cell progenitors. J. Cell Sci., 2010, 123(Pt 4), 606-618.
[http://dx.doi.org/10.1242/jcs.056812] [PMID: 20103531]
[63]
Neal, C.L.; Yao, J.; Yang, W.; Zhou, X.; Nguyen, N.T.; Lu, J.; Danes, C.G.; Guo, H.; Lan, K-H.; Ensor, J.; Hittelman, W.; Hung, M.C.; Yu, D. 14-3-3zeta overexpression defines high risk for breast cancer recurrence and promotes cancer cell survival. Cancer Res., 2009, 69(8), 3425-3432.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2765] [PMID: 19318578]
[64]
Niemantsverdriet, M.; Wagner, K.; Visser, M.; Backendorf, C. Cellular functions of 14-3-3 ζ in apoptosis and cell adhesion emphasize its oncogenic character. Oncogene, 2008, 27(9), 1315-1319.
[http://dx.doi.org/10.1038/sj.onc.1210742] [PMID: 17704798]
[65]
Cimmino, A.; Calin, G.A.; Fabbri, M.; Iorio, M.V.; Ferracin, M.; Shimizu, M.; Wojcik, S.E.; Aqeilan, R.I.; Zupo, S.; Dono, M.; Rassenti, L.; Alder, H.; Volinia, S.; Liu, C.G.; Kipps, T.J.; Negrini, M.; Croce, C.M. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA, 2005, 102(39), 13944-13949.
[http://dx.doi.org/10.1073/pnas.0506654102] [PMID: 16166262]
[66]
Ji, Q.; Hao, X.; Meng, Y.; Zhang, M.; Desano, J.; Fan, D.; Xu, L. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer, 2008, 8(1), 266.
[http://dx.doi.org/10.1186/1471-2407-8-266] [PMID: 18803879]
[67]
Zhu, W.; Shan, X.; Wang, T.; Shu, Y.; Liu, P. miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int. J. Cancer, 2010, 127(11), 2520-2529.
[http://dx.doi.org/10.1002/ijc.25260] [PMID: 20162574]
[68]
Zhou, M.; Liu, Z.; Zhao, Y.; Ding, Y.; Liu, H.; Xi, Y.; Xiong, W.; Li, G.; Lu, J.; Fodstad, O.; Riker, A.I.; Tan, M. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J. Biol. Chem., 2010, 285(28), 21496-21507.
[http://dx.doi.org/10.1074/jbc.M109.083337] [PMID: 20460378]
[69]
Cataldo, A.; Cheung, D.G.; Balsari, A.; Tagliabue, E.; Coppola, V.; Iorio, M.V.; Palmieri, D.; Croce, C.M. miR-302b enhances breast cancer cell sensitivity to cisplatin by regulating E2F1 and the cellular DNA damage response. Oncotarget, 2016, 7(1), 786-797.
[http://dx.doi.org/10.18632/oncotarget.6381] [PMID: 26623722]
[70]
Rao, X.; Di Leva, G.; Li, M.; Fang, F.; Devlin, C.; Hartman-Frey, C.; Burow, M.E.; Ivan, M.; Croce, C.M.; Nephew, K.P. MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene, 2011, 30(9), 1082-1097.
[http://dx.doi.org/10.1038/onc.2010.487] [PMID: 21057537]
[71]
Lü, M.; Ding, K.; Zhang, G.; Yin, M.; Yao, G.; Tian, H.; Lian, J.; Liu, L.; Liang, M.; Zhu, T.; Sun, F. MicroRNA-320a sensitizes tamoxifen-resistant breast cancer cells to tamoxifen by targeting ARPP-19 and ERRγ. Sci. Rep., 2015, 5, 8735.
[http://dx.doi.org/10.1038/srep08735] [PMID: 25736597]
[72]
Venturutti, L.; Cordo Russo, R.I.; Rivas, M.A.; Mercogliano, M.F.; Izzo, F.; Oakley, R.H.; Pereyra, M.G.; De Martino, M.; Proietti, C.J.; Yankilevich, P.; Roa, J.C.; Guzmán, P.; Cortese, E.; Allemand, D.H.; Huang, T.H.; Charreau, E.H.; Cidlowski, J.A.; Schillaci, R.; Elizalde, P.V. MiR-16 mediates trastuzumab and lapatinib response in ErbB-2-positive breast and gastric cancer via its novel targets CCNJ and FUBP1. Oncogene, 2016, 35(48), 6189-6202.
[http://dx.doi.org/10.1038/onc.2016.151] [PMID: 27157613]
[73]
Chu, J.; Zhu, Y.; Liu, Y.; Sun, L.; Lv, X.; Wu, Y.; Hu, P.; Su, F.; Gong, C.; Song, E.; Liu, B.; Liu, Q. E2F7 overexpression leads to tamoxifen resistance in breast cancer cells by competing with E2F1 at miR-15a/16 promoter. Oncotarget, 2015, 6(31), 31944-31957.
[http://dx.doi.org/10.18632/oncotarget.5128] [PMID: 26397135]
[74]
Cui, J.; Yang, Y.; Li, H.; Leng, Y.; Qian, K.; Huang, Q.; Zhang, C.; Lu, Z.; Chen, J.; Sun, T.; Wu, R.; Sun, Y.; Song, H.; Wei, X.; Jing, P.; Yang, X.; Zhang, C. MiR-873 regulates ERα transcriptional activity and tamoxifen resistance via targeting CDK3 in breast cancer cells. Oncogene, 2015, 34(30), 3895-3907.
[http://dx.doi.org/10.1038/onc.2014.430] [PMID: 25531331]
[75]
Reardon, J.T.; Vaisman, A.; Chaney, S.G.; Sancar, A. Efficient nucleotide excision repair of cisplatin, oxaliplatin, and Bis-aceto-ammine-dichloro-cyclohexylamine-platinum(IV) (JM216) platinum intrastrand DNA diadducts. Cancer Res., 1999, 59(16), 3968-3971.
[PMID: 10463593]
[76]
Xin, F.; Li, M.; Balch, C.; Thomson, M.; Fan, M.; Liu, Y.; Hammond, S.M.; Kim, S.; Nephew, K.P. Computational analysis of microRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance. Bioinformatics, 2009, 25(4), 430-434.
[http://dx.doi.org/10.1093/bioinformatics/btn646] [PMID: 19091772]
[77]
Sachdeva, M.; Wu, H.; Ru, P.; Hwang, L.; Trieu, V.; Mo, Y.Y. MicroRNA-101-mediated Akt activation and estrogen-independent growth. Oncogene, 2011, 30(7), 822-831.
[http://dx.doi.org/10.1038/onc.2010.463] [PMID: 20956939]
[78]
Kondo, N.; Toyama, T.; Sugiura, H.; Fujii, Y.; Yamashita, H. miR-206 Expression is down-regulated in estrogen receptor α-positive human breast cancer. Cancer Res., 2008, 68(13), 5004-5008.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0180] [PMID: 18593897]
[79]
Zhao, J-J.; Lin, J.; Yang, H.; Kong, W.; He, L.; Ma, X.; Coppola, D.; Cheng, J.Q. MicroRNA-221/222 negatively regulates estrogen receptor α and is associated with tamoxifen resistance in breast cancer. J. Biol. Chem., 2016, 291(43), 22859.
[http://dx.doi.org/10.1074/jbc.A116.806041] [PMID: 27825097]
[80]
Hossain, A.; Kuo, M.T.; Saunders, G.F. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol. Cell. Biol., 2006, 26(21), 8191-8201.
[http://dx.doi.org/10.1128/MCB.00242-06] [PMID: 16940181]
[81]
Murphy, C.G.; Modi, S. HER2 Breast Cancer Therapies: A Review. In: Biologics: Targets and Therapy; DOVE Medical Press Ltd., 2009, pp. 289-301.http://dx.doi.org/
[82]
Shang, Y.; Cai, X.; Fan, D. Roles of epithelial-mesenchymal transition in cancer drug resistance. Curr. Cancer Drug Targets, 2013, 13(9), 915-929.
[http://dx.doi.org/10.2174/15680096113136660097] [PMID: 24168191]
[83]
Zhou, Y.; Hu, Y.; Yang, M.; Jat, P.; Li, K.; Lombardo, Y.; Xiong, D.; Coombes, R.C.; Raguz, S.; Yagüe, E. The miR-106b~25 cluster promotes bypass of doxorubicin-induced senescence and increase in motility and invasion by targeting the E-cadherin transcriptional activator EP300. Cell Death Differ., 2014, 21(3), 462-474.
[http://dx.doi.org/10.1038/cdd.2013.167] [PMID: 24270410]
[84]
Roscigno, G.; Puoti, I.; Giordano, I.; Donnarumma, E.; Russo, V.; Affinito, A.; Adamo, A.; Quintavalle, C.; Todaro, M.; Vivanco, M.D.; Condorelli, G. MiR-24 induces chemotherapy resistance and hypoxic advantage in breast cancer. Oncotarget, 2017, 8(12), 19507-19521.
[http://dx.doi.org/10.18632/oncotarget.14470] [PMID: 28061479]
[85]
Raza, U.; Saatci, Ö.; Uhlmann, S.; Ansari, S.A.; Eyüpoğlu, E.; Yurdusev, E.; Mutlu, M.; Ersan, P.G.; Altundağ, M.K.; Zhang, J.D.; Doğan, H.T.; Güler, G.; Şahin, Ö. The miR-644a/CTBP1/p53 axis suppresses drug resistance by simultaneous inhibition of cell survival and epithelial-mesenchymal transition in breast cancer. Oncotarget, 2016, 7(31), 49859-49877.
[http://dx.doi.org/10.18632/oncotarget.10489] [PMID: 27409664]
[86]
Bockhorn, J.; Dalton, R.; Nwachukwu, C.; Huang, S.; Prat, A.; Yee, K.; Chang, Y-F.; Huo, D.; Wen, Y.; Swanson, K.E.; Qiu, T.; Lu, J.; Park, S.Y.; Dolan, M.E.; Perou, C.M.; Olopade, O.I.; Clarke, M.F.; Greene, G.L.; Liu, H. MicroRNA-30c inhibits human breast tumour chemotherapy resistance by regulating TWF1 and IL-11. Nat. Commun., 2013, 4(1), 1393.
[http://dx.doi.org/10.1038/ncomms2393] [PMID: 23340433]
[87]
Ward, A.; Balwierz, A.; Zhang, J.D.; Küblbeck, M.; Pawitan, Y.; Hielscher, T.; Wiemann, S.; Sahin, Ö. Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene, 2013, 32(9), 1173-1182.
[http://dx.doi.org/10.1038/onc.2012.128] [PMID: 22508479]
[88]
Yang, Q.; Wang, Y.; Lu, X.; Zhao, Z.; Zhu, L.; Chen, S.; Wu, Q.; Chen, C.; Wang, Z. MiR-125b regulates epithelial-mesenchymal transition via targeting Sema4C in paclitaxel-resistant breast cancer cells. Oncotarget, 2015, 6(5), 3268-3279.
[http://dx.doi.org/10.18632/oncotarget.3065] [PMID: 25605244]
[89]
Mani, S.A.; Guo, W.; Liao, M.J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; Campbell, L.L.; Polyak, K.; Brisken, C.; Yang, J.; Weinberg, R.A. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008, 133(4), 704-715.
[http://dx.doi.org/10.1016/j.cell.2008.03.027] [PMID: 18485877]
[90]
Perez, E.A. Impact, mechanisms, and novel chemotherapy strategies for overcoming resistance to anthracyclines and taxanes in metastatic breast cancer. Breast Cancer Res. Treat., 2009, 114(2), 195-201.
[http://dx.doi.org/10.1007/s10549-008-0005-6] [PMID: 18443902]
[91]
Kort, A.; Durmus, S.; Sparidans, R.W.; Wagenaar, E.; Beijnen, J.H.; Schinkel, A.H. Brain and testis accumulation of regorafenib is restricted by breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1). Pharm. Res., 2015, 32(7), 2205-2216.
[http://dx.doi.org/10.1007/s11095-014-1609-7] [PMID: 25563977]
[92]
Deng, L.; Tatebe, S.; Lin-Lee, Y.C.; Ishikawa, T.; Kuo, M.T. MDR and MRP gene families as cellular determinant factors for resistance to clinical anticancer agents. Cancer Treat. Res., 2002, 112, 49-66.
[http://dx.doi.org/10.1007/978-1-4615-1173-1_3] [PMID: 12481711]
[93]
Schinkel, A.H.; Jonker, J.W. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv. Drug Deliv. Rev., 2003, 55(1), 3-29.
[http://dx.doi.org/10.1016/S0169-409X(02)00169-2] [PMID: 12535572]
[94]
Kuo, M.T. Roles of multidrug resistance genes in breast cancer chemoresistance. Adv. Exp. Med. Biol., 2007, 608, 23-30.
[http://dx.doi.org/10.1007/978-0-387-74039-3_2] [PMID: 17993230]
[95]
Borst, P.; Evers, R.; Kool, M.; Wijnholds, J. A family of drug transporters: the multidrug resistance-associated proteins. J. Nat. Can. Inst., 2000, 1295-1302.
[http://dx.doi.org/10.1093/jnci/92.16.1295]
[96]
Mao, Q.; Unadkat, J.D. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport--an update. AAPS J., 2015, 17(1), 65-82.
[http://dx.doi.org/10.1208/s12248-014-9668-6] [PMID: 25236865]
[97]
Chen, Y.N.; Mickley, L.A.; Schwartz, A.M.; Acton, E.M.; Hwang, J.L.; Fojo, A.T. Characterization of adriamycin-resistant human breast cancer cells which display overexpression of a novel resistance-related membrane protein. J. Biol. Chem., 1990, 265(17), 10073-10080.
[PMID: 1972154]
[98]
Robey, R.W.; Polgar, O.; Deeken, J.; To, K.W.; Bates, S.E. ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev., 2007, 26(1), 39-57.
[http://dx.doi.org/10.1007/s10555-007-9042-6] [PMID: 17323127]
[99]
Bates, S.E.; Robey, R.; Miyake, K.; Rao, K.; Ross, D.D.; Litman, T. The role of half-transporters in multidrug resistance. J. Bioenerg. Biomembr., 2001, 33(6), 503-511.
[http://dx.doi.org/10.1023/A:1012879205914] [PMID: 11804192]
[100]
Westover, D.; Ling, X.; Lam, H.; Welch, J.; Jin, C.; Gongora, C.; Del Rio, M.; Wani, M.; Li, F. FL118, a novel camptothecin derivative, is insensitive to ABCG2 expression and shows improved efficacy in comparison with irinotecan in colon and lung cancer models with ABCG2-induced resistance. Mol. Cancer, 2015, 14(1), 92.
[http://dx.doi.org/10.1186/s12943-015-0362-9] [PMID: 25928015]
[101]
Kang, H.K.; Lee, E.; Pyo, H.; Lim, S.J. Cyclooxygenase-independent down-regulation of multidrug resistance-associated protein-1 expression by celecoxib in human lung cancer cells. Mol. Cancer Ther., 2005, 4(9), 1358-1363.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0139] [PMID: 16170027]
[102]
Findlay, V.J.; Townsend, D.M.; Tew, K.D. Glutathione and glutathione s-transferases in drug resistance. In: Can. Drug Resist; , 2007; pp. 213-221.
[103]
Pérez-Tomás, R. Multidrug resistance: retrospect and prospects in anti-cancer drug treatment. Curr. Med. Chem., 2006, 13(16), 1859-1876.
[http://dx.doi.org/10.2174/092986706777585077] [PMID: 16842198]
[104]
Zhang, W.; Ding, W.; Chen, Y.; Feng, M.; Ouyang, Y.; Yu, Y.; He, Z. Up-regulation of breast cancer resistance protein plays a role in HER2-mediated chemoresistance through PI3K/Akt and nuclear factor-kappa B signaling pathways in MCF7 breast cancer cells. Acta Biochim. Biophys. Sin. (Shanghai), 2011, 43(8), 647-653.
[http://dx.doi.org/10.1093/abbs/gmr050] [PMID: 21712253]
[105]
Tan, K.W.; Li, Y.; Paxton, J.W.; Birch, N.P.; Scheepens, A. Identification of novel dietary phytochemicals inhibiting the efflux transporter breast cancer resistance protein (BCRP/ABCG2). Food Chem., 2013, 138(4), 2267-2274.
[http://dx.doi.org/10.1016/j.foodchem.2012.12.021] [PMID: 23497885]
[106]
Mubashar, M.; Harrington, K.J.; Chaudhary, K.S.; Lalani, N.; Stamp, G.W.; Peters, A.M. Differential effects of toremifene on doxorubicin, vinblastine and Tc-99m-sestamibi in P-glycoprotein-expressing breast and head and neck cancer cell lines. Acta Oncol., 2004, 43(5), 443-452.
[http://dx.doi.org/10.1080/02841860410031048] [PMID: 15360048]
[107]
Ehata, S.; Johansson, E.; Katayama, R.; Koike, S.; Watanabe, A.; Hoshino, Y.; Katsuno, Y.; Komuro, A.; Koinuma, D.; Kano, M.R.; Yashiro, M.; Hirakawa, K.; Aburatani, H.; Fujita, N.; Miyazono, K. Transforming growth factor-β decreases the cancer-initiating cell population within diffuse-type gastric carcinoma cells. Oncogene, 2011, 30(14), 1693-1705.
[http://dx.doi.org/10.1038/onc.2010.546] [PMID: 21132002]
[108]
Zhang, X.; Zhang, B.; Liu, J.; Liu, J.; Li, C.; Dong, W.; Fang, S.; Li, M.; Song, B.; Tang, B.; Wang, Z.; Zhang, Y. Mechanisms of Gefitinib-mediated reversal of tamoxifen resistance in MCF-7 breast cancer cells by inducing ERα re-expression. Sci. Rep., 2015, 5, 7835.
[http://dx.doi.org/10.1038/srep07835] [PMID: 25644501]
[109]
Bachelot, T.; Bourgier, C.; Cropet, C.; Ray-Coquard, I.; Ferrero, J.M.; Freyer, G.; Abadie-Lacourtoisie, S.; Eymard, J.C.; Debled, M.; Spaëth, D.; Legouffe, E.; Allouache, D.; El Kouri, C.; Pujade-Lauraine, E. Randomized phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: a GINECO study. J. Clin. Oncol., 2012, 30(22), 2718-2724.
[http://dx.doi.org/10.1200/JCO.2011.39.0708] [PMID: 22565002]
[110]
Ghayad, S.E.; Bieche, I.; Vendrell, J.A.; Keime, C.; Lidereau, R.; Dumontet, C.; Cohen, P.A. mTOR inhibition reverses acquired endocrine therapy resistance of breast cancer cells at the cell proliferation and gene-expression levels. Cancer Sci., 2008, 99(10), 1992-2003.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00955.x] [PMID: 19016759]
[111]
Martín, V.; Sanchez-Sanchez, A.M.; Herrera, F.; Gomez-Manzano, C.; Fueyo, J.; Alvarez-Vega, M.A.; Antolín, I.; Rodriguez, C. Melatonin-induced methylation of the ABCG2/BCRP promoter as a novel mechanism to overcome multidrug resistance in brain tumour stem cells. Br. J. Cancer, 2013, 108(10), 2005-2012.
[http://dx.doi.org/10.1038/bjc.2013.188] [PMID: 23632480]
[112]
Kuo, M.T. Redox regulation of multidrug resistance in cancer chemotherapy: molecular mechanisms and therapeutic opportunities. Antioxid. Redox Signal., 2009, 11(1), 99-133.
[http://dx.doi.org/10.1089/ars.2008.2095]
[113]
Bottai, G.; Truffi, M.; Corsi, F.; Santarpia, L. Progress in nonviral gene therapy for breast cancer and what comes next? Expert Opin. Biol. Ther., 2017, 17(5), 595-611.
[http://dx.doi.org/10.1080/14712598.2017.1305351]
[114]
Jekerle, V.; Kassack, M.U.; Reilly, R.M.; Wiese, M.; Piquette-Miller, M. Functional comparison of single- and double-stranded mdr1 antisense oligodeoxynucleotides in human ovarian cancer cell lines. J. Pharm. Pharm. Sci., 2005, 8(3), 516-527.
[PMID: 16401397]
[115]
Gao, P.; Zhou, G-Y.; Zhang, Q-H.; Li, H.; Mu, K.; Yuan, Y-P.; Zhang, J.; Wang, B-H. Reversal MDR in breast carcinoma cells by transfection of ribozyme designed according the secondary structure of mdr1 mRNA. Chin. J. Physiol., 2006, 49(2), 96-103.
[PMID: 16830791]
[116]
Ozpolat, B.; Sood, A.K.; Lopez-Berestein, G. Liposomal siRNA nanocarriers for cancer therapy. Adv. Drug Deliv. Rev., 2014, 66, 110-116.
[http://dx.doi.org/10.1016/j.addr.2013.12.008] [PMID: 24384374]
[117]
Kaszubiak, A.; Holm, P.S.; Lage, H. Overcoming the classical multidrug resistance phenotype by adenoviral delivery of anti-MDR1 short hairpin RNAs and ribozymes. Int. J. Oncol., 2007, 31(2), 419-430.
[http://dx.doi.org/10.3892/ijo.31.2.419] [PMID: 17611700]
[118]
Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 2017, 168(4), 707-723.
[http://dx.doi.org/10.1016/j.cell.2017.01.017]
[119]
Amaral, T.; Meraz-Torres, F.; Garbe, C. Immunotherapy in managing metastatic melanoma: which treatment when? Expert Opin. Biol. Ther., 2017, 17(12), 1523-1538.
[http://dx.doi.org/10.1080/14712598.2017.1378640]
[120]
Deng, J.; Wang, E.S.; Jenkins, R.W.; Li, S.; Dries, R.; Yates, K.; Chhabra, S.; Huang, W.; Liu, H.; Aref, A.R.; Ivanova, E.; Paweletz, C.P.; Bowden, M.; Zhou, C.W.; Herter-Sprie, G.S.; Sorrentino, J.A.; Bisi, J.E.; Lizotte, P.H.; Merlino, A.A.; Quinn, M.M.; Bufe, L.E.; Yang, A.; Zhang, Y.; Zhang, H.; Gao, P.; Chen, T.; Cavanaugh, M.E.; Rode, A.J.; Haines, E.; Roberts, P.J.; Strum, J.C.; Richards, W.G.; Lorch, J.H.; Parangi, S.; Gunda, V.; Boland, G.M.; Bueno, R.; Palakurthi, S.; Freeman, G.J.; Ritz, J.; Haining, W.N.; Sharpless, N.E.; Arthanari, H.; Shapiro, G.I.; Barbie, D.A.; Gray, N.S.; Wong, K.K. CDK4/6 inhibition augments antitumor immunity by enhancing t-cell activation. Cancer Discov., 2018, 8(2), 216-233.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0915] [PMID: 29101163]
[121]
Muraro, E.; Furlan, C.; Avanzo, M.; Martorelli, D.; Comaro, E.; Rizzo, A.; Fae’, D.A.; Berretta, M.; Militello, L.; Del Conte, A.; Spazzapan, S.; Dolcetti, R.; Trovo’, M. Local high-dose radiotherapy induces systemic immunomodulating effects of potential therapeutic relevance in oligometastatic breast cancer. Front. Immunol., 2017, 8, 1476.
[http://dx.doi.org/10.3389/fimmu.2017.01476] [PMID: 29163540]
[122]
Singh, A.; Neupane, Y.R.; Mangla, B.; Kohli, K. Nanostructured lipid carriers for oral bioavailability enhancement of exemestane: formulation design, in vitro, ex vivo, and in vivo Studies. J. Pharm. Sci., 2019, 108(10), 3382-3395.
[http://dx.doi.org/10.1016/j.xphs.2019.06.003] [PMID: 31201904]
[123]
Tang, Y.; Soroush, F.; Tong, Z.; Kiani, M.F.; Wang, B. Targeted multidrug delivery system to overcome chemoresistance in breast cancer. Int. J. Nanomedicine, 2017, 12, 671-681.
[http://dx.doi.org/10.2147/IJN.S124770] [PMID: 28176940]
[124]
Lv, L.; Liu, C.; Chen, C.; Yu, X.; Chen, G.; Shi, Y.; Qin, F.; Ou, J.; Qiu, K.; Li, G. Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer. Oncotarget, 2016, 7(22), 32184-32199.
[http://dx.doi.org/10.18632/oncotarget.8607] [PMID: 27058756]
[125]
Meng, H.; Mai, W.X.; Zhang, H.; Xue, M.; Xia, T.; Lin, S.; Wang, X.; Zhao, Y.; Ji, Z.; Zink, J.I.; Nel, A.E. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano, 2013, 7(2), 994-1005.
[http://dx.doi.org/10.1021/nn3044066] [PMID: 23289892]
[126]
Kullberg, M.; Owens, J.L.; Mann, K. Listeriolysin O enhances cytoplasmic delivery by Her-2 targeting liposomes. J. Drug Target., 2010, 18(4), 313-320.
[http://dx.doi.org/10.3109/10611861003663549] [PMID: 20201742]
[127]
Deng, J-L.; Xu, Y.H.; Wang, G. Identification of potential crucial genes and key pathways in breast cancer using bioinformatic analysis. Front. Genet., 2019, 10(JUL), 695.
[http://dx.doi.org/10.3389/fgene.2019.00695] [PMID: 31428132]
[128]
Shawky, D.M.; Seddik, A.F. On the temporal effects of features on the prediction of breast cancer survivability. Curr. Bioinform., 2017, 12(4)
[http://dx.doi.org/10.2174/1574893611666160511130633]
[129]
Sun, X.; Hu, B. Mathematical modeling and computational prediction of cancer drug resistance. Brief. Bioinform., 2018, 19(6), 1382-1399.
[http://dx.doi.org/10.1093/bib/bbx065] [PMID: 28981626]
[130]
Shi, T.W.; Kah, W.S.; Mohamad, M.S.; Moorthy, K.; Deris, S.; Sjaugi, M.F.; Omatu, S.; Corchado, J.M.; Kasim, S. A review of gene selection tools in classifying cancer microarray data. Curr. Bioinform., 2017, 12(3), 202-212.
[http://dx.doi.org/10.2174/1574893610666151026215104]
[131]
Yuan, J.; Tan, L.; Yin, Z.; Tao, K.; Wang, G.; Shi, W.; Gao, J. Bioinformatics analysis identifies potential chemoresistance-associated genes across multiple types of cancer. Oncol. Lett., 2019, 18(3), 2576-2583.
[http://dx.doi.org/10.3892/ol.2019.10533] [PMID: 31402953]
[132]
Sims, A.H. Bioinformatics and breast cancer: what can high-throughput genomic approaches actually tell us? J. Clin. Pathol., 2009, 62(10), 879-885.
[http://dx.doi.org/10.1136/jcp.2008.060376] [PMID: 19174421]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy