Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthetic Strategies and Biological Potential of Coumarin-Chalcone Hybrids: A New Dimension to Drug Design

Author(s): Sharda Pasricha* and Pragya Gahlot

Volume 24, Issue 4, 2020

Page: [402 - 438] Pages: 37

DOI: 10.2174/1385272824666200219091830

Price: $65

Abstract

Privileged scaffolds are ubiquitous as effective templates in drug discovery regime. Natural and synthetically derived hybrid molecules are one such attractive scaffold for therapeutic agent development due to their dual or multiple modes of action, minimum or no side effects, favourable pharmacokinetics and other advantages. Coumarins and chalcone are two important classes of natural products affording diverse pharmacological activities which make them ideal templates for building coumarin-chalcone hybrids as effective biological scaffold for drug discovery research. Provoked by the promising medicinal application of hybrid molecules as well as those of coumarins and chalcones, the medicinal chemists have used molecular hybridisation strategy to report dozens of coumarin- chalcone hybrids with a wide spectrum of biological properties including anticancer, antimicrobial, antimalarial, antioxidant, anti-tubercular and so on. The present review provides a systematic summary on synthetic strategies, biological or chemical potential, SAR studies, some mechanisms of action and some plausible molecular targets of synthetic coumarin-chalcone hybrids published from 2001 till date. The review is expected to assist medicinal chemists in the effective and successful development of coumarin- chalcone hybrid based drug discovery regime.

Keywords: Molecular hybridization, coumarin-chalcone hybrids, synthesis, pharmacological properties, SAR studies, molecular targets, mechanism of action.

Graphical Abstract

[1]
Riedl, S.; Zweytick, D.; Lohner, K. Membrane-active host defense peptides--challenges and perspectives for the development of novel anticancer drugs. Chem. Phys. Lipids, 2011, 164(8), 766-781.
[http://dx.doi.org/10.1016/j.chemphyslip.2011.09.004] [PMID: 21945565]
[2]
Zhuang, C.; Miao, Z.; Wu, Y.; Guo, Z.; Li, J.; Yao, J.; Xing, C.; Sheng, C.; Zhang, W. Double-edged swords as cancer therapeutics: novel, orally active, small molecules simultaneously inhibit p53-MDM2 interaction and the NF-κB pathway. J. Med. Chem., 2014, 57(3), 567-577.
[http://dx.doi.org/10.1021/jm401800k] [PMID: 24428757]
[3]
Kamal, A.; Kashi Reddy, M.; Viswanath, A. The design and development of imidazothiazole-chalcone derivatives as potential anticancer drugs. Expert Opin. Drug Discov., 2013, 8(3), 289-304.
[http://dx.doi.org/10.1517/17460441.2013.758630] [PMID: 23317445]
[4]
Horton, D.A.; Bourne, G.T.; Smythe, M.L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev., 2003, 103(3), 893-930.
[http://dx.doi.org/10.1021/cr020033s] [PMID: 12630855]
[5]
Wang, X.; Bastow, K.F.; Sun, C-M.; Lin, Y-L.; Yu, H-J.; Don, M-J.; Wu, T-S.; Nakamura, S.; Lee, K-H. Antitumor Agents. 239. Isolation, structure elucidation, total synthesis, and anti-breast cancer activity of neo-tanshinlactone from Salvia miltiorrhiza. J. Med. Chem., 2004, 47(23), 5816-5819.
[http://dx.doi.org/10.1021/jm040112r] [PMID: 15509181]
[6]
Brady, H.; Desai, S.; Gayo-Fung, L.M.; Khammungkhune, S.; McKie, J.A.; O’Leary, E.; Pascasio, L.; Sutherland, M.K.; Anderson, D.W.; Bhagwat, S.S.; Stein, B. Effects of SP500263, a novel, potent antiestrogen, on breast cancer cells and in xenograft models. Cancer Res., 2002, 62(5), 1439-1442.
[PMID: 11888917]
[7]
Hoerr, R.; Noeldner, M. Ensaculin (KA-672 HCl): a multitransmitter approach to dementia treatment. CNS Drug Rev., 2002, 8(2), 143-158.
[http://dx.doi.org/10.1111/j.1527-3458.2002.tb00220.x] [PMID: 12177685]
[8]
Gediya, L.K.; Njar, V.C.O. Promise and challenges in drug discovery and development of hybrid anticancer drugs. Expert Opin. Drug Discov., 2009, 4(11), 1099-1111.
[http://dx.doi.org/10.1517/17460440903341705] [PMID: 23480431]
[9]
Marco-Contelles, J.; Soriano, E. Editorial [Hot topic: The medicinal chemistry of hybrid-based drugs targeting multiple sites of action. Curr. Top. Med. Chem., 2011, 11(22), 2714-2715.
[http://dx.doi.org/10.2174/156802611798184382] [PMID: 22039874]
[10]
Andricopulo, A.D.; Salum, L.B.; Abraham, D.J. Structure-based drug design strategies in medicinal chemistry. Curr. Top. Med. Chem., 2009, 9(9), 771-790.
[http://dx.doi.org/10.2174/156802609789207127] [PMID: 19754394]
[11]
Bansal, Y.; Silakari, O. Multifunctional compounds: smart molecules for multifactorial diseases. Eur. J. Med. Chem., 2014, 76, 31-42.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.060] [PMID: 24565571]
[12]
Geldenhuys, W.J.; Youdim, M.B.H.; Carroll, R.T.; Van der Schyf, C.J. The emergence of designed multiple ligands for neurodegenerative disorders. Prog. Neurobiol., 2011, 94(4), 347-359.
[http://dx.doi.org/10.1016/j.pneurobio.2011.04.010] [PMID: 21536094]
[13]
Song, H.Y.; Ngai, M.H.; Song, Z.Y.; MacAry, P.A.; Hobley, J.; Lear, M.J. Practical synthesis of maleimides and coumarin-linked probes for protein and antibody labelling via reduction of native disulfides. Org. Biomol. Chem., 2009, 7(17), 3400-3406.
[http://dx.doi.org/10.1039/b904060a] [PMID: 19675893]
[14]
Melagraki, G.; Afantitis, A.; Igglessi-Markopoulou, O.; Detsi, A.; Koufaki, M.; Kontogiorgis, C.; Hadjipavlou-Litina, D.J. Synthesis and evaluation of the antioxidant and anti-inflammatory activity of novel coumarin-3-aminoamides and their alpha-lipoic acid adducts. Eur. J. Med. Chem., 2009, 44(7), 3020-3026.
[http://dx.doi.org/10.1016/j.ejmech.2008.12.027] [PMID: 19232783]
[15]
Nepovimova, E.; Uliassi, E.; Korabecny, J.; Peña-Altamira, L.E.; Samez, S.; Pesaresi, A.; Garcia, G.E.; Bartolini, M.; Andrisano, V.; Bergamini, C.; Fato, R.; Lamba, D.; Roberti, M.; Kuca, K.; Monti, B.; Bolognesi, M.L. Multitarget drug design strategy: quinone-tacrine hybrids designed to block amyloid-β aggregation and to exert anticholinesterase and antioxidant effects. J. Med. Chem., 2014, 57(20), 8576-8589.
[http://dx.doi.org/10.1021/jm5010804] [PMID: 25259726]
[16]
Riveiro, M.E.; Moglioni, A.; Vazquez, R.; Gomez, N.; Facorro, G.; Piehl, L.; de Celis, E.R.; Shayo, C.; Davio, C. Structural insights into hydroxycoumarin-induced apoptosis in U-937 cells. Bioorg. Med. Chem., 2008, 16(5), 2665-2675.
[http://dx.doi.org/10.1016/j.bmc.2007.11.038] [PMID: 18060791]
[17]
Feuer, G.; Kellen, J.A.; Kovacs, K. Suppression of 7,12-dimethylbenz(α) anthracene-induced breast carcinoma by coumarin in the rat. Oncology, 1976, 33(1), 35-39.
[http://dx.doi.org/10.1159/000225098] [PMID: 824591]
[18]
Lacy, A.; O’Kennedy, R. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des., 2004, 10(30), 3797-3811.
[http://dx.doi.org/10.2174/1381612043382693] [PMID: 15579072]
[19]
Barros, T.A.; de Freitas, L.A.R.; Filho, J.M.B.; Nunes, X.P.; Giulietti, A.M.; de Souza, G.E.; dos Santos, R.R.; Soares, M.B.P.; Villarreal, C.F. Antinociceptive and anti-inflammatory properties of 7-hydroxycoumarin in experimental animal models: potential therapeutic for the control of inflammatory chronic pain. J. Pharm. Pharmacol., 2010, 62(2), 205-213.
[http://dx.doi.org/10.1211/jpp.62.02.0008] [PMID: 20487200]
[20]
Kontogiorgis, C.A.; Hadjipavlou-Litina, D.J. Synthesis and biological evaluation of novel coumarin derivatives with a 7-azomethine linkage. Bioorg. Med. Chem. Lett., 2004, 14(3), 611-614.
[http://dx.doi.org/10.1016/j.bmcl.2003.11.060] [PMID: 14741253]
[21]
Kostova, I.; Bhatia, S.; Grigorov, P.; Balkansky, S.; Parmar, V.S.; Prasad, A.K.; Saso, L. Coumarins as antioxidants. Curr. Med. Chem., 2011, 18(25), 3929-3951.
[http://dx.doi.org/10.2174/092986711803414395] [PMID: 21824098]
[22]
Xi, G-L.; Liu, Z-Q. Coumarin-fused coumarin: antioxidant story from N,N-dimethylamino and hydroxyl groups. J. Agric. Food Chem., 2015, 63(13), 3516-3523.
[http://dx.doi.org/10.1021/acs.jafc.5b00399] [PMID: 25826201]
[23]
Sánchez-Recillas, A.; Navarrete-Vázquez, G.; Hidalgo-Figueroa, S.; Rios, M.Y.; Ibarra-Barajas, M.; Estrada-Soto, S. Semisynthesis, ex vivo evaluation, and SAR studies of coumarin derivatives as potential antiasthmatic drugs. E. J. Med. Chem., 2014, 77, 400-408.
[24]
Abdelhafez, O.M.; Amin, K.M.; Batran, R.Z.; Maher, T.J.; Nada, S.A.; Sethumadhavan, S. Synthesis, anticoagulant and PIVKA-II induced by new 4-hydroxycoumarin derivatives. Bioorg. Med. Chem., 2010, 18(10), 3371-3378.
[http://dx.doi.org/10.1016/j.bmc.2010.04.009] [PMID: 20435480]
[25]
Peng, X-M.; Damu, L.V. Current developments of coumarin compounds in medicinal chemistry. Curr. Pharm. Des., 2013, 19(21), 3884-3930.
[26]
Kashman, Y.; Gustafson, K.R.; Fuller, R.W.; Cardellina, J.H., II; McMahon, J.B.; Currens, M.J.; Buckheit, R.W.; Hughes, S.H.; Cragg, G.M.; Boyd, M.R. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J. Med. Chem., 1992, 35(15), 2735-2743.
[http://dx.doi.org/10.1021/jm00093a004] [PMID: 1379639]
[27]
Shikishima, Y.; Takaishi, Y.; Honda, G.; Ito, M.; Takfda, Y.; Kodzhimatov, O.K.; Ashurmetov, O.; Lee, K.H. Chemical constituents of Prangos tschiniganica; structure elucidation and absolute configuration of coumarin and furanocoumarin derivatives with anti-HIV activity. Chem. Pharm. Bull. (Tokyo), 2001, 49(7), 877-880.
[http://dx.doi.org/10.1248/cpb.49.877] [PMID: 11456095]
[28]
Hwu, J.R.; Lin, S-Y.; Tsay, S-C.; De Clercq, E.; Leyssen, P.; Neyts, J. Coumarin-purine ribofuranoside conjugates as new agents against hepatitis C virus. J. Med. Chem., 2011, 54(7), 2114-2126.
[http://dx.doi.org/10.1021/jm101337v] [PMID: 21375337]
[29]
Ong, E.B.B.; Watanabe, N.; Saito, A.; Futamura, Y.; Abd El Galil, K.H.; Koito, A.; Najimudin, N.; Osada, H. Vipirinin, a coumarin-based HIV-1 Vpr inhibitor, interacts with a hydrophobic region of VPR. J. Biol. Chem., 2011, 286(16), 14049-14056.
[http://dx.doi.org/10.1074/jbc.M110.185397] [PMID: 21357691]
[30]
Ostrov, D.A.; Hernández Prada, J.A.; Corsino, P.E.; Finton, K.A.; Le, N.; Rowe, T.C. Discovery of novel DNA gyrase inhibitors by high-throughput virtual screening. Antimicrob. Agents Chemother., 2007, 51(10), 3688-3698.
[http://dx.doi.org/10.1128/AAC.00392-07] [PMID: 17682095]
[31]
Gormley, N.A.; Orphanides, G.; Meyer, A.; Cullis, P.M.; Maxwell, A. The interaction of coumarin antibiotics with fragments of DNA gyrase B protein. Biochemistry, 1996, 35(15), 5083-5092.
[http://dx.doi.org/10.1021/bi952888n] [PMID: 8664301]
[32]
Chimenti, F.; Bizzarri, B.; Bolasco, A.; Secci, D.; Chimenti, P.; Granese, A.; Carradori, S.; Rivanera, D.; Zicari, A.; Scaltrito, M.M.; Sisto, F. Synthesis, selective anti-Helicobacter pylori activity, and cytotoxicity of novel N-substituted-2-oxo-2H-1-benzopyran-3-carboxamides. Bioorg. Med. Chem. Lett., 2010, 20(16), 4922-4926.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.048] [PMID: 20630755]
[33]
Fylaktakidou, K.C.; Hadjipavlou-Litina, D.J.; Litinas, K.E.; Nicolaides, D.N. Natural and synthetic coumarin derivatives with anti-inflammatory/ antioxidant activities. Curr. Pharm. Des., 2004, 10(30), 3813-3833.
[http://dx.doi.org/10.2174/1381612043382710] [PMID: 15579073]
[34]
Bansal, Y.; Sethi, P.; Bansal, G. Coumarin: a potential nucleus for anti-inflammatory molecules. Med. Chem. Res., 2013, 22, 3049-3060.
[http://dx.doi.org/10.1007/s00044-012-0321-6]
[35]
Sashidhara, K.V.; Kumar, A.; Chatterjee, M.; Rao, K.B.; Singh, S.; Verma, A.K.; Palit, G. Discovery and synthesis of novel 3-phenylcoumarin derivatives as antidepressant agents. Bioorg. Med. Chem. Lett., 2011, 21(7), 1937-1941.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.040] [PMID: 21377878]
[36]
Zhou, B.; Xing, C. Diverse molecular targets for chalcones with varied bioactivities. Med. Chem., 2015, 5(8), 388-404.
[http://dx.doi.org/10.4172/2161-0444.1000291] [PMID: 26798565]
[37]
Batovska, D.I.; Todorova, I.T. Trends in utilization of the pharmacological potential of chalcones. Curr. Clin. Pharmacol., 2010, 5(1), 1-29.
[http://dx.doi.org/10.2174/157488410790410579] [PMID: 19891604]
[38]
Sahu, N.K.; Balbhadra, S.S.; Choudhary, J.; Kohli, D.V. Exploring pharmacological significance of chalcone scaffold: a review. Curr. Med. Chem., 2012, 19(2), 209-225.
[http://dx.doi.org/10.2174/092986712803414132] [PMID: 22320299]
[39]
Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: a mini review. Eur. J. Med. Chem., 2014, 85, 758-777.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.033] [PMID: 25137491]
[40]
Karthikeyan, C.; Moorthy, N.S.H.N.; Ramasamy, S.; Vanam, U.; Manivannan, E.; Karunagaran, D.; Trivedi, P. Advances in chalcones with anticancer activities. Recent Patents Anticancer Drug Discov., 2015, 10, 97-115.
[http://dx.doi.org/10.2174/1574892809666140819153902]
[41]
Orlikova, B.; Tasdemir, D.; Golais, F.; Dicato, M.; Diederich, M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr., 2011, 6(2), 125-147.
[http://dx.doi.org/10.1007/s12263-011-0210-5] [PMID: 21484163]
[42]
Bandgar, B.P.; Gawande, S.S. Synthesis and biological screening of a combinatorial library of β-chlorovinyl chalcones as anticancer, anti-inflammatory and antimicrobial agents. Bioorg. Med. Chem., 2010, 18(5), 2060-2065.
[http://dx.doi.org/10.1016/j.bmc.2009.12.077] [PMID: 20138527]
[43]
Sashidhara, K.V.; Kumar, A.; Kumar, M.; Sarkar, J.; Sinha, S. Synthesis and in vitro evaluation of novel coumarin-chalcone hybrids as potential anticancer agents. Bioorg. Med. Chem. Lett., 2010, 20(24), 7205-7211.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.116] [PMID: 21071221]
[44]
Pingaew, R.; Saekee, A.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, biological evaluation and molecular docking of novel chalcone-coumarin hybrids as anticancer and antimalarial agents. Eur. J. Med. Chem., 2014, 85, 65-76.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.087] [PMID: 25078311]
[45]
Rodriguez, S.V.; Guíñez, R.F.; Matos, M.J.; Azar, C.O.; Maya, J.D. Synthesis and trypanocidal properties of new coumarin-chalcone derivatives. Med. Chem., 2015, 5, 173-177.
[46]
Xue, Y.; An, L.; Zheng, Y.; Zhang, L.; Gong, X.; Qian, Y.; Liu, Y. Structure and electronic spectral property of coumarin-chalcone hybrids: a comparative study using conventional and long-range corrected hybrid functionals. Comput. Theor. Chem., 2012, 981, 90-99.
[http://dx.doi.org/10.1016/j.comptc.2011.11.050]
[47]
Pérez-Cruz, F.; Vazquez-Rodriguez, S.; Matos, M.J.; Herrera-Morales, A.; Villamena, F.A.; Das, A.; Gopalakrishnan, B.; Olea-Azar, C.; Santana, L.; Uriarte, E. Synthesis and electrochemical and biological studies of novel coumarin-chalcone hybrid compounds. J. Med. Chem., 2013, 56(15), 6136-6145.
[http://dx.doi.org/10.1021/jm400546y] [PMID: 23859213]
[48]
Matos, M.J.; Vazquez-Rodriguez, S.; Santana, L.; Uriarte, E.; Fuentes-Edfuf, C.; Santos, Y.; Muñoz-Crego, A. Synthesis and structure-activity relationships of novel amino/nitro substituted 3-arylcoumarins as antibacterial agents. Molecules, 2013, 18(2), 1394-1404.
[http://dx.doi.org/10.3390/molecules18021394] [PMID: 23348993]
[49]
Jamier, V.; Marut, W.; Valente, S.; Chéreau, C.; Chouzenoux, S.; Nicco, C.; Lemaréchal, H.; Weill, B.; Kirsch, G.; Jacob, C. Chalcone-coumarin derivatives as potential anti-cancer drugs: an in vitro and in vivo investigation. Anti-Cancer Agents Med. Chem. (Formerly Curr. Med. Chem. Agents), 2014, 14(7), 963-974.
[50]
Bombardelli, E.; Valenti, P. PCT Int. Appl. Patent 2001017984A1. In: Chem. Abstr; , 2001; 134, p. 222628.
[51]
Mukusheva, G.K.; Lipeeva, A.V.; Zhanymkhanova, P.Z.; Shults, E.E.; Gatilov, Y.V.; Shakirov, M.M.; Adekenov, S.M. The flavanone pinostrobin in the synthesis of coumarin-chalcone hybrids with a triazole linker. Chem. Heterocycl. Compd., 2015, 51, 146-152.
[http://dx.doi.org/10.1007/s10593-015-1672-y]
[52]
Nikalje, P.G.V.; Tiwari, S.G.; Tupe, J.K.; Vyas, V.; Qureshi, G. Ultrasound assisted-synthesis and biological evaluation of piperazinylprop-1-en-2-yloxy-2h-chromen-2-ones as cytotoxic agents. Lett. Drug Des. Discov., 2017, 14, 1195-1205.
[http://dx.doi.org/10.2174/1570180814666170322154750]
[53]
Mazzone, G.; Galano, A.; Alvarez-Idaboy, J.R.; Russo, N. Coumarin-chalcone hybrids as peroxyl radical scavengers: kinetics and mechanisms. J. Chem. Inf. Model., 2016, 56(4), 662-670.
[http://dx.doi.org/10.1021/acs.jcim.6b00006] [PMID: 26998844]
[54]
Al-Sehemi, A.G.; Pannipara, M.; Kalam, A.; Asiri, A.M. A combined experimental and computational investigation on spectroscopic and photophysical properties of a coumarinyl chalcone. J. Fluoresc., 2016, 26(4), 1357-1365.
[http://dx.doi.org/10.1007/s10895-016-1823-2] [PMID: 27307021]
[55]
Elshemy, H.A.H.; Zaki, M.A. Design and synthesis of new coumarin hybrids and insight into their mode of antiproliferative action. Bioorg. Med. Chem., 2017, 25(3), 1066-1075.
[http://dx.doi.org/10.1016/j.bmc.2016.12.019] [PMID: 28038941]
[56]
Vazquez-Rodriguez, S.; Lama López, R.; Matos, M.J.; Armesto-Quintas, G.; Serra, S.; Uriarte, E.; Santana, L.; Borges, F.; Muñoz Crego, A.; Santos, Y. Design, synthesis and antibacterial study of new potent and selective coumarin-chalcone derivatives for the treatment of tenacibaculosis. Bioorg. Med. Chem., 2015, 23(21), 7045-7052.
[http://dx.doi.org/10.1016/j.bmc.2015.09.028] [PMID: 26433630]
[57]
Medina, F.G.; Marrero, J.G.; Macías-Alonso, M.; González, M.C.; Córdova-Guerrero, I.; Teissier García, A.G.; Osegueda-Robles, S. Coumarin heterocyclic derivatives: chemical synthesis and biological activity. Nat. Prod. Rep., 2015, 32(10), 1472-1507.
[http://dx.doi.org/10.1039/C4NP00162A] [PMID: 26151411]
[58]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: a privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[59]
Wei, H.; Ruan, J.; Zhang, X. Coumarin-chalcone hybrids: promising agents with diverse pharmacological properties. RSC Advances, 2016, 6, 10846-10860.
[http://dx.doi.org/10.1039/C5RA26294A]
[60]
Wei, H.; Zhang, X.; Wu, G.; Yang, X.; Pan, S.; Wang, Y.; Ruan, J. Chalcone derivatives from the fern Cyclosorus parasiticus and their anti-proliferative activity. Food Chem. Toxicol., 2013, 60, 147-152.
[http://dx.doi.org/10.1016/j.fct.2013.07.045] [PMID: 23891701]
[61]
Wei, H.; Wu, G.H.; Yang, X.; Ruan, J.L. Chemical constituents in leaves of Cyclosorus parasiticus. Chin. Tradit. Herbal Drugs, 2013, 44(17), 2354-2357.
[62]
Sangshetti, J.N.; Khan, F.A.K.; Kulkarni, A.A.; Patil, R.H.; Pachpinde, A.M.; Lohar, K.S.; Shinde, D.B. Antileishmanial activity of novel indolyl-coumarin hybrids: Design, synthesis, biological evaluation, molecular docking study and in silico ADME prediction. Bioorg. Med. Chem. Lett., 2016, 26(3), 829-835.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.085] [PMID: 26778149]
[63]
Mokale, S.N.; Begum, A.; Sakle, N.S.; Shelke, V.R.; Bhavale, S.A. Design, synthesis and anticancer screening of 3-(3-(substituted phenyl) acryloyl)-2H-chromen-2ones as selective anti-breast cancer agent. Biomed. Pharmacother., 2017, 89, 966-972.
[http://dx.doi.org/10.1016/j.biopha.2017.02.089] [PMID: 28292025]
[64]
Sun, Y-F.; Cui, Y-P. The synthesis, characterization and properties of coumarin-based chromophores containing a chalcone moiety. Dyes Pigments, 2008, 78, 65-76.
[http://dx.doi.org/10.1016/j.dyepig.2007.10.014]
[65]
Alipour, M.; Khoobi, M.; Foroumadi, A.; Nadri, H.; Moradi, A.; Sakhteman, A.; Ghandi, M.; Shafiee, A. Novel coumarin derivatives bearing N-benzyl pyridinium moiety: potent and dual binding site acetylcholinesterase inhibitors. Bioorg. Med. Chem., 2012, 20(24), 7214-7222.
[http://dx.doi.org/10.1016/j.bmc.2012.08.052] [PMID: 23140986]
[66]
Ajani, O.O.; Nwinyi, O.C. Microwave‐assisted synthesis and evaluation of antimicrobial activity of 3-3‐(s‐aryl and s‐heteroaromatic) acryloyl‐2H‐chromen‐2‐one derivatives. J. Heterocycl. Chem., 2010, 47(1), 179-187.
[67]
Dridi, D.; Abdelwahab, A.B.; Bana, E.; Chaimbault, P.; Meganem, F.; Kirsch, G. Synthesis and molecular modeling of some new chalcones derived from coumarine as CDC25 phosphatases inhibitors. Mediterr. J. Chem., 2016, 5, 323-330.
[http://dx.doi.org/10.13171/mjc.5.1/0160112/kirsch]
[68]
Bhila, V.G.; Chovatiya, Y.L.; Patel, C.V.; Giri, R.R.; Brahmbhatt, D.I. A convergent approach for the synthesis of new pyrazolyl bipyridinyl substituted coumarin derivatives as antimicrobials. Int. Lett. Chem. Phys. Astron., 2015, 40, 1-16.
[http://dx.doi.org/10.18052/www.scipress.com/ILCPA.40.1]
[69]
Kurt, B.Z.; Ozten Kandas, N.; Dag, A.; Sonmez, F.; Kucukislamoglu, M. Synthesis and biological evaluation of novel coumarin-chalcone derivatives containing urea moiety as potential anticancer agents. Arab. J. Chem., 2020, 13(1), 1120-1129.
[70]
Ashok, D.; Lakshmi, B.V.; Ravi, S.; Ganesh, A. Microwave-assisted synthesis of some new coumarin-pyrazoline hybrids and their antimicrobial activity. J. Serb. Chem. Soc., 2015, 80, 305.
[http://dx.doi.org/10.2298/JSC140021101A]
[71]
Deshpande, H.A.; Chopde, H.N.; Pandhurnekar, C.P.; Batra, R.J. Synthesis, characterization and testing of biological activity of some novel chalcones derivatives of coumarin. Chem. Sci. Trans., 2013, 2, 621-627.
[http://dx.doi.org/10.7598/cst2013.317]
[72]
Naruka, S.G.; Mahajan, S.S. Conventional and microwave assisted synthesis and QSAR studies of coumarinylchalcones as potent antimicrobial agents. Int. J. Res. Pharm. Chem., 2011, 4, 879-890.
[73]
Jayashree, B.S.; Arora, S.; Venugopala, K.N. Microwave assisted synthesis of substituted coumarinyl chalcones as reaction intermediates for biologically important coumarinyl heterocycles. Asian J. Chem., 2008, 20, 1.
[74]
Devasia, S.; Rangadurai, A. Improved synthesis of coumarin-chalcone under ultrasonic irradiation and their in vitro antibacterial and antioxidant activities. IJSTM, 2018, 4(2), 37-44.
[75]
Valente, S.; Bana, E.; Viry, E.; Bagrel, D.; Kirsch, G. Synthesis and biological evaluation of novel coumarin-based inhibitors of Cdc25 phosphatases. Bioorg. Med. Chem. Lett., 2010, 20(19), 5827-5830.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.130] [PMID: 20800482]
[76]
Erande, Y.; Kothavale, S.; Sreenath, M.C.; Chitrambalam, S.; Joe, I.H.; Sekar, N. Triphenylamine derived coumarin chalcones and their red emitting OBO difluoride complexes: synthesis, photophysical and NLO property study. Dyes Pigments, 2018, 148, 474-491.
[http://dx.doi.org/10.1016/j.dyepig.2017.09.045]
[77]
Moodley, T.; Momin, M.; Mocktar, C.; Kannigadu, C.; Koorbanally, N.A. The synthesis, structural elucidation and antimicrobial activity of 2- and 4-substituted-coumarinyl chalcones. Magn. Reson. Chem., 2016, 54(7), 610-617.
[http://dx.doi.org/10.1002/mrc.4414] [PMID: 26867972]
[78]
Vazquez-Rodriguez, S.; Serra, S.; Santos, Y.; Santana, L. In: fficient synthesis of coumarin-chalcones hybrids as new scaffold with antibacterial interest, Proceedings of the 14th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-14); , 2010; pp. 110-111.
[http://dx.doi.org/10.3390/ecsoc-14-00403]
[79]
Li, J.; Li, X.; Wang, S. Synthesis, photoluminescent behaviors, and theoretical studies of two novel ketocoumarin derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 88, 31-36.
[http://dx.doi.org/10.1016/j.saa.2011.11.044] [PMID: 22204881]
[80]
Dhinoja, V.; Jain, V.; Thakrar, S.; Rathod, J. Chhatrola Mitesh; Tilala, D.; Karia, D.; Shah, A. Convenient synthesis of some new diversely functionalized coumarinyl chalcone derivatives under microwaves. Chem. Biol. Interact., 2013, 3, 314-333.
[81]
Hamdi, N.; Fischmeister, C.; Puerta, M.C.; Valerga, P. A rapid access to new coumarinyl chalcone and substituted chromeno [4, 3-c] pyrazol-4 (1H)-ones and their antibacterial and DPPH radical scavenging activities. Med. Chem. Res., 2011, 20, 522-530.
[http://dx.doi.org/10.1007/s00044-010-9326-1]
[82]
Trivedi, J.C.; Bariwal, J.B.; Upadhyay, K.D.; Naliapara, Y.T.; Joshi, S.K.; Pannecouque, C.C.; De Clercq, E.; Shah, A.K. Improved and rapid synthesis of new coumarinyl chalcone derivatives and their antiviral activity. Tetrahedron Lett., 2007, 48, 8472-8474.
[http://dx.doi.org/10.1016/j.tetlet.2007.09.175]
[83]
Ghouili, A.; Dusek, M.; Petricek, V.; Ben Ayed, T.; Ben Hassen, R. Synthesis, crystal structure and spectral characteristics of highly fluorescent chalcone-based coumarin in solution and in polymer matrix. J. Phys. Chem. Solids, 2014, 75, 188-193.
[http://dx.doi.org/10.1016/j.jpcs.2013.09.011]
[84]
Patel, K.; Karthikeyan, C.; Solomon, V.R.; Moorthy, N.S.H.N.; Lee, H.; Sahu, K.; Singh Deora, G.; Trivedi, P. Synthesis of some coumarinyl chalcones and their antiproliferative activity against breast cancer cell lines. Lett. Drug Des. Discov., 2011, 8, 308-311.
[http://dx.doi.org/10.2174/157018011794839475]
[85]
Patel, K.; Karthikeyan, C.; Moorthy, N.S.H.N.; Deora, G.S.; Solomon, V.R.; Lee, H.; Trivedi, P. Design, synthesis and biological evaluation of some novel 3-cinnamoyl-4-hydroxy-2H-chromen-2-ones as antimalarial agents. Med. Chem. Res., 2012, 21, 1780-1784.
[http://dx.doi.org/10.1007/s00044-011-9694-1]
[86]
Ghouili, A.; Ben Hassen, R. 4-Hy-droxy-3-[(E)-3-phenyl-prop-2-eno-yl]-2H-chromen-2-one. Acta Crystallogr. Sect. E Struct. Rep. Online, 2011, 67(8), o2209-o2209.
[http://dx.doi.org/10.1107/S1600536811029801] [PMID: 22091215]
[87]
Seidel, C.; Schnekenburger, M.; Zwergel, C.; Gaascht, F.; Mai, A.; Dicato, M.; Kirsch, G.; Valente, S.; Diederich, M. Novel inhibitors of human histone deacetylases: design, synthesis and bioactivity of 3-alkenoylcoumarines. Bioorg. Med. Chem. Lett., 2014, 24(16), 3797-3801.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.067] [PMID: 25042254]
[88]
Shan, Y.; Liu, Z.; Cao, D.; Liu, G.; Guan, R.; Sun, N.; Wang, C.; Wang, K. Coumarinic chalcone derivatives as chemosensors for cyanide anions and copper ions. Sens. Actuators B Chem., 2015, 221, 463-469.
[http://dx.doi.org/10.1016/j.snb.2015.06.118]
[89]
Shang, Y.; Wei, Q.; Sun, Z. Studying the cytotoxicity of coumarin-chalcone hybrids by a prooxidant strategy in A549 cells. Monatshefte für Chemie-Chemical Mon., 2018, 149, 2287-2292.
[http://dx.doi.org/10.1007/s00706-018-2273-0]
[90]
Vazquez-Rodriguez, S.; Figueroa-Guíñez, R.; Matos, M.J.; Santana, L.; Uriarte, E.; Lapier, M.; Maya, J.D.; Olea-Azar, C. Synthesis of coumarin-chalcone hybrids and evaluation of their antioxidant and trypanocidal properties. MedChemComm, 2013, 4, 993-1000.
[http://dx.doi.org/10.1039/c3md00025g]
[91]
Gholap, S.S.; Deshmukh, U.P.; Tambe, M.S. Synthesis and in-vitro antimicrobial screening of 3-cinnamoyl coumarin and 3-[3-(1H-indol-2-yl)-3-arylpropanoyl]- 2H-chromen-2-ones. I.J.C, 2013, 3171.
[92]
Wanare, G.; Aher, R.; Kawathekar, N.; Ranjan, R.; Kaushik, N.K.; Sahal, D. Synthesis of novel α-pyranochalcones and pyrazoline derivatives as Plasmodium falciparum growth inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(15), 4675-4678.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.069] [PMID: 20576433]
[93]
Siddiqui, Z.N. A convenient synthesis of coumarinyl chalcones using HClO4-SiO2: a green approach. Arab. J. Chem., 2015, 12(8), 2788-2797.
[94]
Freeman, F. Properties and reactions of ylidenemalononitriles. Chem. Rev., 1980, 80(4), 329-350.
[http://dx.doi.org/10.1021/cr60326a004]
[95]
Tietze, L.F. Domino reactions in organic synthesis. Chem. Rev., 1996, 96(1), 115-136.
[http://dx.doi.org/10.1021/cr950027e] [PMID: 11848746]
[96]
Kraus, G.A.; Krolski, M.E. Synthesis of a precursor to quassimarin. J. Org. Chem., 1986, 51, 3347-3350.
[http://dx.doi.org/10.1021/jo00367a017]
[97]
Tietze, L.F.; Rackelmann, N. Domino reactions in the synthesis of heterocyclic natural products and analogs. Pure Appl. Chem., 2004, 76, 1967-1983.
[http://dx.doi.org/10.1351/pac200476111967]
[98]
Liang, F.; Pu, Y-J.; Kurata, T.; Kido, J.; Nishide, H. Synthesis and electroluminescent property of poly (p-phenylenevinylene) s bearing triarylamine pendants. Polymer., 2005, 46(11), 3767-3775.
[http://dx.doi.org/10.1016/j.polymer.2005.03.036]
[99]
Zahouily, M.; Salah, M.; Bahlaouane, B.; Rayadh, A.; Houmam, A.; Hamed, E.A.; Sebti, S. Solid catalysts for the production of fine chemicals: the use of natural phosphate alone and doped base catalysts for the synthesis of unsaturated arylsulfones. Tetrahedron, 2004, 60, 1631-1635.
[http://dx.doi.org/10.1016/j.tet.2003.11.086]
[100]
Kisanga, P.; Fei, X.; Verkade, J. P.(RNCH2CH2) 3N: an efficient promoter for the synthesis of 3-substituted coumarins. Sci. Commun., 2002, 32(8), 1135-1144.
[101]
Prajapati, D.; Gohain, M. Iodine a simple, effective and inexpensive catalyst for the synthesis of substituted coumarins. Catal. Lett., 2007, 119, 59-63.
[http://dx.doi.org/10.1007/s10562-007-9186-6]
[102]
Vazquez-Rodriguez, S.; Matos, M.J.; Uriarte, E.; Ferino, G.; Cadoni, E.; Vina, D. In: Benzopyran-2-Ones as Attractive Scaffold for MAO Inhibitors: Synthesis, Biological Evaluation and Docking Studies, Proceedings of the 5th Int. Electron. Conf. Synth. Org. Chem; , 2011.
[103]
Fonsecaa, A.; Matosa, M.J.; Vazquez-Rodrigueza, S.; Viñac, D.; Vilarb, S.; Borgesa, F.; Santanab, L.; Uriarteb, E. In: Structural Modifications on Natural- Based Products: Synthetic Strategies and Biological Applications, The 18th International Electronic Conference on Synthetic Organic Chemistry; , 2014.
[104]
Jang, Y-J.; Syu, S.E.; Chen, Y-J.; Yang, M-C.; Lin, W. Syntheses of furo[3,4-c]coumarins and related furyl coumarin derivatives via intramolecular Wittig reactions. Org. Biomol. Chem., 2012, 10(4), 843-847.
[http://dx.doi.org/10.1039/C1OB06571H] [PMID: 22130868]
[105]
Yang, F.; Fan, H.; Xue, Z. Synthesis and fluorescent properties of coumarin-chalcone hybrids. J. Chem. Res., 2017, 41, 534.
[http://dx.doi.org/10.3184/174751917X15035711817504]
[106]
Niu, H.; Wang, W.; Li, J.; Lei, Y.; Zhao, Y.; Yang, W.; Zhao, C.; Lin, B.; Song, S.; Wang, S. A novel structural class of coumarin-chalcone fibrates as PPARα/γ agonists with potent antioxidant activities: Design, synthesis, biological evaluation and molecular docking studies. Eur. J. Med. Chem., 2017, 138, 212-220.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.033] [PMID: 28667876]
[107]
Narender, T.; Venkateswarlu, K.; Nayak, B.V.; Sarkar, S. A new chemical access for 3′-acetyl-4′-hydroxychalcones using borontrifluoride-etherate via a regioselective Claisen-Schmidt condensation and its application in the synthesis of chalcone hybrids. Tetrahedron Lett., 2011, 52, 5794-5798.
[http://dx.doi.org/10.1016/j.tetlet.2011.08.120]
[108]
Ahmad, I.; Thakur, J.P.; Chanda, D.; Saikia, D.; Khan, F.; Dixit, S.; Kumar, A.; Konwar, R.; Negi, A.S.; Gupta, A. Syntheses of lipophilic chalcones and their conformationally restricted analogues as antitubercular agents. Bioorg. Med. Chem. Lett., 2013, 23(5), 1322-1325.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.096] [PMID: 23369537]
[109]
Mi, X.; Wang, C.; Huang, M.; Wu, Y.; Wu, Y. Preparation of 3-acyl-4-arylcoumarins via metal-free tandem oxidative acylation/cyclization between alkynoates with aldehydes. J. Org. Chem., 2015, 80(1), 148-155.
[http://dx.doi.org/10.1021/jo502220b] [PMID: 25495248]
[110]
Borges, M.F.M.; Roleira, F.M.F.; Milhazes, N.; Villare, E.U.; Penin, L.S. Simple coumarins: privileged scaffolds in medicinal chemistry. Front. Med. Chem., 2010, 4, 23-85.
[111]
Hirano, T.; Hiromoto, K.; Kagechika, H. Development of a library of 6-arylcoumarins as candidate fluorescent sensors. Org. Lett., 2007, 9(7), 1315-1318.
[http://dx.doi.org/10.1021/ol070142z] [PMID: 17326649]
[112]
Nemeryuk, M.P.; Dimitrova, V.D.; Anisimova, O.S.; Sedov, A.L.; Solov’eva, N.P.; Traven, V.F. Conversion of coumarins accompanied by opening and recyclization of the lactone ring. 1. Study of the reaction of 3-ethoxycarbonyl (3-acyl) coumarins with cyanoacetylhydrazine and its derivatives. Chem. Heterocycl. Compd., 2003, 39, 1454-1465.
[http://dx.doi.org/10.1023/B:COHC.0000014410.73636.dd]
[113]
Jafarpour, F.; Abbasnia, M. A regioselective metal-free construction of 3-aroyl coumarins by Csp2-H functionalization. J. Org. Chem., 2016, 81(23), 11982-11986.
[http://dx.doi.org/10.1021/acs.joc.6b02051] [PMID: 27800677]
[114]
Luan, X.H.; Cerqueira, N.; Oliveira, A.M.A.G.; Raposo, M.M.M.; Rodrigues, L.M.; Coelho, P.J.; Campos, A.M.F. Synthesis of fluorescent 3-benzoxazol-2-yl-coumarins. Adv. Color Sci. Tech., 2002, 5(1), 18-23.
[115]
Takeuchi, Y.; Ueda, N.; Uesugi, K.; Abe, H.; Nishioka, H.; Harayama, T. Convenient synthesis of a simple coumarin from salicylaldehyde and Wittig reagent. IV: Improved synthetic method of substituted coumarins. Heterocycles, 2003, 59, 217-224.
[http://dx.doi.org/10.3987/COM-02-S23]
[116]
Wang, D.; Wang, Y.; Zhao, J.; Shen, M.; Hu, J.; Liu, Z.; Li, L.; Xue, F.; Yu, P. Strategic approach to 8-azacoumarins. Org. Lett., 2017, 19(5), 984-987.
[http://dx.doi.org/10.1021/acs.orglett.6b03771] [PMID: 28186758]
[117]
Zhu, J.; Bienayme, H. Multicomponent Reactions; John Wiley & Sons, 2006.
[118]
Tejedor, D.; García-Tellado, F. Chemo-differentiating ABB’ multicomponent reactions. Privileged building blocks. Chem. Soc. Rev., 2007, 36(3), 484-491.
[http://dx.doi.org/10.1039/B608164A] [PMID: 17325787]
[119]
Ugi, I. Recent progress in the chemistry of multicomponent reactions. Pure Appl. Chem., 2001, 73, 187-191.
[http://dx.doi.org/10.1351/pac200173010187]
[120]
Liéby‐Muller, F.; Simon, C.; Constantieux, T.; Rodriguez, J. Current developments in Michael addition‐based multicomponent domino reactions involving 1, 3‐dicarbonyls and derivatives. Mol. Inform., 2006, 25, 432-438.
[121]
Leonard, N.M.; Wieland, L.C.; Mohan, R.S. Applications of bismuth(III) compounds in organic synthesis. Tetrahedron, 2002, 58, 8373-8397.
[http://dx.doi.org/10.1016/S0040-4020(02)01000-1]
[122]
Thirupathi, P.; Kim, S.S. Three components synthesis of homoallylic amines catalyzed by bismuth (III) nitrate pentahydrate. Tetrahedron, 2009, 65, 5168-5173.
[http://dx.doi.org/10.1016/j.tet.2009.05.010]
[123]
Rivera, S.; Bandyopadhyay, D.; Banik, B.K. Facile synthesis of N-substituted pyrroles via microwave-induced bismuth nitrate-catalyzed reaction. Tetrahedron Lett., 2009, 50, 5445-5448.
[http://dx.doi.org/10.1016/j.tetlet.2009.06.002]
[124]
Antoniotti, S.; Duñach, E. Recent uses of bismuth derivatives in organic synthesis. Chem. Reports, 2004, 7(6-7), 679-688.
[http://dx.doi.org/10.1016/j.crci.2004.03.008]
[125]
Mohammadpoor-Baltork, I.; Khosropour, A.R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Baghersad, S.; Mirjafari, A. Efficient one-pot synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones from aromatic aldehydes and their one-pot oxidation to quinazolin-4 (3H)-ones catalyzed by Bi(NO3)3• 5H2O: investigating the role of the catalyst. C. R. Chim., 2011, 14(10), 944-952.
[http://dx.doi.org/10.1016/j.crci.2011.05.003]
[126]
Wang, Z.; Fang, S. Bismuth (III) chloride catalyzed cycloisomerization of enynes. Eur. J. Org. Chem., 2009, 2009(32), 5505-5508.
[127]
Gohain, M.; van Tonder, J.H.; Bezuidenhoudt, B.C.B. Bi (OTf) 3-catalyzed solvent-free synthesis of pyrano [3, 2-c] coumarins through a tandem addition/annulation reaction between chalcones and 4-hydroxycoumarins. Tetrahedron Lett., 2013, 54, 3773-3776.
[http://dx.doi.org/10.1016/j.tetlet.2013.05.008]
[128]
Khan, M.N.; Pal, S.; Karamthulla, S.; Choudhury, L.H. Multicomponent reactions for facile access to coumarin-fused dihydroquinolines and quinolines: synthesis and photophysical studies. New J. Chem., 2014, 38, 4722-4729.
[http://dx.doi.org/10.1039/C4NJ00630E]
[129]
Ali, M.A.E.A. Bismuth triflate: A highly efficient catalyst for the synthesis of bio-active coumarin compounds via one-pot multi-component reaction. Chin. J. Catal., 2015, 36, 1124-1130.
[http://dx.doi.org/10.1016/S1872-2067(14)60308-9]
[130]
Ulgheri, F.; Marchetti, M.; Piccolo, O. Enantioselective synthesis of (s)- and (R)-tolterodine by asymmetric hydrogenation of a coumarin derivative obtained by a Heck reaction. J. Org. Chem., 2007, 72(16), 6056-6059.
[http://dx.doi.org/10.1021/jo0705667] [PMID: 17625882]
[131]
Khoobi, M.; Alipour, M.; Zarei, S.; Jafarpour, F.; Shafiee, A. A facile route to flavone and neoflavone backbones via a regioselective palladium catalyzed oxidative Heck reaction. Chem. Commun. (Camb.), 2012, 48(24), 2985-2987.
[http://dx.doi.org/10.1039/c2cc18150a] [PMID: 22318701]
[132]
Barancelli, D.A.; Salles, A.G., Jr; Taylor, J.G.; Correia, C.R.D. Coumarins from free ortho-hydroxy cinnamates by Heck-Matsuda arylations: a scalable total synthesis of (R)-tolterodine. Org. Lett., 2012, 14(23), 6036-6039.
[http://dx.doi.org/10.1021/ol302923f] [PMID: 23190249]
[133]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[134]
El-Sherief, H.A.; Abuo-Rahma, G.E.D.A.; Shoman, M.E.; Beshr, E.A.; Abdel-baky, R.M. Design and synthesis of new coumarin-chalcone/NO hybrids of potential biological activity. Med. Chem. Res., 2017, 26, 3077-3090.
[http://dx.doi.org/10.1007/s00044-017-2004-9]
[135]
Dhiman, R.; Sharma, S.; Singh, G.; Nepali, K.; Singh Bedi, P.M. Design and synthesis of aza-flavones as a new class of xanthine oxidase inhibitors. Arch. Pharm., 2013, 346(1), 7-16.
[http://dx.doi.org/10.1002/ardp.201200296] [PMID: 23076715]
[136]
Da Silva, S.L.; Da Silva, A.; Honório, K.M.; Marangoni, S.; Toyama, M.H.; Da Silva, A.B.F. The influence of electronic, steric and hydrophobic properties of flavonoid compounds in the inhibition of the xanthine oxidase. J. Mol. Struct. THEOCHEM, 2004, 684(1-3), 1-7.
[http://dx.doi.org/10.1016/j.theochem.2004.04.003]
[137]
Lin, C-M.; Chen, C-S.; Chen, C-T.; Liang, Y-C.; Lin, J-K. Molecular modeling of flavonoids that inhibits xanthine oxidase. Biochem. Biophys. Res. Commun., 2002, 294(1), 167-172.
[http://dx.doi.org/10.1016/S0006-291X(02)00442-4] [PMID: 12054758]
[138]
Virdi, H.S.; Sharma, S.; Mehndiratta, S.; Bedi, P.M.S.; Nepali, K. Design, synthesis and evaluation of 2,4-diarylpyrano[3,2-c]chromen-5(4H)-one as a new class of non-purine xanthine oxidase inhibitors. J. Enzyme Inhib. Med. Chem., 2014, 30, 1-7.
[PMID: 25268805]
[139]
Patel, D.; Kumari, P.; Patel, N.B. In vitro antimicrobial and antimycobacterial activity of some chalcones and their derivatives. Med. Chem. Res., 2013, 22, 726-744.
[http://dx.doi.org/10.1007/s00044-012-0073-3]
[140]
Decker, M. Hybrid molecules incorporating natural products: applications in cancer therapy, neurodegenerative disorders and beyond. Curr. Med. Chem., 2011, 18(10), 1464-1475.
[http://dx.doi.org/10.2174/092986711795328355] [PMID: 21428895]
[141]
Solomon, V.R.; Hu, C.; Lee, H. Hybrid pharmacophore design and synthesis of isatin-benzothiazole analogs for their anti-breast cancer activity. Bioorg. Med. Chem., 2009, 17(21), 7585-7592.
[http://dx.doi.org/10.1016/j.bmc.2009.08.068] [PMID: 19804979]
[142]
Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.S.; Dhar, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem., 2014, 77, 422-487.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.018] [PMID: 24685980]
[143]
Xu, L.; Wu, Y-L.; Zhao, X-Y.; Zhang, W. The study on biological and pharmacological activity of coumarins. Angew. Chem. Int. Ed., 2015, 40, 2004-2021.
[http://dx.doi.org/10.2991/ap3er-15.2015.33]
[144]
Sakagami, H.; Masuda, Y.; Tomomura, M.; Yokose, S.; Uesawa, Y.; Ikezoe, N.; Asahara, D.; Takao, K.; Kanamoto, T.; Terakubo, S.; Kagaya, H.; Nakashima, H.; Sugita, Y. Quantitative structure-cytotoxicity relationship of chalcones. Anticancer Res., 2017, 37(3), 1091-1098.
[http://dx.doi.org/10.21873/anticanres.11421] [PMID: 28314269]
[145]
Go, M.L.; Wu, X.; Liu, X.L. Chalcones: an update on cytotoxic and chemoprotective properties. Curr. Med. Chem., 2005, 12(4), 481-499.
[http://dx.doi.org/10.2174/0929867053363153] [PMID: 15720256]
[146]
León-González, A.J.; Acero, N.; Muñoz-Mingarro, D.; Navarro, I.; Martín-Cordero, C.A.; Acero, N.; Munoz-Mingarro, D.; Navarro, I.; Martin-Cordero, C. Chalcones as promising lead compounds on cancer therapy. Curr. Med. Chem., 2015, 22(30), 3407-3425.
[http://dx.doi.org/10.2174/0929867322666150729114829] [PMID: 26219392]
[147]
Emami, S.; Dadashpour, S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur. J. Med. Chem., 2015, 102, 611-630.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.033] [PMID: 26318068]
[148]
Liu, X.; Go, M-L. Antiproliferative activity of chalcones with basic functionalities. Bioorg. Med. Chem., 2007, 15(22), 7021-7034.
[http://dx.doi.org/10.1016/j.bmc.2007.07.042] [PMID: 17804245]
[149]
Sabzevari, O.; Galati, G.; Moridani, M.Y.; Siraki, A.; O’Brien, P.J. Molecular cytotoxic mechanisms of anticancer hydroxychalcones. Chem. Biol. Interact., 2004, 148(1-2), 57-67.
[http://dx.doi.org/10.1016/j.cbi.2004.04.004] [PMID: 15223357]
[150]
Wells, T.N.C.; Hooft van Huijsduijnen, R.; Van Voorhis, W.C. Malaria medicines: a glass half full? Nat. Rev. Drug Discov., 2015, 14(6), 424-442.
[http://dx.doi.org/10.1038/nrd4573] [PMID: 26000721]
[151]
Mvumbi, D.M.; Kayembe, J-M.; Situakibanza, H.; Bobanga, T.L.; Nsibu, C.N.; Mvumbi, G.L.; Melin, P.; De Mol, P.; Hayette, M-P. Falciparum malaria molecular drug resistance in the Democratic Republic of Congo: a systematic review. Malar. J., 2015, 14, 354.
[http://dx.doi.org/10.1186/s12936-015-0892-z] [PMID: 26376639]
[152]
Diagana, T.T. Supporting malaria elimination with 21st century antimalarial agent drug discovery. Drug Discov. Today, 2015, 20(10), 1265-1270.
[http://dx.doi.org/10.1016/j.drudis.2015.06.009] [PMID: 26103616]
[153]
Mishra, M.; Mishra, V.K.; Kashaw, V.; Iyer, A.K.; Kashaw, S.K. Comprehensive review on various strategies for antimalarial drug discovery. Eur. J. Med. Chem., 2017, 125, 1300-1320.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.025] [PMID: 27886547]
[154]
Tiwari, H.K.; Kumar, P.; Jatana, N.; Kumar, K.; Garg, S.; Narayanan, L.; Sijwali, P.S.; Pandey, K.C.; Gorobets, N.Y.; Dunn, B.M. In vitro antimalarial evaluation of piperidine‐and piperazine‐based chalcones: inhibition of falcipain‐2 and plasmepsin II hemoglobinases activities from Plasmodium falciparum. ChemistrySelect, 2017, 2, 7684-7690.
[http://dx.doi.org/10.1002/slct.201701162]
[155]
Hu, X.L.; Gao, C.; Xu, Z.; Liu, M.L.; Feng, L.S.; Zhang, G.D. Recent development of coumarin derivatives as potential antiplasmodial and antimalarial agents. Curr. Top. Med. Chem., 2017, 18(2), 114-123.
[PMID: 29243579]
[156]
Akhtar, W.; Khan, M.F.; Verma, G.; Shaquiquzzaman, M.; Akhter, M.; Marella, A.; Parmar, S.; Khatoon, R.; Alam, M.M. Coumarin-pyrazoline derivatives: their one-pot microwave assisted synthesis and antimalarial activity. J. Pharm. Med. Chem., 2017, 3, 5-9.
[157]
Yadav, N.; Agarwal, D.; Kumar, S.; Dixit, A.K.; Gupta, R.D.; Awasthi, S.K. In vitro antiplasmodial efficacy of synthetic coumarin-triazole analogs. Eur. J. Med. Chem., 2018, 145, 735-745.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.017] [PMID: 29366931]
[158]
Insuasty, B.; Ramírez, J.; Becerra, D.; Echeverry, C.; Quiroga, J.; Abonia, R.; Robledo, S.M.; Vélez, I.D.; Upegui, Y.; Muñoz, J.A.; Ospina, V.; Nogueras, M.; Cobo, J. An efficient synthesis of new caffeine-based chalcones, pyrazolines and pyrazolo[3,4-b][1,4]diazepines as potential antimalarial, antitrypanosomal and antileishmanial agents. Eur. J. Med. Chem., 2015, 93, 401-413.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.040] [PMID: 25725376]
[159]
Chaudhary, K.K.; Kannojia, P.; Mishra, N. Chalcones as antimalarials: in silico and synthetic approach. In: Battle Against Microbial Pathogens Basic Science Technological Advances and Educational Programs; A. Méndez, -Vilas, Ed.; Formatex Research Center: Badajoz, 2015; pp. 512-525.
[160]
Tadigoppula, N.; Korthikunta, V.; Gupta, S.; Kancharla, P.; Khaliq, T.; Soni, A.; Srivastava, R.K.; Srivastava, K.; Puri, S.K.; Raju, K.S.R.; Wahajuddin, ; Sijwali, P.S.; Kumar, V.; Mohammad, I.S. Synthesis and insight into the structure-activity relationships of chalcones as antimalarial agents. J. Med. Chem., 2013, 56(1), 31-45.
[http://dx.doi.org/10.1021/jm300588j] [PMID: 23270565]
[161]
Špirtović-Halilović, S.; Salihović, M.; Džudžević-Čančar, H.; Trifunović, S.; Roca, S.; Softić, D.; Završnik, D. DFT study and microbiology of some coumarin-based compounds containing a chalcone moiety. J. Serb. Chem. Soc., 2014, 79, 435-443.
[http://dx.doi.org/10.2298/JSC130628077S]
[162]
Sashidhara, K.V.; Kumar, M.; Modukuri, R.K.; Sonkar, R.; Bhatia, G.; Khanna, A.K.; Rai, S.; Shukla, R. Synthesis and anti-inflammatory activity of novel biscoumarin-chalcone hybrids. Bioorg. Med. Chem. Lett., 2011, 21(15), 4480-4484.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.002] [PMID: 21723119]
[163]
Yadav, D.K.; Ahmad, I.; Shukla, A.; Khan, F.; Negi, A.S.; Gupta, A. QSAR and docking studies on chalcone derivatives for antitubercular activity against M. tuberculosis H37Rv. J. Chemometr., 2014, 28, 499-507.
[http://dx.doi.org/10.1002/cem.2606]
[164]
Tejada, S.; Martorell, M.; Capo, X.; Tur, J.A.; Pons, A.; Sureda, A. Coumarin and derivates as lipid lowering agents. Curr. Top. Med. Chem., 2017, 17(4), 391-398.
[http://dx.doi.org/10.2174/1568026616666160824102322] [PMID: 27558682]
[165]
Lee, Y.S.; Kim, S.H.; Jung, S.H.; Kim, J.K.; Pan, C-H.; Lim, S.S. Aldose reductase inhibitory compounds from Glycyrrhiza uralensis. Biol. Pharm. Bull., 2010, 33(5), 917-921.
[http://dx.doi.org/10.1248/bpb.33.917] [PMID: 20460778]
[166]
Kumar, A.; Maurya, R.A.; Sharma, S.; Ahmad, P.; Singh, A.B.; Bhatia, G.; Srivastava, A.K. Pyranocoumarins: a new class of anti-hyperglycemic and anti-dyslipidemic agents. Bioorg. Med. Chem. Lett., 2009, 19(22), 6447-6451.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.031] [PMID: 19811915]
[167]
Sashidhara, K.V.; Palnati, G.R.; Sonkar, R.; Avula, S.R.; Awasthi, C.; Bhatia, G. Coumarin chalcone fibrates: a new structural class of lipid lowering agents. Eur. J. Med. Chem., 2013, 64, 422-431.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.026] [PMID: 23665798]
[168]
García‐Beltrán, O.; González, C.; Pérez, G.E.; Cassels, K.B.; Santos, G.J.; Millán, D.; Mena, N.; Pavez, P.; Aliaga, M.E. Nucleophilic reactivity of biothiols toward coumarin‐based derivatives containing a chalcone moiety. J. Phys. Org. Chem., 2012, 25, 946-952.
[http://dx.doi.org/10.1002/poc.2975]
[169]
Kumar, A.; Ahmed, N. A coumarin-chalcone hybrid used as a selective and sensitive colorimetric and turn-on fluorometric sensor for Cd2+ detection. New J. Chem., 2017, 41, 14746-14753.
[http://dx.doi.org/10.1039/C7NJ02569F]
[170]
Kostova, I. Synthetic and natural coumarins as cytotoxic agents. Curr. Med. Chem. Anticancer Agents, 2005, 5(1), 29-46.
[http://dx.doi.org/10.2174/1568011053352550] [PMID: 15720259]
[171]
Beillerot, A.; Domínguez, J-C.R.; Kirsch, G.; Bagrel, D. Synthesis and protective effects of coumarin derivatives against oxidative stress induced by doxorubicin. Bioorg. Med. Chem. Lett., 2008, 18(3), 1102-1105.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.004] [PMID: 18164200]
[172]
Olaharski, A.J.; Rine, J.; Marshall, B.L.; Babiarz, J.; Zhang, L.; Verdin, E.; Smith, M.T. The flavoring agent dihydrocoumarin reverses epigenetic silencing and inhibits sirtuin deacetylases. PLoS Genet., 2005, 1(6), 77.
[http://dx.doi.org/10.1371/journal.pgen.0010077] [PMID: 16362078]
[173]
Rotili, D.; Carafa, V.; Tarantino, D.; Botta, G.; Nebbioso, A.; Altucci, L.; Mai, A. Simplification of the tetracyclic SIRT1-selective inhibitor MC2141: coumarin- and pyrimidine-based SIRT1/2 inhibitors with different selectivity profile. Bioorg. Med. Chem., 2011, 19(12), 3659-3668.
[http://dx.doi.org/10.1016/j.bmc.2011.01.025] [PMID: 21306905]
[174]
Riederer, P.; Danielczyk, W.; Grünblatt, E. Monoamine oxidase-B inhibition in Alzheimer’s disease. Neurotoxicology, 2004, 25(1-2), 271-277.
[http://dx.doi.org/10.1016/S0161-813X(03)00106-2] [PMID: 14697902]
[175]
Guay, D.R.P. Rasagiline (TVP-1012): a new selective monoamine oxidase inhibitor for Parkinson’s disease. Am. J. Geriatr. Pharmacother., 2006, 4(4), 330-346.
[http://dx.doi.org/10.1016/j.amjopharm.2006.12.001] [PMID: 17296539]
[176]
Pisani, L.; Muncipinto, G.; Miscioscia, T.F.; Nicolotti, O.; Leonetti, F.; Catto, M.; Caccia, C.; Salvati, P.; Soto-Otero, R.; Mendez-Alvarez, E.; Passeleu, C.; Carotti, A. Discovery of a novel class of potent coumarin monoamine oxidase B inhibitors: development and biopharmacological profiling of 7-[(3-chlorobenzyl)oxy]-4-[(methylamino)methyl]-2H-chromen-2-one methanesulfonate (NW-1772) as a highly potent, selective, reversible, and orally active monoamine oxidase B inhibitor. J. Med. Chem., 2009, 52(21), 6685-6706.
[http://dx.doi.org/10.1021/jm9010127] [PMID: 19810674]
[177]
Matos, M.J.; Viña, D.; Quezada, E.; Picciau, C.; Delogu, G.; Orallo, F.; Santana, L.; Uriarte, E. A new series of 3-phenylcoumarins as potent and selective MAO-B inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(12), 3268-3270.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.085] [PMID: 19423346]
[178]
Matos, M.J.; Viña, D.; Janeiro, P.; Borges, F.; Santana, L.; Uriarte, E. New halogenated 3-phenylcoumarins as potent and selective MAO-B inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(17), 5157-5160.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.013] [PMID: 20659799]
[179]
Matos, M.J.; Terán, C.; Pérez-Castillo, Y.; Uriarte, E.; Santana, L.; Viña, D. Synthesis and study of a series of 3-arylcoumarins as potent and selective monoamine oxidase B inhibitors. J. Med. Chem., 2011, 54(20), 7127-7137.
[http://dx.doi.org/10.1021/jm200716y] [PMID: 21923181]
[180]
Delogu, G.; Picciau, C.; Ferino, G.; Quezada, E.; Podda, G.; Uriarte, E.; Viña, D. Synthesis, human monoamine oxidase inhibitory activity and molecular docking studies of 3-heteroarylcoumarin derivatives. Eur. J. Med. Chem., 2011, 46(4), 1147-1152.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.033] [PMID: 21316817]
[181]
Moore-Carrasco, R.; Bustamante, M.P.; Guerra, O.G.; Madariaga, E.L.; Mujica Escudero, V.; Aranguez Arellano, C.; Palomo, I. Peroxisome proliferator-activated receptors: Targets for the treatment of metabolic illnesses. Mol. Med. Rep., 2008, 1(3), 317-324.
[http://dx.doi.org/10.3892/mmr.1.3.317] [PMID: 21479412]
[182]
Ahmed, I.; Furlong, K.; Flood, J.; Treat, V.P.; Goldstein, B.J. Dual PPAR α/γ agonists: promises and pitfalls in type 2 diabetes. Am. J. Ther., 2007, 14(1), 49-62.
[http://dx.doi.org/10.1097/01.mjt.0000212890.82339.8d] [PMID: 17303976]
[183]
Pirat, C.; Farce, A.; Lebègue, N.; Renault, N.; Furman, C.; Millet, R.; Yous, S.; Speca, S.; Berthelot, P.; Desreumaux, P.; Chavatte, P. Targeting peroxisome proliferator-activated receptors (PPARs): development of modulators. J. Med. Chem., 2012, 55(9), 4027-4061.
[http://dx.doi.org/10.1021/jm101360s] [PMID: 22260081]
[184]
Stocker, R.; Keaney, Jr, J.F. Role of oxidative modifications in atherosclerosis. Physiol. Rev., 2004, 84(4), 1381-1478.
[http://dx.doi.org/10.1152/physrev.00047.2003] [PMID: 15383655]
[185]
Inoue, T.; Hayashi, M.; Takayanagi, K.; Morooka, S. Lipid-lowering therapy with fluvastatin inhibits oxidative modification of low density lipoprotein and improves vascular endothelial function in hypercholesterolemic patients. Atherosclerosis, 2002, 160(2), 369-376.
[http://dx.doi.org/10.1016/S0021-9150(01)00585-8] [PMID: 11849660]
[186]
Vazquez-Rodriguez, S.; Matos, M.J.; Santana, L.; Uriarte, E.; Borges, F.; Kachler, S.; Klotz, K.N. Chalcone-based derivatives as new scaffolds for hA3 adenosine receptor antagonists. J. Pharm. Pharmacol., 2013, 65(5), 697-703.
[http://dx.doi.org/10.1111/jphp.12028] [PMID: 23600387]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy