Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Pyrone-derived Marine Natural Products: A Review on Isolation, Bio-activities and Synthesis

Author(s): Keisham S. Singh*

Volume 24, Issue 4, 2020

Page: [354 - 401] Pages: 48

DOI: 10.2174/1385272824666200217101400

Price: $65

Abstract

Marine natural products (MNPs) containing pyrone rings have been isolated from numerous marine organisms, and also produced by marine fungi and bacteria, particularly, actinomycetes. They constitute a versatile structure unit of bioactive natural products that exhibit various biological activities such as antibiotic, antifungal, cytotoxic, neurotoxic, phytotoxic and anti-tyrosinase. The two structure isomers of pyrone ring are γ- pyrone and α-pyrone. In terms of chemical motif, γ-pyrone is the vinologous form of α- pyrone which possesses a lactone ring. Actinomycete bacteria are responsible for the production of several α-pyrone compounds such as elijopyrones A-D, salinipyrones and violapyrones etc. to name a few. A class of pyrone metabolites, polypropionates which have fascinating carbon skeleton, is primarily produced by marine molluscs. Interestingly, some of the pyrone polytketides which are found in cone snails are actually synthesized by actinomycete bacteria. Several pyrone derivatives have been obtained from marine fungi such as Aspergillums flavus, Altenaria sp., etc. The γ-pyrone derivative namely, kojic acid obtained from Aspergillus fungus has high commercial demand and finds various applications. Kojic acid and its derivative displayed inhibition of tyrosinase activity and, it is also extensively used as a ligand in coordination chemistry. Owing to their commercial and biological significance, the synthesis of pyrone containing compounds has been given attention over the past years. Few reviews on the total synthesis of pyrone containing natural products namely, polypropionate metabolites have been reported. However, these reviews skipped other marine pyrone metabolites and also omitted discussion on isolation and detailed biological activities. This review presents a brief account of the isolation of marine metabolites containing a pyrone ring and their reported bio-activities. Further, the review covers the synthesis of marine pyrone metabolites such as cyercene-A, placidenes, onchitriol-I, onchitriol-II, crispatene, photodeoxytrichidione, (-) membrenone-C, lihualide-B, macrocyclic enol ethers and auripyrones-A & B.

Keywords: Marine pyrones, actinomycetes, biological activities, anti-tyrosinase, β-ketoester, synthesis, dess–martin periodinane, polypropionates.

Graphical Abstract

[1]
(a)Kuramoto, M.; Arimoto, H.; Uemura, D. Bioactive alkaloids from the sea: a review. Mar. Drugs, 2004, 2, 39-54.
[http://dx.doi.org/10.3390/md201039]
(b)Singh, K.S.; Majik, M.S. Bioactive alkaloids from marine sponges. In: Marine Sponges: Chemicobiological and Biomedical Applications; Pallela, R.; Hermann, E., Eds.; Springer, 2016; pp. 257-286.
[http://dx.doi.org/10.1007/978-81-322-2794-6-12]
[2]
Gross, H.; König, G.M. Terpenoids from marine organisms: unique structures and their pharmacological potential. Phytochem. Rev., 2006, 5, 115-141.
[http://dx.doi.org/10.1007/s11101-005-5464-3]
[3]
Cheung, R.C.F.; Ng, T.B.; Wong, J.H. Marine peptides: bioactivities and applications. Mar. Drugs, 2015, 13(7), 4006-4043.
[http://dx.doi.org/10.3390/md13074006] [PMID: 26132844]
[4]
Sarma, N.S.; Krishna, M.S.; Pasha, S.G.; Rao, T.S.P.; Venkateswarlu, Y.; Parameswaran, P.S. Marine metabolites: the sterols of soft coral. Chem. Rev., 2009, 109(6), 2803-2828.
[http://dx.doi.org/10.1021/cr800503e] [PMID: 19435309]
[5]
(a)Faulkner, D.J. Marine natural products. Nat. Prod. Rep., 2001, 18, 1-49.
(b)Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2019, 36, 122-173.
(c)Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcotec, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2010, 27, 165-237.
[6]
Singh, K.S.; Majik, M.S. Pyrrole-derived alkaloids of marine sponges and their biological properties In: Studies in Natural Products Chemistry; Attaur, -Rahman, Ed.; Elsevier Science, 2019; 62, pp. 377-405.
[http://dx.doi.org/10.1016/B978-0-444-64185-4.00010-1]
[7]
Tilvi, S.; Singh, K.S. Synthesis of oxazole, oxazoline and isoxazoline derived marine natural products: a review. Curr. Org. Chem., 2016, 20, 898-929.
[http://dx.doi.org/10.2174/1385272819666150804000046]
[8]
McGlacken, G.P.; Fairlamb, I.J.S. 2-Pyrone natural products and mimetics: isolation, characterization and biological activity. Nat. Prod. Rep., 2005, 22(3), 369-385.
[http://dx.doi.org/10.1039/b416651p] [PMID: 16010346]
[9]
Yabuta, K. A new organic acid (kojic acid) formed by Aspergillus oryzae. J. Chem. Soc. Japan, 1916, 37, 1185-1233.
[10]
(a)Basappa, S.C.; Sreenivasamurthy, V.; Parpia, H.A.B. Aflatoxin and kojic acid production by resting cells of Aspergillus flavus Link. J. Gen. Microbiol., 1970, 61(1), 81-86.
[http://dx.doi.org/10.1099/00221287-61-1-81] [PMID: 5489065]
(b)Ariff, A.B.; Salleh, M.S.; Ghani, B.; Hassan, M.A.; Rusul, G.; Karim, M.I.A. Aeration and yeast extract requirements for kojic acid production by Aspergillus flavus link. Enzyme Microb. Technol., 1996, 19(7), 545-550.
[http://dx.doi.org/10.1016/S0141-0229(96)00065-8]
[11]
(a)Takamizawa, K.; Nakashima, S.; Yahashi, Y.; Kubata, B.K.; Suzuki, T.; Kawai, K.; Horitsu, H. Optimization of kojic acid production rate using the Box-Wilson method. J. Ferment. Bioeng., 1996, 82, 414-416.
[http://dx.doi.org/10.1016/0922-338X(96)89163-X]
(b)Kwak, M.Y.; Rhee, J.S. Controlled mycelial growth for kojic acid production using Ca-alginate-immobilized fungal cells. Appl. Microbiol. Biotechnol., 1992, 36(5), 578-583.
[http://dx.doi.org/10.1007/BF00183232] [PMID: 1368062]
[12]
Gould, B.S. The metabolism of Aspergillus tamarii Kita. Kojic acid production. Biochem. J., 1938, 32(5), 797-802.
[http://dx.doi.org/10.1042/bj0320797] [PMID: 16746688]
[13]
(a)El-Aasar, S.A. Cultural conditions studies on kojic acid production by Aspergillus parasiticus. Int. J. Agric. Biol., 2006, 8, 468-473.
(b)Nandan, R.; Polasa, H. Inhibition of growth of kojic acid biosynthesis in Aspergillus by some chlorinated hydrocarbons. Indian J. Microbiol., 1985, 25, 21-25.
[14]
(a)Bentley, R. From miso, saké and shoyu to cosmetics: a century of science for kojic acid. Nat. Prod. Rep., 2006, 23(6), 1046-1062.
[http://dx.doi.org/10.1039/b603758p] [PMID: 17119644]
(b)Brtko, J.; Rondahl, L.; Ficková, M.; Hudecová, D.; Eybl, V.; Uher, M. Kojic acid and its derivatives: history and present state of art. Cent. Eur. J. Public Health, 2004, 12(Suppl.), S16-S17.
[PMID: 15141965]
[15]
Saeedi, M.; Eslamifar, M.; Khezri, K. Kojic acid applications in cosmetic and pharmaceutical preparations. Biomed. Pharmacother., 2019, 110, 582-593.
[http://dx.doi.org/10.1016/j.biopha.2018.12.006] [PMID: 30537675]
[16]
Emami, S.; Hosseinimehr, S.J.; Taghdisi, S.M.; Akhlaghpoor, S. Kojic acid and its manganese and zinc complexes as potential radioprotective agents. Bioorg. Med. Chem. Lett., 2007, 17(1), 45-48.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.097] [PMID: 17049858]
[17]
Singh, K.S.; Dixneuf, P.H. Direct C-H bond arylation in water promoted by (O, O) and (O, N) chelate ruthenium(II) catalysts. ChemCatChem, 2013, 5, 1313-1316.
[http://dx.doi.org/10.1002/cctc.201300031]
[18]
Agrawal, S.; Adholeya, A.; Barrow, C.J.; Deshmukh, S.K. Marine fungi: an untapped bioresource for future cosmeceuticals. Phytochem. Lett., 2018, 23, 15-20.
[http://dx.doi.org/10.1016/j.phytol.2017.11.003]
[19]
Lin, A.; Lu, X.; Fang, Y.; Zhu, T.; Gu, Q.; Zhu, W. Two new 5-hydroxy-2-pyrone derivatives isolated from a marine-derived fungus Aspergillus flavus. J. Antibiot. (Tokyo), 2008, 61(4), 245-249.
[http://dx.doi.org/10.1038/ja.2008.36] [PMID: 18503205]
[20]
Li, X.; Jeong, J.H.; Lee, K.T.; Rho, J.R.; Choi, H.D.; Kang, J.S.; Son, B.W. γ-Pyrone derivatives, kojic acid methyl ethers from a marine-derived fungus altenaria sp. Arch. Pharm. Res., 2003, 26, 532-534.
[http://dx.doi.org/10.1007/BF02976876] [PMID: 12934644]
[21]
Trisuwan, K.; Rukachaisirikul, V.; Sukpondma, Y.; Preedanon, S.; Phongpaichit, S.; Rungjindamai, N.; Sakayaroj, J. Epoxydons and a pyrone from the marine-derived fungus Nigrospora sp. PSU-F5. J. Nat. Prod., 2008, 71(8), 1323-1326.
[http://dx.doi.org/10.1021/np8002595] [PMID: 18646829]
[22]
Zhang, Y.; Zhu, T.; Fang, Y.; Liu, H.; Gu, Q.; Zhu, W. Carbonarones A and B, new bioactive γ-Pyrone and α-Pyridone derivatives from the marine-derived fungus Aspergillus carbonarius. J. Antibiot. (Tokyo), 2007, 60(2), 153-157.
[http://dx.doi.org/10.1038/ja.2007.15] [PMID: 17420566]
[23]
He, Y.; Tian, J.; Chen, X.; Sun, W.; Zhu, H.; Li, Q.; Lei, L.; Yao, G.; Xue, Y.; Wang, J.; Li, H.; Zhang, Y. Fungal naphtho-γ-pyrones: Potent antibiotics for drug-resistant microbial pathogens. Sci. Rep., 2016, 6, 24291.
[http://dx.doi.org/10.1038/srep24291] [PMID: 27063778]
[24]
(a)Donner, C.D. Naphthopyranones--isolation, bioactivity, biosynthesis and synthesis. Nat. Prod. Rep., 2015, 32(4), 578-604.
[http://dx.doi.org/10.1039/C4NP00127C] [PMID: 25531639]
(b)Koyama, K.; Ominato, K.; Natori, S.; Tashiro, T.; Tsuruo, T. Cytotoxicity and antitumor activities of fungal bis(naphtho-γ-pyrone) derivatives. J. Pharmacobiodyn., 1988, 11(9), 630-635.
[http://dx.doi.org/10.1248/bpb1978.11.630] [PMID: 2464052]
(c)Singh, S.B.; Zink, D.L.; Bills, G.F.; Teran, A.; Silverman, K.C.; Lingham, R.B.; Felock, P.; Hazuda, D.J. Four novel bis-(naphtho-γ-pyrones) isolated from Fusarium species as inhibitors of HIV-1 integrase. Bioorg. Med. Chem. Lett., 2003, 13(4), 713-717.
[http://dx.doi.org/10.1016/S0960-894X(02)01057-0] [PMID: 12639565]
[25]
Zhang, Y.; Ling, S.; Fang, Y.; Zhu, T.; Gu, Q.; Zhu, W.M. Isolation, Structure elucidation, and antimycobacterial properties of dimeric naphtho-γ-pyrones from the marine-derived fungus Aspergillus carbonarius. Chem. Biodivers., 2008, 5(1), 93-100.
[http://dx.doi.org/10.1002/cbdv.200890017] [PMID: 18205129]
[26]
Shaaban, M.; Shaaban, K.A.; Abdel-Aziz, M.S. Seven naphtho-γ-pyrones from the marine-derived fungus Alternaria alternata: structure elucidation and biological properties. Org. Med. Chem. Lett., 2012, 2, 6.
[http://dx.doi.org/10.1186/2191-2858-2-6] [PMID: 22377027]
[27]
Zheng, Y.Y.; Liang, Z.Y.; Shen, N.X.; Liu, W.L.; Zhou, X.J.; Fu, X.M.; Chen, M.; Wang, C.Y. New naphtho-pyrones isolated from marine-derived fungus Penicillium sp. HK1-22 and their antimicrobial activities. Mar. Drugs, 2019, 17, 322.
[http://dx.doi.org/10.3390/md17060322]
[28]
Kong, X.; Ma, X.; Xie, Y.; Cai, S.; Zhu, T.; Gu, Q.; Li, D. Aromatic polyketides from a sponge-derived fungus Metarhizium anisopliae mxh-99 and their antitubercular activities. Arch. Pharm. Res., 2013, 36(6), 739-744.
[http://dx.doi.org/10.1007/s12272-013-0077-7] [PMID: 23463335]
[29]
Gong, J.; Chen, C.; Mo, S.; Liu, J.; Wang, W.; Zang, Y.; Li, H.; Chai, C.; Zhu, H.; Hu, Z.; Wang, J.; Zhang, Y. Fusaresters A-E, new γ-pyrone-containing polyketides from fungus Fusarium sp. Hungcl and structure revision of fusariumin D. Org. Biomol. Chem., 2019, 17(22), 5526-5532.
[http://dx.doi.org/10.1039/C9OB00534J] [PMID: 31041978]
[30]
Elbandy, M.; Shinde, P.B.; Hong, J.; Bae, K.S.; Kim, M.A.; Lee, S.M.; Jung, J.H. α-Pyrones and yellow pigments from the sponge-derived fungus Paecilomyces lilacinus. Bull. Korean Chem. Soc., 2009, 30, 188-192.
[http://dx.doi.org/10.5012/bkcs.2009.30.1.188]
[31]
Pedras, M.S.C.; Morales, V.M.; Taylor, J.L. Phomapyrones: three metabolites from the blackleg fungus. Phytochemistry, 1994, 36, 1315-1318.
[http://dx.doi.org/10.1016/S0031-9422(00)89658-2]
[32]
Appendino, G.; Ottino, M.; Marquez, N.; Bianchi, F.; Giana, A.; Ballero, M.; Sterner, O.; Fiebich, B.L.; Munoz, E. Arzanol, an anti-inflammatory and anti-HIV-1 phloroglucinol α-Pyrone from Helichrysum italicum ssp. microphyllum. J. Nat. Prod., 2007, 70(4), 608-612.
[http://dx.doi.org/10.1021/np060581r] [PMID: 17315926]
[33]
Trisuwan, K.; Rukachaisirikul, V.; Sukpondma, Y.; Preedanon, S.; Phongpaichit, S.; Sakayaroj, J. Pyrone derivatives from the marine-derived fungus Nigrospora sp. PSU-F18. Phytochemistry, 2009, 70(4), 554-557.
[http://dx.doi.org/10.1016/j.phytochem.2009.01.008] [PMID: 19237178]
[34]
Abdel-Lateff, A.; Fisch, K.; Wright, A.D. Trichopyrone and other constituents from the marine sponge-derived fungus Trichoderma sp. Z. Natforsch. C J. Biosci., 2009, 64(3-4), 186-192.
[http://dx.doi.org/10.1515/znc-2009-3-406] [PMID: 19526710]
[35]
Yu, K.; Ren, B.; Wei, J.; Chen, C.; Sun, J.; Song, F.; Dai, H.; Zhang, L. Verrucisidinol and verrucosidinol acetate, two pyrone-type polyketides isolated from a marine derived fungus, Penicillium aurantiogriseum. Mar. Drugs, 2010, 8(11), 2744-2754.
[http://dx.doi.org/10.3390/md8112744] [PMID: 21139842]
[36]
Burka, L.T.; Ganguli, M.; Wilson, B.J. Verrucosidin, a tremorgen from Penicillium verrucosum var cyclopium. J. Chem. Soc. Chem. Commun., 1983, (9), 544-545.
[http://dx.doi.org/10.1039/c39830000544]
[37]
Ding, L.; Ren, L.; Li, S.; Song, J.; Han, Z.; He, S.; Xu, S. Production of new antibacterial 4-hydroxy-pyrones by a marine fungus Aspergillus niger cultivated in solid medium. Mar. Drugs, 2019, 17, 344.
[http://dx.doi.org/10.3390/md17060344]
[38]
He, X.; Ren, L.; Ding, L.; Xu, J.; Zhang, B.; Zhang, W.; He, S.; Penichrypyrone, A. A new γ-pyrone derivative from the sponge-derived fungus Penicillium chrysogenum LS18. Nat. Prod. Commun., 2019, 14(6) 1934578X19860378
[http://dx.doi.org/10.1177/1934578X19860378]
[39]
Liu, D.; Li, X.M.; Meng, L.; Li, C.S.; Gao, S.S.; Shang, Z.; Proksch, P.; Huang, C.G.; Wang, B.G. Nigerapyrones A-H, α-pyrone derivatives from the marine mangrove-derived endophytic fungus Aspergillus niger MA-132. J. Nat. Prod., 2011, 74(8), 1787-1791.
[http://dx.doi.org/10.1021/np200381u] [PMID: 21774474]
[40]
Zhang, Y.; Li, X.M.; Wang, B.G. Nigerasperones A ~C, new monomeric and dimeric naphtho-γ-pyrones from a marine alga-derived endophytic fungus Aspergillus niger EN-13. J. Antibiot. (Tokyo), 2007, 60(3), 204-210.
[http://dx.doi.org/10.1038/ja.2007.24] [PMID: 17446694]
[41]
Zhang, Y.; Li, X.M.; Feng, Y.; Wang, B.G. Phenethyl-α-pyrone derivatives and cyclodipeptides from a marine algous endophytic fungus Aspergillus niger EN-13. Nat. Prod. Res., 2010, 24(11), 1036-1043.
[http://dx.doi.org/10.1080/14786410902940875] [PMID: 19606383]
[42]
Ding, B.; Wang, Z.; Huang, X.; Liu, Y.; Chen, W.; She, Z. Bioactive α-pyrone meroterpenoids from mangrove endophytic fungus Penicillium sp. Nat. Prod. Res., 2016, 30(24), 2805-2812.
[http://dx.doi.org/10.1080/14786419.2016.1164702] [PMID: 27067533]
[43]
Lan, W.J.; Fu, S.J.; Xu, M.Y.; Liang, W.L.; Lam, C.K.; Zhong, G.H.; Xu, J.; Yang, D.P.; Li, H.J. Five new cytotoxic metabolites from the marine fungus Neosartorya pseudofischeri. Mar. Drugs, 2016, 14(1), 18.
[http://dx.doi.org/10.3390/md14010018] [PMID: 26771621]
[44]
Kim, G.S.; Ko, W.; Kim, J.W.; Jeong, M.H.; Ko, S.K.; Hur, J.S.; Oh, H.; Jang, J.H.; Ahn, J.S. Bioactive α-pyrone derivatives from the endolichenic fungus Dothideomycetes sp. EL003334. J. Nat. Prod., 2018, 81(4), 1084-1088.
[http://dx.doi.org/10.1021/acs.jnatprod.7b01022] [PMID: 29616812]
[45]
Abdelmohsen, U.R.; Bayer, K.; Hentschel, U. Diversity, abundance and natural products of marine sponge-associated actinomycetes. Nat. Prod. Rep., 2014, 31(3), 381-399.
[http://dx.doi.org/10.1039/C3NP70111E] [PMID: 24496105]
[46]
Toske, S.G.; Jensen, P.R.; Kauffman, C.A.; Fenical, W. Elijopyrones AD: new α-pyrones from a marine actinomycete. Nat. Prod. Lett., 1995, 6, 303-308.
[http://dx.doi.org/10.1080/10575639508043175]
[47]
Sitachitta, N.; Gadepalli, M.; Davidson, B.S. New α-pyrone-containing metabolites from a marine-derived actinomycete. Tetrahedron, 1996, 52, 8073-8080.
[http://dx.doi.org/10.1016/0040-4020(96)00391-2]
[48]
Schneemann, I.; Ohlendorf, B.; Zinecker, H.; Nagel, K.; Wiese, J.; Imhoff, J.F. Nocapyrones A-D, γ-pyrones from a Nocardiopsis strain isolated from the marine sponge Halichondria panicea. J. Nat. Prod., 2010, 73(8), 1444-1447.
[http://dx.doi.org/10.1021/np100312f] [PMID: 20695474]
[49]
Fu, P.; Liu, P.; Qu, H.; Wang, Y.; Chen, D.; Wang, H.; Li, J.; Zhu, W. α-pyrones and diketopiperazine derivatives from the marine-derived actinomycete Nocardiopsis dassonvillei HR10-5. J. Nat. Prod., 2011, 74(10), 2219-2223.
[http://dx.doi.org/10.1021/np200597m] [PMID: 21958359]
[50]
Kim, M.C.; Kwon, O.W.; Park, J.S.; Kim, S.Y.; Kwon, H.C. Nocapyrones H-J, 3,6-disubstituted α-pyrones from the marine actinomycete Nocardiopsis sp. KMF-001. Chem. Pharm. Bull. (Tokyo), 2013, 61(5), 511-515.
[http://dx.doi.org/10.1248/cpb.c12-00956] [PMID: 23386029]
[51]
Fu, P.; Liu, P.; Gong, Q.; Wang, Y.; Wang, P.; Zhu, W. α-Pyrones from the marine-derived actinomycete Nocardiopsis dassonvillei subsp. dassonvillei XG-8-1. RSC Advances, 2013, 3, 20726-20731.
[http://dx.doi.org/10.1039/c3ra43656j]
[52]
Zhang, X.M.; Sun, M.W.; Shi, H.; Lu, C.H. α-pyrone derivatives from a marine actinomycete Nocardiopsis sp. YIM M13066. Nat. Prod. Res., 2017, 31(19), 2245-2249.
[http://dx.doi.org/10.1080/14786419.2017.1299730] [PMID: 28281379]
[53]
Zhang, H.; Saurav, K.; Yu, Z.; Mándi, A.; Kurtán, T.; Li, J.; Tian, X.; Zhang, Q.; Zhang, W.; Zhang, C. α-Pyrones with diverse hydroxy substitutions from three marine-derived Nocardiopsis strains. J. Nat. Prod., 2016, 79(6), 1610-1618.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00175] [PMID: 27300427]
[54]
Kim, Y.; Ogura, H.; Akasaka, K.; Oikawa, T.; Matsuura, N.; Imada, C.; Yasuda, H.; Igarashi, Y. Nocapyrones: α- and γ-pyrones from a marine-derived Nocardiopsis sp. Mar. Drugs, 2014, 12(7), 4110-4125.
[http://dx.doi.org/10.3390/md12074110] [PMID: 25007160]
[55]
Lin, Z.; Torres, J.P.; Ammon, M.A.; Marett, L.; Teichert, R.W.; Reilly, C.A.; Kwan, J.C.; Hughen, R.W.; Flores, M.; Tianero, M.D.; Peraud, O.; Cox, J.E.; Light, A.R.; Villaraza, A.J.L.; Haygood, M.G.; Concepcion, G.P.; Olivera, B.M.; Schmidt, E.W. A bacterial source for mollusk pyrone polyketides. Chem. Biol., 2013, 20(1), 73-81.
[http://dx.doi.org/10.1016/j.chembiol.2012.10.019] [PMID: 23352141]
[56]
Lee, J.; Han, C.; Lee, T.G.; Chin, J.; Choi, H.; Lee, W.; Paik, M.J.; Won, D.H.; Jeong, G.; Ko, J.; Yoon, Y.J.; Nam, S.J.; Fenical, W.; Kang, H. Marinopyrones A-D, a-pyrones from marine-derived actinomycetes of the family Nocardiopsaceae. Tetrahedron Lett., 2016, 57, 1997-2000.
[http://dx.doi.org/10.1016/j.tetlet.2016.03.084]
[57]
Oh, D.C.; Gontang, E.A.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Salinipyrones and pacificanones, mixed-precursor polyketides from the marine actinomycete Salinispora pacifica. J. Nat. Prod., 2008, 71(4), 570-575.
[http://dx.doi.org/10.1021/np0705155] [PMID: 18321059]
[58]
Rab, E.; Kekos, D.; Roussis, V.; Ioannou, E. α-Pyrone polyketides from Streptomyces ambofaciens BI0048 an endophytic actinobacterial strain isolated from the red alga Laurencia glandulifera. Mar. Drugs, 2017, 15(12), 389.
[http://dx.doi.org/10.3390/md15120389] [PMID: 29240664]
[59]
Hertweck, C.; Xiang, L.; Kalaitzis, J.A.; Cheng, Q.; Palzer, M.; Moore, B.S. Context-dependent behavior of the enterocin iterative polyketide synthase; a new model for ketoreduction. Chem. Biol., 2004, 11(4), 461-468.
[http://dx.doi.org/10.1016/j.chembiol.2004.03.018] [PMID: 15123240]
[60]
Petersen, F.; Zähner, H.; Metzger, J.W.; Freund, S.; Hummel, R.P. Germicidin, an autoregulative germination inhibitor of Streptomyces viridochromogenes NRRL B-1551. J. Antibiot. (Tokyo), 1993, 46(7), 1126-1138.
[http://dx.doi.org/10.7164/antibiotics.46.1126] [PMID: 8360109]
[61]
Djinni, I.; Defant, A.; Kecha, M.; Mancini, I. Antibacterial polyketides from the marine alga-derived endophitic Streptomyces sundarbansensis: a study on hydroxypyrone tautomerism. Mar. Drugs, 2013, 11(1), 124-135.
[http://dx.doi.org/10.3390/md11010124] [PMID: 23306172]
[62]
Chen, Z.; Hao, J.; Wang, L.; Wang, Y.; Kong, F.; Zhu, W. New α-glucosidase inhibitors from marine algae-derived Streptomyces sp. OUCMDZ-3434. Sci. Rep., 2016, 6, 20004.
[http://dx.doi.org/10.1038/srep20004] [PMID: 26822662]
[63]
Graber, M.A.; Gerwick, W.H. Kalkipyrone, a toxic γ-pyrone from an assemblage of the marine cyanobacteria Lyngbya majuscula and Tolypothrix sp. J. Nat. Prod., 1998, 61(5), 677-680.
[http://dx.doi.org/10.1021/np970539j] [PMID: 9599278]
[64]
Bertin, M.J.; Demirkiran, O.; Navarro, G.; Moss, N.A.; Lee, J. Goldgof, G. M.; Vigil, E.; Winzeler, E. A.; Valeriote, F. A.; Gerwick, W. H. Kalkipyrone B a marine cyanobacterial γ-pyrone possessing antifungal activities. Phytochemistry, 2016, 122, 113-118.
[http://dx.doi.org/10.1016/j.phytochem.2015.11.011] [PMID: 26632528]
[65]
Koyama, T.; Kawazoe, Y.; Iwasaki, A.; Ohno, O.; Suenaga, K.; Uemura, D. Anti-obesity activities of the yoshinone A and the related marine γ-pyrone compounds. J. Antibiot. (Tokyo), 2016, 69(4), 348-351.
[http://dx.doi.org/10.1038/ja.2016.19] [PMID: 26932409]
[66]
Leutou, A.S.; Yang, I.; Seong, C.N.; Ko, J.; Nam, S.J. Violapyrone J, α-pyrone derivative from a marine-derived actinomycetes, Streptomyces sp. Nat. Prod. Sci., 2015, 21, 248-250.
[http://dx.doi.org/10.20307/nps.2015.21.4.248]
[67]
Zhang, J.; Jiang, Y.; Cao, Y.; Liu, J.; Zheng, D.; Chen, X.; Han, L.; Jiang, C.; Huang, X. Violapyrones A-G, α-pyrone derivatives from Streptomyces violascens isolated from Hylobates hoolock feces. J. Nat. Prod., 2013, 76(11), 2126-2130.
[http://dx.doi.org/10.1021/np4003417] [PMID: 24182355]
[68]
Yim, C.Y.; Le, T.C.; Lee, T.G.; Yang, I.; Choi, H.; Lee, J.; Kang, K.Y.; Lee, J.S.; Lim, K.M.; Yee, S.T.; Kang, H.; Nam, S.J.; Fenical, W. Saccharomonopyrones A-C, new-pyrones from a marine sediment-derived bacterium Saccharomonospora sp. CNQ-490. Mar. Drugs, 2017, 15(8), 239.
[http://dx.doi.org/10.3390/md15080239] [PMID: 28771166]
[69]
Cimino, G.; Sodano, G.; Spinella, A. New propionate-derived metabolites from Aglaja depicta and from its prey Bulla striata (opisthobranch Molluscs). J. Org. Chem., 1987, 52, 5326-5331.
[http://dx.doi.org/10.1021/jo00233a005]
[70]
Vardaro, R.R.; Matzo, V.D.; Crispino, A.; Cimino, G. Cyercenes, novel polypropionate pyrones from the autotomizing Mediterranean mollusc Cyerce crzstallzna. Tetrahedron, 1991, 41, 5569-5516.
[http://dx.doi.org/10.1016/S0040-4020(01)80988-1]
[71]
Vardaro, R.R.; Marzo, V.D. Marine, A. Cimino, G. α- and γ-pyrone-polypropionates from the Mediterranean ascoglossan mollusc Ercolania funeria. Tetrahedron, 1992, 48, 9561-9566.
[http://dx.doi.org/10.1016/S0040-4020(01)88324-1]
[72]
Vardaro, R.R.; Marzo, V.D.; Cimino, G. Placidenes: cyercene-like polypropionate γ-pyrones from the Mediterranean ascoglossan mollusc Placida dendritica. Tetrahedron Lett., 1992, 33, 2875-2878.
[http://dx.doi.org/10.1016/S0040-4039(00)78884-8]
[73]
Cutignano, A.; Fontana, A.; Renzulli, L.; Cimino, G. Placidenes C-F, novel α-pyrone propionates from the Mediterranean ascoglossan Placida dendritica. J. Nat. Prod., 2003, 66(10), 1399-1401.
[http://dx.doi.org/10.1021/np0300176] [PMID: 14575447]
[74]
Ciavatta, M.L.; Manzo, E.; Nuzzo, G.; Villani, G.; Cimino, G.; Cervera, J.L.; Malaquias, M.A.E.; Gavagnin, M. Aplysiopsenes: an additional example of marine polyketides with a mixed acetate/propionate pathway. Tetrahedron Lett., 2009, 50, 527-529.
[http://dx.doi.org/10.1016/j.tetlet.2008.11.058]
[75]
Ireland, C.; Faulkner, J. The metabolites of the marine molluscs Tridachiella diomedea and Tridachia crispate. Tetrahedron, 1981, 37(Suppl. 1), 233-240.
[http://dx.doi.org/10.1016/0040-4020(81)85059-4]
[76]
Gavagnin, M.; Spinella, A.; Castelluccio, F.; Cimino, G.; Marin, A. Polypropionates from the Mediterranean mollusc Elysia timida. J. Nat. Prod., 1994, 57, 298-304.
[http://dx.doi.org/10.1021/np50104a017]
[77]
Fu, X.; Hong, E.P.; Schmitz, F.J. New polypropionate pyrones from the Philippine sacoglossan mollusc Placobranchus ocellatus. Tetrahedron, 2000, 56, 8989-8993.
[http://dx.doi.org/10.1016/S0040-4020(00)00751-1]
[78]
Manzo, E.; Ciavatta, M.L.; Gavagnin, M.; Mollo, E.; Wahidulla, S.; Cimino, G. New α-pyrone propionates from the Indian oceansacoglossan Placobranchus ocellatus. Tetrahedron Lett., 2005, 46, 465-468.
[http://dx.doi.org/10.1016/j.tetlet.2004.11.085]
[79]
Ireland, C.; Scheuer, P.J. Photosynthetic marine molluscs: in vivo 14C incorporation into metabolites of the sacoglossan Placobranchus ocellatus. Science, 1979, 205(4409), 922-923.
[http://dx.doi.org/10.1126/science.205.4409.922] [PMID: 17813086]
[80]
Rodriguez, J.; Riguera, R.; Debitus, C. New marine cytotoxic bispyrones. Absolute stereochemistry of onchitriols I and II. Tetrahedron Lett., 1992, 33, 1089-1092.
[http://dx.doi.org/10.1016/S0040-4039(00)91868-9]
[81]
Rodriguez, J.; Riguera, R.; Debitus, C. The natural polypropionate-derived esters of the mollucs Onchidium sp. J. Org. Chem., 1992, 57, 4624-4632.
[http://dx.doi.org/10.1021/jo00043a018]
[82]
Carbone, M.; Gavagnin, M.; Mattia, C.A.; Lotti, C.; Castelluccio, F.; Pagano, B.; Mollo, E.; Guo, Y.W.; Cimino, G. Structure of onchidione, a bis-γ-pyrone polypropionate from a marine pulmonate mollusc. Tetrahedron, 2009, 65, 4404-4409.
[http://dx.doi.org/10.1016/j.tet.2009.03.052]
[83]
Wang, J.R.; Carbone, M.; Gavagnin, M.; Mándi, A.; Antus, S.; Yao, L.G.; Cimino, G.; Kurtán, T.; Guo, Y.W. Assignment of absolute configuration of bis-γ-pyrone polypropionates from marine pulmonate molluscs. Eur. J. Org. Chem., 2012, 2012(6), 1107-1111.
[http://dx.doi.org/10.1002/ejoc.201101587]
[84]
Ireland, C.M.; Biskupiak, J.E.; Hite, G.J.; Rapposch, M.; Scheuer, P.J.; Ruble, J.R. Ilikonapyrone esters, likely defense allomones of the mollusc Onchidium verruculatum. J. Org. Chem., 1984, 49, 559-561.
[http://dx.doi.org/10.1021/jo00177a039]
[85]
Biskupiak, J.E.; Ireland, C.M. Cytotoxic metabolites from the mollusc Peronia peronii. Tetrahedron Lett., 1985, 26, 4307-4310.
[http://dx.doi.org/10.1016/S0040-4039(00)98720-3]
[86]
Carbone, M.; Ciavatta, M.L.; Wang, J.R.; Cirillo, I.; Mathieu, V.; Kiss, R.; Mollo, E.; Guo, Y.W.; Gavagnin, M. Extending the record of bis-γ-pyrone polypropionates from marine pulmonate mollusks. J. Nat. Prod., 2013, 76(11), 2065-2073.
[http://dx.doi.org/10.1021/np400483c] [PMID: 24180210]
[87]
Suenaga, K.; Kigoshi, H.; Yamada, K. Auripyrones A and B, cytotoxic polypropionates from the sea hare Dolabella auricularia: isolation and structures. Tetrahedron Lett., 1996, 37, 5151-5154.
[http://dx.doi.org/10.1016/0040-4039(96)01041-6]
[88]
Cutignano, A.; Blihoghe, D.; Fontana, A.; Villani, G.; d’Ippolito, G.; Cimino, G. Fusaripyrones, novel polypropionates from the Mediterranean mollusc Haminoea fusari. Tetrahedron, 2007, 63, 12935-12939.
[http://dx.doi.org/10.1016/j.tet.2007.10.043]
[89]
Nuzzo, G.; Cutignano, A.; Moles, J.; Avila, C.; Fontana, A. Exiguapyrone and exiguaone, new polypropionates from the Mediterranean cephalaspidean mollusc Haminoea exigua. Tetrahedron Lett., 2016, 57, 71-74.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.067]
[90]
Chen, D.L.; Zheng, W.; Feng, J.; Ma, G.X.; Liu, Y.Y.; Xu, X.D. A new bis-γ-pyrone polypropionate from a marine pulmonate mollusc Onchidium struma. J. Asian Nat. Prod. Res., 2019, 21(4), 384-390.
[http://dx.doi.org/10.1080/10286020.2018.1427076] [PMID: 29357705]
[91]
Lia, S.W.; Cuia, W.X.; Huana, X.J.; Gavagnine, M.; Molloe, E.; Miao, Z.H.; Yao, L.G.; Li, X.W.; Guo, Y.W. A new bis-γ-pyrone polypropionate of onchidiol familyfrom marine pulmonate mollusc Onchidium sp. Nat. Prod. Res., 2019, 2019, 1-6.
[http://dx.doi.org/10.1080/ 14786419.2019.1569662]
[92]
McCabe, T.; Clardy, J.; Minale, L.; Pizza, C.; Zollo, F.; Rlcclo, R. A triterpenoid pigment with the isomalabaricane skeleton from the marine sponge Stelletta sp. Tetrahedron Lett., 1982, 23, 3307-3310.
[http://dx.doi.org/10.1016/S0040-4039(00)87601-7]
[93]
Su, J.Y.; Meng, Y.H.; Zeng, L.M.; Fu, X.; Schmitz, F.J. Stellettin A, a new triterpenoid pigment from the marine sponge Stelletta tenuis. J. Nat. Prod., 1994, 57(10), 1450-1451.
[http://dx.doi.org/10.1021/np50112a017] [PMID: 7807129]
[94]
McCormick, J.L.; McKee, T.C.; Cardellina, J.H.; Leid, M.; Boyd, M.R. Cytotoxic triterpenes from a marine sponge, Stelletta sp. J. Nat. Prod., 1996, 59(11), 1047-1050.
[http://dx.doi.org/10.1021/np960541v] [PMID: 8946745]
[95]
Esposito, G.; Teta, R.; Della Sala, G.; Pawlik, J.R.; Mangoni, A.; Costantino, V. Isolation of smenopyrone, a bis-γ-pyrone polypropionate from the Caribbean sponge Smenospongia aurea. Mar. Drugs, 2018, 16(8), 285.
[http://dx.doi.org/10.3390/md16080285] [PMID: 30126132]
[96]
Sata, N.; Abinsay, H.; Yoshida, W.Y.; Horgen, F.D.; Sitachitta, N.; Kelly, M.; Scheuer, P.J. Lehualides A-D, metabolites from a Hawaiian sponge of the genus Plakortis. J. Nat. Prod., 2005, 68(9), 1400-1403.
[http://dx.doi.org/10.1021/np0500528] [PMID: 16180823]
[97]
Barber, J.M.; Quek, N.C.H.; Leahy, D.C.; Miller, J.H.; Bellows, D.S.; Northcote, P.T. Lehualides E-K, cytotoxic metabolites from the Tongan marine sponge Plakortis sp. J. Nat. Prod., 2011, 74(4), 809-815.
[http://dx.doi.org/10.1021/np100868t] [PMID: 21351759]
[98]
Kazlauskas, R.; Murphey, P.T.; Wells, R.J.; Blackman, A.J. Macrocyclic enol-ethers containing an acetylenic group from the red alga Phacelocarpus labillardieri. Aust. J. Chem., 1982, 35, 113-120.
[http://dx.doi.org/10.1071/CH9820113]
[99]
Shin, J.; Paul, V.J.; Fenical, W. New macrocyclic α-and β-pyrones from the marine red alga Phacelocarpus labillardieri. Tetrahedron Lett., 1986, 27, 5189-5192.
[http://dx.doi.org/10.1016/S0040-4039(00)85165-5]
[100]
Murray, L.; Currie, G.; Capon, R.J. A new macrocyclic γ-pyrone from a Southern Australian marine red alga. Aust. J. Chem., 1995, 48, 1485-1489.
[http://dx.doi.org/10.1071/CH9951485]
[101]
Sharma, P.; Powell, K.J.; Burnley, J.; Awaad, A.S.; Moses, J.E. Total synthesis of polypropionate-derived γ-pyrone natural products. Synthesis, 2011, 18, 2865-2892.
[102]
Yamamura, S.; Nishiyama, S. Synthetic studies on polypropionate-derived 4-pyrone containing marine natural products. Bull. Chem. Soc. Jpn., 1997, 70, 2025-2037.
[http://dx.doi.org/10.1246/bcsj.70.2025]
[103]
Moses, J.E.; Baldwin, J.E.; Adlington, R.M. An efficient synthesis of cyercene A. Tetrahedron Lett., 2004, 45, 6447-6448.
[http://dx.doi.org/10.1016/j.tetlet.2004.06.125]
[104]
Liang, G.; Miller, A.K.; Trauner, D. Stereoselective synthesis of cyercene A and the placidenes. Org. Lett., 2005, 7(5), 819-821.
[http://dx.doi.org/10.1021/ol047542w] [PMID: 15727449]
[105]
Wadsworth, W.S., Jr; Emmons, W.D. The utility of phosphonate carbanions in olefin synthesis. J. Am. Chem. Soc., 1961, 83, 1733-1738.
[http://dx.doi.org/10.1021/ja01468a042]
[106]
Davis, F.A.; Stringer, O.D. Chemistry of oxaziridines. 2. Improved synthesis of 2-sulfonyloxaziridines. J. Org. Chem., 1982, 47, 1774-1775.
[http://dx.doi.org/10.1021/jo00348a039]
[107]
Baker, R.; Castro, J.L. Total synthesis of (+)-macbecin I. J. Chem. Soc., Perkin Trans., 1990, 1, 47-65.
[http://dx.doi.org/10.1039/p19900000047]
[108]
Gu, Y.; Snider, B.B. Synthesis of ent-haterumalide NA (ent-oocydin A) methyl ester. Org. Lett., 2003, 5(23), 4385-4388.
[http://dx.doi.org/10.1021/ol0356789] [PMID: 14602006]
[109]
Arimoto, H.; Okumura, Y.; Nishiyama, S.; Yamamura, S. Synthetic studies on fully substituted γ-pyrone-containing natural products: total synthesis and structural revision of Onchitriol I. Tetrahedron Lett., 1995, 36, 5357-5358.
[http://dx.doi.org/10.1016/00404-0399(50)0986M-]
[110]
Arimoto, H.; Nishiyama, S.; Yamamura, S. Synthetic studies on fully substituted γ-pyrone-containing natural products: the first total synthesis of Onchitriol II. Tetrahedron Lett., 1994, 35, 9581-9584.
[http://dx.doi.org/10.1016/0040-4039(94)88516-8]
[111]
Moil, K.; Iwasawa, H. Stereoselective synthesis of optically active forms of δ-multistriatin, the attractant for European populations of the smaller European elm bark beet. Tetrahedron, 1980, 36, 87-90.
[http://dx.doi.org/10.1016/0040-4020(80)85029-0]
[112]
Arimoto, H.; Nishiyama, S.; Yamamura, S. Mild conditions for cyclization of β-triketides to the corresponding γ-pyrones carrying adjacent chiral centers toward biomimetic synthesis of fully substituted γ-pyrone-containing natural products. Tetrahedron Lett., 1990, 31, 5619-5620.
[http://dx.doi.org/10.1016/S0040-4039(00)97913-9]
[113]
Takai, K.; Kimura, K.; Kuroda, T.; Hiyama, T.; Nozaki, H. Selective Grignard-type carbonyl addition of alkenyl halides mediated by chromium(II) chloride. Tetrahedron Lett., 1983, 24, 5281-5284.
[http://dx.doi.org/10.1016/S0040-4039(00)88417-8]
[114]
Fráter, G. Stereospecific synthesis of (+)‐(3R, 4R)‐4‐methyl‐3‐heptanol, the enantiomer of a pheromone of the smaller European elm bark beetle (Scolytus multistriatus). Helv. Chim. Acta, 1979, 62, 2829-2832.
[http://dx.doi.org/10.1002/hlca.19790620833]
[115]
Miller, A.K.; Byun, D.H.; Beaudry, C.M.; Trauner, D. The total synthesis of (-)-crispatene. Proc. Natl. Acad. Sci. USA, 2004, 101(33), 12019-12023.
[http://dx.doi.org/10.1073/pnas.0401787101] [PMID: 15273284]
[116]
Chen, J.; Wang, T.; Zhao, K. Preparation and use of 1-iodoalkyl ylides. Tetrahedron Lett., 1994, 35, 2827-2828.
[http://dx.doi.org/10.1016/S0040-4039(00)76635-4]
[117]
Farina, V.; Kapadia, S.; Krishnan, B.; Wang, C.J.; Liebeskind, L.S. On the nature of the “copper effect” in the Stille cross-coupling. J. Org. Chem., 1994, 59, 5905-5911.
[http://dx.doi.org/10.1021/jo00099a018]
[118]
Yokomatsu, T.; Abe, H.; Yamagishi, T.; Suemune, K.; Shibuya, S. Convenient synthesis of cyclopropylalkanol derivatives possessing a difluoromethylenephosphonate group at the ring. J. Org. Chem., 1999, 64(22), 8413-8418.
[http://dx.doi.org/10.1021/jo990922o] [PMID: 11674770]
[119]
Miller, A.K.; Trauner, D. Total synthesis of (±)-photodeoxytridachione through a Lewis acid catalyzed cyclization. Angew. Chem. Int. Ed. Engl., 2003, 42(5), 549-552.
[http://dx.doi.org/10.1002/anie.200390158] [PMID: 12569487]
[120]
Beak, P.; Lee, J.K.; McKinnie, B.G. Methylation of protomeric ambident nucleophiles with methyl fluorosulfonate: a regiospecific reaction. J. Org. Chem., 1978, 43, 1367-1372.
[http://dx.doi.org/10.1021/jo00401a017]
[121]
Ciavatta, M.L.; Trivellone, E.; Villani, G.; Cimino, G. Membrenones: new polypropionates from the skin of the Mediterranean mollusc Pleurobranchus membranaceus. Tetrahedron Lett., 1993, 34, 6191-6194.
[http://dx.doi.org/10.1016/S0040-4039(00)61703-3]
[122]
Perkins, M.V.; Sampson, R.A. Stereoselective synthesis of an isomer of membrenone-C via an aldol based two directional chain extension. Tetrahedron Lett., 1998, 39, 8367-8370.
[http://dx.doi.org/10.1016/S0040-4039(98)01846-2]
[123]
Evans, D.A.; Kaldor, S.W.; Jones, T.K.; Clardy, J.; Stout, T.J. Total synthesis of the macrolide antibiotic cytovaricin. J. Am. Chem. Soc., 1990, 112, 7001-7031.
[http://dx.doi.org/10.1021/ja00175a038]
[124]
Perkins, M.V.; Sampson, R.A. Stereoselective synthesis of dihydropyrone-containing marine natural products. Total synthesis and structural elucidation of (-)-membrenone-C. Org. Lett., 2001, 3(1), 123-126.
[http://dx.doi.org/10.1021/ol006835w] [PMID: 11429853]
[125]
Evans, D.A.; Clark, J.S.; Metternich, R.; Novak, V.J.; Sheppard, G.S. Diastereoselective aldol reactions using beta.-keto imide derived enolates. A versatile approach to the assemblage of polypropionate systems. J. Am. Chem. Soc., 1990, 112, 866-868.
[http://dx.doi.org/10.1021/ja00158a056]
[126]
Narasaka, K.; Pai, F.C. Stereoselective reduction of β hydroxyketones to 1,3-diols highly selective 1,3-asymmetric induction via boron chelates. Tetrahedron, 1984, 40, 2233-2238.
[http://dx.doi.org/10.1016/0040-4020(84)80006-X]
[127]
Jeso, V.; Micalizio, G.C. Total synthesis of lehualide B by allylic alcohol-alkyne reductive cross-coupling. J. Am. Chem. Soc., 2010, 132(33), 11422-11424.
[http://dx.doi.org/10.1021/ja104782u] [PMID: 20681603]
[128]
Stamos, D.P.; Taylor, A.G.; Kishi, Y. A mild preparation of vinyliodides from vinylsilanes. Tetrahedron Lett., 1996, 37, 8647-8650.
[http://dx.doi.org/10.1016/S0040-4039(96)02000-X]
[129]
Hoffmeister, L.; Fukuda, T.; Pototschnig, G.; Fürstner, A. Total synthesis of an exceptional brominated 4-pyrone derivative of algal origin: an exercise in gold catalysis and alkyne metathesis. Chemistry, 2015, 21(12), 4529-4533.
[http://dx.doi.org/10.1002/chem.201500437] [PMID: 25712698]
[130]
Fürstner, A.; Thiel, O.R. Formal total synthesis of (-)-balanol: concise approach to the hexahydroazepine segment based on RCM. J. Org. Chem., 2000, 65(6), 1738-1742.
[http://dx.doi.org/10.1021/jo991611g] [PMID: 10750493]
[131]
Tecle, H.; Barrett, S.D.; Lauffer, D.J.; Augelli-Szafran, C.; Brann, M.R.; Callahan, M.J.; Caprathe, B.W.; Davis, R.E.; Doyle, P.D.; Eubanks, D.; Lipiniski, W.; Mirzadegan, T.; Moos, W.H.; Moreland, D.W.; Nelson, C.B.; Pavia, M.R.; Raby, C.; Schwarz, R.D.; Spencer, C.J.; Thomas, A.J.; Jaen, J.C. Design and synthesis of m1-selective muscarinic agonists: (R)-(-)-(Z)-1-Azabicyclo[2.2.1]heptan-3-one, O-(3-(3′-methoxyphenyl)-2-propynyl)oxime maleate (CI-1017), a functionally m1-selective muscarinic agonist. J. Med. Chem., 1998, 41(14), 2524-2536.
[http://dx.doi.org/10.1021/jm960683m] [PMID: 9651157]
[132]
Brown, C.A.; Ahuja, V.K. “P-2 nickel” catalyst with ethylenediamine, a novel system for highly stereospecific reduction of alkynes to cis-olefins. J. Chem. Soc. Chem. Commun., 1973, (15), 553-554.
[http://dx.doi.org/10.1039/C39730000553]
[133]
Fürstner, A. Alkyne metathesis on the rise. Angew. Chem. Int. Ed. Engl., 2013, 52(10), 2794-2819.
[http://dx.doi.org/10.1002/anie.201204513] [PMID: 23355479]
[134]
Lister, T.; Perkins, M.V. Total synthesis of auripyrone A. Angew. Chem. Int. Ed. Engl., 2006, 45(16), 2560-2564.
[http://dx.doi.org/10.1002/anie.200504573] [PMID: 16544356]
[135]
Jung, M.E.; Salehi-Rad, R. Total synthesis of auripyrone A using a tandem non-aldol aldol/Paterson aldol process as a key step. Angew. Chem. Int. Ed. Engl., 2009, 48(46), 8766-8769.
[http://dx.doi.org/10.1002/anie.200904607] [PMID: 19824033]
[136]
Jung, M.E.; Chaumontet, M.; Salehi-Rad, R. Total synthesis of auripyrone B using a non-aldol aldol-cuprate opening process. Org. Lett., 2010, 12(12), 2872-2875.
[http://dx.doi.org/10.1021/ol100985n] [PMID: 20499854]
[137]
Hayakawa, I.; Takemura, T.; Fukasawa, E.; Ebihara, Y.; Sato, N.; Nakamura, T.; Suenaga, K.; Kigoshi, H. Total synthesis of auripyrones A and B and determination of the absolute configuration of auripyrone B. Angew. Chem. Int. Ed. Engl., 2010, 49(13), 2401-2405.
[http://dx.doi.org/10.1002/anie.200906662] [PMID: 20186896]
[138]
Hayakawa, I.; Takemura, T.; Fukasawa, E.; Ebihara, Y.; Sato, N.; Nakamura, T.; Suenaga, K.; Kigoshi, H. Total synthesis and biological evaluation of auripyrones A and B. Bull. Chem. Soc. Jpn., 2012, 85, 1077-1092.
[http://dx.doi.org/10.1246/bcsj.20120162]
[139]
Jung, M.E.; D’Amico, D.C. Enantiospecific synthesis of all four diastereomers of 2-methyl-3-[(trialkylsilyl)oxy]alkanals: facile preparation of aldols by non-aldol chemistry. J. Am. Chem. Soc., 1993, 115, 12208-12209.
[http://dx.doi.org/10.1021/ja00078a087]
[140]
Paterson, I.; Wallace, D.J.; Velazquez, S.M. Studies in polypropionate synthesis: high π-face selectivity in syn and anti aldol reactions of chiral boron enolates of lactate-derived ketones. Tetrahedron Lett., 1994, 35, 9083-9086.
[http://dx.doi.org/10.1016/0040-4039(94)88434-X]
[141]
Zhou, J.; Burgess, K. α,ω-functionalized 2,4-dimethylpentane dyads and 2,4,6-trimethylheptane triads through asymmetric hydrogenation. Angew. Chem. Int. Ed. Engl., 2007, 46(7), 1129-1131.
[http://dx.doi.org/10.1002/anie.200603635] [PMID: 17200966]
[142]
Katsuki, T.; Sharpless, K.B. The first practical method for asymmetric epoxidation. J. Am. Chem. Soc., 1980, 102, 5974-5976.
[http://dx.doi.org/10.1021/ja00538a077]
[143]
(a)Johnson, M.R.; Kishi, Y. Cooperative effect by a hydroxy and ether oxygen in epoxidation with a peracid. Tetrahedron Lett., 1979, 20, 4347-4350.
[http://dx.doi.org/10.1016/S0040-4039(01)86585-0]
(b)Jung, M.E.; D’Amico, D.C. Stereospecific formation of optically active 5-Alkyl-4-methyl-3-[(trialkylsilyl)oxy]-2-([(trialkylsilyl)oxy]methyl)tetrahydrofurans via diastereoselective epoxidation and rearrangement of 5-[(trialkylsilyl)oxy]-2-alken-1-ols. J. Am. Chem. Soc., 1997, 119, 12150-12158.
[http://dx.doi.org/10.1021/ja972507o]
[144]
Paterson, I.; Wallace, D.J.; Cowden, C.J. Polyketide synthesis using the boron-mediated, anti-aldol reactions of lactate-derived ketones: total synthesis of (-)-ACRL Toxin IIIB. Synthesis, 1998, 1998(Sup. 1), 639-652.
[http://dx.doi.org/10.1055/s-1998-5929]
[145]
Paterson, I.; Blakey, S.B.; Cowden, C.J. Studies in marine macrolide synthesis: stereocontrolled synthesis of a C21-C34 subunit of the aplyronines. Tetrahedron Lett., 2002, 43, 6005-6008.
[http://dx.doi.org/10.1016/S0040-4039(02)01217-0]
[146]
Gillingham, D.G.; Hoveyda, A.H. Chiral N-heterocyclic carbenes in natural product synthesis: application of Ru-catalyzed asymmetric ring-opening/cross-metathesis and Cu-catalyzed allylic alkylation to total synthesis of baconipyrone C. Angew. Chem. Int. Ed. Engl., 2007, 46(21), 3860-3864.
[http://dx.doi.org/10.1002/anie.200700501] [PMID: 17415730]
[147]
Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. A rapid esterification by means of mixed anhydride and its application to large-ring lactonization. Bull. Chem. Soc. Jpn., 1979, 52, 1989-1993.
[http://dx.doi.org/10.1246/bcsj.52.1989]
[148]
Jung, M.E.; Hoffmann, B.; Rausch, B.; Contreras, J.M. Use of hindered silyl ethers as protecting groups for the non-aldol aldol process. Org. Lett., 2003, 5(17), 3159-3161.
[http://dx.doi.org/10.1021/ol035295a] [PMID: 12917006]
[149]
(a)Nagaoka, H.; Kishi, Y. Further synthetic studies on rifamycin S. Tetrahedron, 1981, 37, 3873-3888.
[http://dx.doi.org/10.1016/S0040-4020(01)93261-2]
(b)Jung, M.E.; Lee, W.S.; Sun, D. Synthesis of four diastereomeric 3,5-dialkoxy-2,4-dimethylalkanals by a simple extension of the non-aldol aldol process to bis(propionates). Org. Lett., 1999, 1(2), 307-309.
[http://dx.doi.org/10.1021/ol990619+] [PMID: 10822567]
[150]
(a)Dess, D.B.; Martin, J.C. Readily accessible 12-I-5 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. J. Org. Chem., 1983, 48, 4155-4156.
[http://dx.doi.org/10.1021/jo00170a070]
(b)Dess, D.B.; Martin, J.C. A useful 12-I-5 triacetoxyperiodinane (the Dess-Martin periodinane) for the selective oxidation of primary or secondary alcohols and a variety of related 12-I-5 species. J. Am. Chem. Soc., 1991, 113, 7277-7287.
[http://dx.doi.org/10.1021/ja00019a027]
[151]
Masamune, S.; Choy, W.; Petersen, J.S.; Sita, L.R. Double asymmetric synthesis and a new strategy for stereochemical control in organic synthesis. Angew. Chem. Int. Ed. Engl., 1985, 24, 1-30.
[http://dx.doi.org/10.1002/anie.198500013]
[152]
Gaunt, M.J.; Jessiman, A.S.; Orsini, P.; Tanner, H.R.; Hook, D.F.; Ley, S.V. Synthesis of the C-1-C-28 ABCD unit of spongistatin 1. Org. Lett., 2003, 5(25), 4819-4822.
[http://dx.doi.org/10.1021/ol035849+] [PMID: 14653682]
[153]
Sengoku, T.; Takemura, T.; Fukasawa, E.; Hayakawa, I.; Kigoshi, H. Aldol-type reaction of a 4-pyrone: a straightforward approach to 4-pyrone-containing natural products. Tetrahedron Lett., 2009, 50, 325-328.
[http://dx.doi.org/10.1016/j.tetlet.2008.11.017]
[154]
White, J.D.; Bolton, G.L.; Dantanarayana, A.P.; Fox, C.M.J.; Hiner, R.N.; Jackson, R.W.; Sakuma, K.; Warrier, U.S. Total synthesis of the antiparasitic agent avermectin B1a. J. Am. Chem. Soc., 1995, 117, 1908-1939.
[http://dx.doi.org/10.1021/ja00112a006]
[155]
Kelly, N.M.; Reid, R.G.; Willis, C.L.; Winton, P.L. Chemo-enzymatic synthesis of isotopically labelled L-Valine, L-Isoleucine and allo-isoleucine. Tetrahedron Lett., 1996, 37, 1517-1520.
[http://dx.doi.org/10.1016/0040-4039(96)00053-6]
[156]
Zuidema, D.R.; Jones, P.B. Photochemical relationships in Sacoglossan polypropionates. J. Nat. Prod., 2005, 68(4), 481-486.
[http://dx.doi.org/10.1021/np049607+] [PMID: 15844933]
[157]
Zuidema, D.R.; Jones, P.B. Triplet photosensitization in cyercene A and related pyrones. J. Photochem. Photobiol. B, 2006, 83(2), 137-145.
[http://dx.doi.org/10.1016/j.jphotobiol.2005.12.016] [PMID: 16481191]
[158]
Chee, H.Y.; Lee, E.H. Fungistatic activity of kojic acid against human pathogenic fungi and inhibition of melanin production in Cryptococcus neoformans. Mycobiology, 2003, 31, 248-250.
[http://dx.doi.org/10.4489/MYCO.2003.31.4.248]
[159]
Wu, Y.; Shi, Y.G.; Zeng, L.Y.; Pan, Y.; Huang, X.Y.; Bian, L.Q.; Zhu, Y.J.; Zhang, R.R.; Zhang, J. Evaluation of antibacterial and anti-biofilm properties of kojic acid against five food-related bacteria and related subcellular mechanisms of bacterial inactivation. Food Sci. Technol. Int., 2019, 25(1), 3-15.
[http://dx.doi.org/10.1177/1082013218793075] [PMID: 30111175]
[160]
Rodrigues, A.P.D.; Farias, L.H.S.; Carvalho, A.S.C.; Santos, A.S.; do Nascimento, J.L.M.; Silva, E.O. A novel function for kojic acid, a secondary metabolite from Aspergillus fungi, as antileishmanial agent. PLoS One, 2014, 9(3) e91259
[http://dx.doi.org/10.1371/journal.pone.0091259] [PMID: 24621481]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy