Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

New Platinum (II) Ternary Complexes of Formamidine and Pyrophosphate: Synthesis, Characterization and DFT Calculations and In vitro Cytotoxicity

Author(s): Ahmed A. Soliman*, Fawzy A. Attaby, Othman I. Alajrawy, Azza A.A. Abou-hussein and Wolfgang Linert

Volume 23, Issue 7, 2020

Page: [611 - 623] Pages: 13

DOI: 10.2174/1386207323666200218115700

Price: $65

Abstract

Aim and Objective: Platinum (II) and platinum (IV) of pyrophosphate complexes have been prepared and characterized to discover their potential as antitumor drugs. This study was conducted to prepare and characterize new ternary platinum (II) complexes with formamidine and pyrophosphate as an antitumor candidate.

Materials and Methods: The complexes have been characterized by mass, infrared, UV-Vis. spectroscopy, elemental analysis, magnetic susceptibility, thermal analyses, and theoretical calculations. They have been tested for their cytotoxicity, which was carried out using the fastcolorimetric assay for cellular growth and survival against MCF-7 (breast cancer cell line), HCT- 116 (colon carcinoma cell line), and HepG-2 (hepatocellular cancer cell line).

Results: All complexes are diamagnetic, and the electronic spectral data displayed the bands due to square planar Pt(II) complexes. The optimized complexes structures (1-4) indicated a distorted square planar geometry where O-Pt-O and N-Pt-N bond angles were 82.04°-96.44°, respectively. Results also show that all complexes are neutral, stable and non-hygroscopic and have noticeable cytotoxicity with IC50 (μM): 0.035-0.144 MCF-7(breast cancer cell line), 0.042-0.187 HCT-116 (colon carcinoma cell line), and 0.063-0.168 HepG-2 (hepatocellular cancer cell line). Moreover, the results show that the complex (4) has the best IC50 value.

Conclusion: The complexes showed noticeable cytotoxicity and are considered as promising antitumor candidates for further applications.

Keywords: Pt(II), pyrophosphate, formamidine, antitumor, spectroscopy, thermal analysis, magnetic and MO calculations.

[1]
Tabrizi, L.; Chiniforoshan, H. New platinum(II) complexes of CCC-pincer N-heterocyclic carbene ligand: Synthesis, characterization, cytotoxicity and antileishmanial activity. J. Organomet. Chem., 2016, 818, 98.
[http://dx.doi.org/10.1016/j.jorganchem.2016.06.013]
[2]
Lebwohl, D.; Canetta, R. Clinical development of platinum complexes in cancer therapy: an historical perspective and an update. Eur. J. Cancer, 1998, 34(10), 1522-1534.
[http://dx.doi.org/10.1016/S0959-8049(98)00224-X] [PMID: 9893623]
[3]
Wong, E.; Giandomenico, C.M. Current status of platinum-based antitumor drugs. Chem. Rev., 1999, 99(9), 2451-2466.
[http://dx.doi.org/10.1021/cr980420v] [PMID: 11749486]
[4]
Kostova, I. Platinum complexes as anticancer agents. Recent Pat. Anticancer Drug Discov., 2006, 1(1), 1-22.
[http://dx.doi.org/10.2174/157489206775246458]
[5]
Hall, M.D.; Mellor, H.R.; Callaghan, R.; Hambley, T.W. Basis for design and development of platinum(IV) anticancer complexes. J. Med. Chem., 2007, 50(15), 3403-3411.
[http://dx.doi.org/10.1021/jm070280u] [PMID: 17602547]
[6]
Monroe, J.D.; Hruska, H.L.; Ruggles, H.K.; Williams, K.M.; Smith, M.E. Anti-cancer characteristics and ototoxicity of platinum(II) amine complexes with only one leaving ligand. PLoS One, 2018, 13(3)e0192505
[http://dx.doi.org/10.1371/journal.pone.0192505] [PMID: 29513752]
[7]
Spinu, C.; Pleniceanu, M.; Tigae, C. Biologically active new Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes of N-(2-thienylmethylene)methanamine. J. Serb. Chem. Soc., 2008, 73, 415-421.
[http://dx.doi.org/10.2298/JSC0804415S]
[8]
Hung, W.C.; Lin, C.C. Preparation, characterization, and catalytic studies of magnesium complexes supported by NNO-tridentate Schiff-base ligands. Inorg. Chem., 2009, 48(2), 728-734.
[http://dx.doi.org/10.1021/ic801397t] [PMID: 19072296]
[9]
Cubo, L.; Pizarro, A.M.; Quiroga, A.G.; Salassa, L.; Navarro-Ranninger, C.; Sadler, P.J. Photoactivation of trans diamine platinum complexes in aqueous solution and effect on reactivity towards nucleotides. J. Inorg. Biochem., 2010, 104(9), 909-918.
[http://dx.doi.org/10.1016/j.jinorgbio.2010.04.009] [PMID: 20546905]
[10]
Farrer, N.J.; Woods, J.A.; Salassa, L.; Zhao, Y.; Robinson, K.S.; Clarkson, G.; Mackay, F.S.; Sadler, P.J. A potent trans-diimine platinum anticancer complex photoactivated by visible light. Angew. Chem. Int. Ed. Engl., 2010, 49(47), 8905-8908.
[http://dx.doi.org/10.1002/anie.201003399] [PMID: 20677309]
[11]
Fanelli, M.; Formica, M.; Fusi, V.; Giorgi, L.; Micheloni, M.; Paoli, P. New trends in platinum and palladium complexes as antineoplastic agents. Coord. Chem. Rev., 2016, 310, 41-79.
[http://dx.doi.org/10.1016/j.ccr.2015.11.004]
[12]
Hoffmeister, B.R.; Adib-Razavi, M.S.; Jakupec, M.A.; Galanski, M.; Keppler, B.K. Diamminetetrakis(carboxylato)platinum(IV) complexes--synthesis, characterization, and cytotoxicity. Chem. Biodivers., 2012, 9(9), 1840-1848.
[http://dx.doi.org/10.1002/cbdv.201200019] [PMID: 22976974]
[13]
Soliman, A.A.; Alajrawy, O.I.; Attabi, F.A.; Linert, W. New dinuclear palladium(II) complexes with formamidine and bridged pyrophosphate ligands. New J. Chem., 2016, 40, 8342-8354.
[http://dx.doi.org/10.1039/C6NJ01262K]
[14]
Mishur, R.J.; Zheng, C.; Gilbert, T.M.; Bose, R.N. Synthesis, X-ray crystallographic, and NMR characterizations of platinum(II) and platinum(IV) pyrophosphato complexes. Inorg. Chem., 2008, 47(18), 7972-7982.
[http://dx.doi.org/10.1021/ic800237a] [PMID: 18693681]
[15]
Soliman, A.A.; Alajrawy, O.I.; Attabi, F.A.; Shaaban, M.R.; Linert, W. New formamidine ligands and their mixed ligand palladium(II) oxalate complexes: Synthesis, characterization, DFT calculations and in vitro cytotoxicity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 152, 358-369.
[http://dx.doi.org/10.1016/j.saa.2015.07.076] [PMID: 26232580]
[16]
Soliman, A.A.; Alajrawy, O.I.; Attabi, F.A.; Shaaban, M.R.; Linert, W. New binary and ternary platinum(II) formamidine complexes: Synthesis, characterization, structural studies and in-vitro antitumor activity. J. Mol. Struct., 2016, 1115, 17-32.
[http://dx.doi.org/10.1016/j.molstruc.2016.02.073]
[17]
Soliman, A.A.; Meseha, M.A.; Sayed, A.; Abou-Hussein, A.; Linert, W. Cobalt and copper complexes with formamidine ligands: Synthesis, Crystal x-ray study, DFT calculations, and Cytotoxicity. Polyhedron, 2019, 161, 213-221.
[http://dx.doi.org/10.1016/j.poly.2018.12.020]
[18]
Soliman, A.A.; Attaby, F.A.; Alajrawy, O.I.; Majeed, S.R.; Sahin, C.; Varlikli, C. Soluble cytotoxic ruthenium(II) complexes with 2-hydrazinopyridine. Russ. J. Inorg. Chem., 2019, 64(6), 742-754.
[http://dx.doi.org/10.1134/S0036023619060020]
[19]
Soliman, A.A.; Attaby, F.A.; Alajrawy, O.I.; Majeed, S.R. Soluble ruthenium(II) with 3,4-diaminobenzoic acid complexes: Preparation, thermal study, theoretical calculations and in vitro cytotoxic activity. J. Therm. Anal. Calorim., 2019, 135, 2457-2473.
[http://dx.doi.org/10.1007/s10973-018-7405-6]
[20]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[21]
Nakamoto, N. Infrared and Raman Spectra of Inorganic and Coordination Compounds; Wiley: New York, 1986.
[22]
Marino, N.; Ikotun, O.F.; Julve, M.; Lloret, F.; Cano, J.; Doyle, R.P. Pyrophosphate-mediated magnetic interactions in Cu(II) coordination complexes. Inorg. Chem., 2011, 50(1), 378-389.
[http://dx.doi.org/10.1021/ic1020884] [PMID: 21114311]
[23]
Makhkhas, Y.; Aqdim, S.; Sayouty, E. Study of Sodium-Chromium-Iron-Phosphate Glass by XRD, IR, Chemical Durability and SEM. J. Mater. Sci. Chem. Eng, 2013, 1, 1-6.
[http://dx.doi.org/10.4236/msce.2013.13001]
[24]
Bush, R.P. Recovery of platinum group metals from high level radioactive waste. Platin. Met. Rev., 1991, 35(4), 202-208.
[25]
Lever, A.B.P. Inorganic electronic spectroscopy, 2nd ed; Elsevier: Amsterdam, Holland, 1984, p. 544.
[26]
Pellacani, G.C.; Malavasi, W.D.D. Palladium(II) complexes with N,N′-dimethyldithiomalonamide. J. Inorg. Nucl. Chem., 1975, 37, 477-481.
[http://dx.doi.org/10.1016/0022-1902(75)80359-9]
[27]
Housecroft, C.E.; Sharpe, A.G. Inorganic Chemistry, 2nd ed; Pearson: England, 2005, p. 579.
[28]
Horowitz, H.H.; Metzger, G.A. New analysis of thermogravimetric traces. Anal. Chem., 1963, 35(10), 1464-1468.
[http://dx.doi.org/10.1021/ac60203a013]
[29]
Coats, A.W.; Redfern, J.P. Kinetic Parameters from Thermogravimetric Data. Nature, 1964, 201, 68-69.
[http://dx.doi.org/10.1038/201068a0]
[30]
Soliman, A.A.; Samir, M.E.; Omyma, A.A.M. Thermal study of chromium and molybdenum complexes with some nitrogen and nitrogen-oxygen donors ligands. J. Therm. Anal. Calorim., 2006, 83(2), 385-392.
[http://dx.doi.org/10.1007/s10973-005-7009-9]
[31]
Soliman, A.A.; Khattab, M.M.; Ramadan, R.M. Synthesis and characterization of new chromium, molybdenum and tungsten complexes of 2-[2-(methylaminoethyl)] pyridine. Transit. Met. Chem., 2007, 32, 325-331.
[http://dx.doi.org/10.1007/s11243-006-0171-5]
[32]
Ali, S.A.; Soliman, A.A.; Aboli, M.M.; Ramadan, R.M. Chromium, molybdenum and ruthenium complexes of 2-hydroxyacetop henone schiff bases. J. Coord. Chem., 2002, 55(10), 1161-1170.
[http://dx.doi.org/10.1080/0095897021000023509]
[33]
Dunning, T.H., Jr; Hay, P.J. Modern Theoretical Chemistry, 3rd ed; Plenum: New York, 1976, Vol. 3, pp. 1-28.
[34]
Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theor. Chem. Acc., 1990, 77, 123-141.
[http://dx.doi.org/10.1007/BF01114537]
[35]
Bakalova, A.; Vaabnov, H.; Stanchev, S.; Ivanov, D.; Jensen, F. DFT study of the structure and spectral behavior of new Pt(II) complexes with 5-methyl-5(4-pyridyl) hydantoin. Int. J. Quantum Chem., 2009, 109(4), 826-836.
[http://dx.doi.org/10.1002/qua.21890]
[36]
Adamo, C. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys., 1999, 110, 6158.
[http://dx.doi.org/10.1063/1.478522]
[37]
Akçay, H.T.; Bayrak, R. Computational studies on the anastrozole and letrozole, effective chemotherapy drugs against breast cancer. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 122, 142-152.
[http://dx.doi.org/10.1016/j.saa.2013.11.028] [PMID: 24309175]
[38]
Chattaraj, P.K.; Giri, S. Stability, reactivity, and aromaticity of compounds of a multivalent superatom. J. Phys. Chem. A, 2007, 111(43), 11116-11121.
[http://dx.doi.org/10.1021/jp0760758] [PMID: 17915847]
[39]
Sabounchei, S.J.; Shahriary, P.; Salehzadeh, S.; Gholiee, Y.; Nematollahi, D.; Chehregani, A.; Amani, A.; Afsartala, Z. Pd(II) and Pd(IV) complexes with 5-methyl-5-(4-pyridyl)hydantoin: synthesis, physicochemical, theoretical, and pharmacological investigation. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 135, 1019-1031.
[http://dx.doi.org/10.1016/j.saa.2014.08.002] [PMID: 25171052]
[40]
Liu, F.; Zhou, Z.; Gou, S.; Zhao, J.; Chen, F. Synthesis and antiproliferative activity of (1R,2R)-N1-(2-butyl)-1,2-cyclohexanediamine platinum(II) complexes with malonate derivatives. J. Coord. Chem., 2004, 67(17), 2858-2866.
[http://dx.doi.org/10.1080/00958972.2014.951638]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy