Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Unraveling Potential Candidate Targets Associated with Expression of p16INK4a or p16 Truncated Fragment by Comparative Proteomics Analysis

Author(s): Najmeh Fahham, Fatemeh Zandi, Mohammad Hossein Ghahremani, Seyed Nasser Ostad, Behrouz Vaziri*, Seyed Sadegh Shahraeini and Soroush Sardari*

Volume 19, Issue 2, 2022

Published on: 28 July, 2021

Page: [171 - 181] Pages: 11

DOI: 10.2174/1570164618666210728121529

Price: $65

Abstract

Background: p16 is a tumor suppressor protein that is significantly involved in cycle regulation through the reduction of cell progression from the G1 phase to the S phase via CDK-cyclin D/p16INK4a/pRb/E2F cascade. The minimum functional domain of p16 has been uncovered that may function comparable to wild type p16.

Objective: To expand the knowledge on molecules and mechanisms by which p16 or p1666-156 fragment suppresses human fibrosarcoma cell line growth, differential proteome profiles of fibrosarcoma cells following p16 full length or the functional domain overexpression, were analyzed.

Methods: Following transfecting HT-1080 fibrosarcoma cells with p16 full length, p1666-156 truncated form, and pcDNA3.1 empty vector, protein extract of each sample was harvested and clarified by centrifugation, and then the protein content was determined via Bradford assay. All protein extract of each sample was analyzed by two-dimensional gel electrophoresis. Immunoblot analysis was performed as further validation of the expression status of identified proteins.

Results: Expression of p16 or p1666-156 fragment could induce mostly the common alterations (up/- down-regulation) of proteome profile of HT-1080 cells. Mass spectrometry identification of the differentially expressed protein spots revealed several proteins that were grouped in functional clusters, including cell cycle regulation and proliferation, cell migration and structure, oxidative stress, protein metabolism, epigenetic regulation, and signal transduction.

Conclusion: The minimum functional domain of p16 could act in the same way as p16 full length. Also, these new findings can significantly enrich the understanding of p16 growth-suppressive function at the molecular level by the introduction of potential candidate targets for new treatment strategies. Furthermore, the present study provides strong evidence on the functional efficacy of the identified fragment of p16 for further attempts toward peptidomimetic drug design or gene transfer to block cancer cell proliferation.

Keywords: p16INK4A, proteomics, fibrosarcoma, oxidative stress, protein metabolism, cytoskeleton, signal transduction.

Graphical Abstract

[1]
Hirama, T.; Koeffler, H. P. Role of the cyclin-dependent kinase inhibitors in the development of cancer. Blood, 1995, 86(3), 841-54.
[2]
Ortega, S.; Malumbres, M.; Barbacid, M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim. Biophys. Acta, 2002, 1602(1), 73-87.
[PMID: 11960696]
[3]
Russo, A.A.; Tong, L.; Lee, J-O.; Jeffrey, P.D.; Pavletich, N.P. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature, 1998, 395(6699), 237-243.
[http://dx.doi.org/10.1038/26155] [PMID: 9751050]
[4]
Sherr, C.J.; Roberts, J.M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev., 1995, 9(10), 1149-1163.
[http://dx.doi.org/10.1101/gad.9.10.1149] [PMID: 7758941]
[5]
Byeon, I-J.L.; Li, J.; Ericson, K.; Selby, T.L.; Tevelev, A.; Kim, H-J.; O’Maille, P.; Tsai, M-D. Tumor suppressor p16INK4A: Determination of solution structure and analyses of its interaction with cyclin-dependent kinase 4. Mol. Cell, 1998, 1(3), 421-431.
[http://dx.doi.org/10.1016/S1097-2765(00)80042-8] [PMID: 9660926]
[6]
Fahham, N.; Sardari, S.; Ostad, S.N.; Vaziri, B.; Ghahremani, M.H. C-terminal domain of p16(INK4a) is adequate in inducing cell cycle arrest, growth inhibition and CDK4/6 interaction similar to the full length protein in HT-1080 fibrosarcoma cells. J. Cell. Biochem., 2010, 111(6), 1598-1606.
[http://dx.doi.org/10.1002/jcb.22892] [PMID: 21053367]
[7]
Fahham, N.; Ghahremani, M. H.; Sardari, S.; Vaziri, B.; Ostad, S. N. Simulation of different truncated p16ink4a forms and in silico study of interaction with cdk4. Cancer inform, 2009, 7(CIN), S878.
[http://dx.doi.org/10.4137/CIN.S878]
[8]
Plath, T.; Detjen, K.; Welzel, M.; von Marschall, Z.; Murphy, D.; Schirner, M.; Wiedenmann, B.; Rosewicz, S. A novel function for the tumor suppressor p16(INK4a): Induction of anoikis via upregulation of the α(5)β(1) fibronectin receptor. J. Cell Biol., 2000, 150(6), 1467-1478.
[http://dx.doi.org/10.1083/jcb.150.6.1467] [PMID: 10995450]
[9]
Liepinsh, E.; Rakonjac, M.; Boissonneault, V.; Provost, P.; Samuelsson, B.; Rådmark, O.; Otting, G. Letter to the Editor: NMR structure of human coactosin-like protein. J Biomol NMR; , 2004, 30, pp. (3)353-356.
[10]
Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature, 2003, 422(6928), 198-207.
[http://dx.doi.org/10.1038/nature01511] [PMID: 12634793]
[11]
Rabodoarivelo, M.S.; Aerts, M.; Vandamme, P.; Palomino, J.C.; Rasolofo, V.; Martin, A. Optimizing of a protein extraction method for Mycobacterium tuberculosis proteome analysis using mass spectrometry. J. Microbiol. Methods, 2016, 131, 144-147.
[http://dx.doi.org/10.1016/j.mimet.2016.10.021] [PMID: 27984057]
[12]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[13]
Cecconi, D.; Cristofoletti, M.; Milli, A.; Antonioli, P.; Rinalducci, S.; Zolla, L.; Zapparoli, G. Effect of tannic acid on Lactobacillus plantarum wine strain during starvation: A proteomic study. Electrophoresis, 2009, 30(6), 957-965.
[http://dx.doi.org/10.1002/elps.200800310] [PMID: 19229842]
[14]
Cho, S.H.; Hoang, Q.T.; Kim, Y.Y.; Shin, H.Y.; Ok, S.H.; Bae, J.M.; Shin, J.S. Proteome analysis of gametophores identified a metallothionein involved in various abiotic stress responses in Physcomitrella patens. Plant Cell Rep., 2006, 25(5), 475-488.
[http://dx.doi.org/10.1007/s00299-005-0079-0] [PMID: 16397781]
[15]
Wright, A.; Drudy, D.; Kyne, L.; Brown, K.; Fairweather, N.F. Immunoreactive cell wall proteins of Clostridium difficile identified by human sera. J. Med. Microbiol., 2008, 57(Pt 6), 750-756.
[http://dx.doi.org/10.1099/jmm.0.47532-0] [PMID: 18480333]
[16]
Rezaie, F.; Salimi, M.; Ghahremani, M.H.; Vaziri, B. Potential molecular targets in chemopreventative action of celecoxib: A proteomics analysis of J774.A1 macrophage-like cell line. Mol. Biosyst., 2011, 7(4), 1306-1311.
[http://dx.doi.org/10.1039/c0mb00201a] [PMID: 21258746]
[17]
Azkargorta, M.; Arizmendi, J.M.; Elortza, F.; Alkorta, N.; Zubiaga, A.M.; Fullaondo, A. Differential proteome profiles in E2F2-deficient T lymphocytes. Proteomics, 2006, 6(S1)(Suppl. 1), S42-S50.
[http://dx.doi.org/10.1002/pmic.200500438] [PMID: 16544283]
[18]
Nitta, R.T.; Jameson, S.A.; Kudlow, B.A.; Conlan, L.A.; Kennedy, B.K. Stabilization of the retinoblastoma protein by A- type nuclear lamins is required for INK4A-mediated cell cycle arrest. Mol. Cell. Biol., 2006, 26(14), 5360-5372.
[http://dx.doi.org/10.1128/MCB.02464-05] [PMID: 16809772]
[19]
Souza-Rodrígues, E.; Estanyol, J.M.; Friedrich-Heineken, E.; Olmedo, E.; Vera, J.; Canela, N.; Brun, S.; Agell, N.; Hübscher, U.; Bachs, O.; Jaumot, M. Proteomic analysis of p16ink4a-binding proteins. Proteomics, 2007, 7(22), 4102-4111.
[http://dx.doi.org/10.1002/pmic.200700133] [PMID: 17955473]
[20]
Trougakos, I.P.; Saridaki, A.; Panayotou, G.; Gonos, E.S. Identification of differentially expressed proteins in senescent human embryonic fibroblasts. Mech. Ageing Dev., 2006, 127(1), 88-92.
[http://dx.doi.org/10.1016/j.mad.2005.08.009] [PMID: 16213575]
[21]
Zhu, Q-S.; Rosenblatt, K.; Huang, K-L.; Lahat, G.; Brobey, R.; Bolshakov, S.; Nguyen, T.; Ding, Z.; Belousov, R.; Bill, K.; Luo, X.; Lazar, A.; Dicker, A.; Mills, G.B.; Hung, M.C.; Lev, D. Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene, 2011, 30(4), 457-470.
[http://dx.doi.org/10.1038/onc.2010.421] [PMID: 20856200]
[22]
Tamura, K.; Yoshie, M.; Hara, T.; Isaka, K.; Kogo, H. Involvement of stathmin in proliferation and differentiation of immortalized human endometrial stromal cells. J. Reprod. Dev., 2007, 53(3), 525-533.
[http://dx.doi.org/10.1262/jrd.18129] [PMID: 17272923]
[23]
Canzonieri, V.; Barzan, L.; Franchin, G.; Vaccher, E.; Talamini, R.; Sulfaro, S.; Baldassarre, G. Alteration of G1/S transition regulators influences recurrences in head and neck squamous carcinomas. J. Cell. Physiol., 2012, 227(1), 233-238.
[http://dx.doi.org/10.1002/jcp.22723] [PMID: 21412768]
[24]
Sung, Y.H.; Kim, H.J.; Lee, H-W. Identification of a novel Rb-regulated gene associated with the cell cycle.Mol Cells., 2007, 24(3), 409-15.
[25]
Paramio, J.M.; Casanova, M.L.; Segrelles, C.; Mittnacht, S.; Lane, E.B.; Jorcano, J.L. Modulation of cell proliferation by cytokeratins K10 and K16. Mol. Cell. Biol., 1999, 19(4), 3086-3094.
[http://dx.doi.org/10.1128/MCB.19.4.3086] [PMID: 10082575]
[26]
Darbro, B.W.; Schneider, G.B.; Klingelhutz, A.J. Co-regulation of p16INK4A and migratory genes in culture conditions that lead to premature senescence in human keratinocytes. J. Invest. Dermatol., 2005, 125(3), 499-509.
[http://dx.doi.org/10.1111/j.0022-202X.2005.23844.x] [PMID: 16117791]
[27]
Lee, H-H.; Lim, C-A.; Cheong, Y-T.; Singh, M.; Gam, L-H. Comparison of protein expression profiles of different stages of lymph nodes metastasis in breast cancer. Int. J. Biol. Sci., 2012, 8(3), 353-362.
[http://dx.doi.org/10.7150/ijbs.3157] [PMID: 22393307]
[28]
Helfman, D.M.; Flynn, P.; Khan, P.; Saeed, A. Tropomyosin as a regulator of cancer cell transformation.Tropomyosin; Springer, 2008, pp. 124-131.
[http://dx.doi.org/10.1007/978-0-387-85766-4_10]
[29]
Jenkins, N.C.; Liu, T.; Cassidy, P.; Leachman, S.A.; Boucher, K.M.; Goodson, A.G.; Samadashwily, G.; Grossman, D. The p16(INK4A) tumor suppressor regulates cellular oxidative stress. Oncogene, 2011, 30(3), 265-274.
[http://dx.doi.org/10.1038/onc.2010.419] [PMID: 20838381]
[30]
Li, J.; Okamoto, H.; Yin, C.; Jagannathan, J.; Takizawa, J.; Aoki, S.; Gläsker, S.; Rushing, E.J.; Vortmeyer, A.O.; Oldfield, E.H.; Yamanaka, R.; Zhuang, Z. Proteomic characterization of primary diffuse large B-cell lymphomas in the central nervous system. J. Neurosurg., 2008, 109(3), 536-546.
[http://dx.doi.org/10.3171/JNS/2008/109/9/0536] [PMID: 18759588]
[31]
Jung, E.J.; Moon, H.G.; Park, S.T.; Cho, B.I.; Lee, S.M.; Jeong, C.Y.; Ju, Y.T.; Jeong, S.H.; Lee, Y.J.; Choi, S.K.; Ha, W.S.; Lee, J.S.; Kang, K.R.; Hong, S.C. Decreased annexin A3 expression correlates with tumor progression in papillary thyroid cancer. Proteomics Clin. Appl., 2010, 4(5), 528-537.
[http://dx.doi.org/10.1002/prca.200900063] [PMID: 21137070]
[32]
Mori-Iwamoto, S.; Kuramitsu, Y.; Ryozawa, S.; Mikuria, K.; Fujimoto, M.; Maehara, S.; Maehara, Y.; Okita, K.; Nakamura, K.; Sakaida, I. Proteomics finding heat shock protein 27 as a biomarker for resistance of pancreatic cancer cells to gemcitabine. Int. J. Oncol., 2007, 31(6), 1345-1350.
[http://dx.doi.org/10.3892/ijo.31.6.1345] [PMID: 17982661]
[33]
Klawitter, J.; Shokati, T.; Moll, V.; Christians, U.; Klawitter, J. Effects of lovastatin on breast cancer cells: A proteo-metabonomic study. Breast Cancer Res., 2010, 12(2), R16.
[http://dx.doi.org/10.1186/bcr2485] [PMID: 20205716]
[34]
Choi, J.; Kim, E.-S.; Koo, J. S. Expression of pentose phosphate pathway-related proteins in breast cancer. Dis Markers, 2018, 2018
[http://dx.doi.org/10.1155/2018/9369358]
[35]
Jin, K.; Li, L.; Sun, X.; Xu, Q.; Song, S.; Shen, Y.; Deng, X. Mycoepoxydiene suppresses HeLa cell growth by inhibiting glycolysis and the pentose phosphate pathway. Appl. Microbiol. Biotechnol., 2017, 101(10), 4201-4213.
[http://dx.doi.org/10.1007/s00253-017-8187-7] [PMID: 28224194]
[36]
Young, T.; Mei, F.; Liu, J.; Bast, R.C., Jr; Kurosky, A.; Cheng, X. Proteomics analysis of H-RAS-mediated oncogenic transformation in a genetically defined human ovarian cancer model. Oncogene, 2005, 24(40), 6174-6184.
[http://dx.doi.org/10.1038/sj.onc.1208753] [PMID: 15940260]
[37]
Young, T.W.; Mei, F.C.; Rosen, D.G.; Yang, G.; Li, N.; Liu, J.; Cheng, X. Up-regulation of tumor susceptibility gene 101 protein in ovarian carcinomas revealed by proteomics analyses. Mol. Cell. Proteomics, 2007, 6(2), 294-304.
[http://dx.doi.org/10.1074/mcp.M600305-MCP200] [PMID: 17110434]
[38]
Jin, B-F.; He, K.; Wang, H-X.; Bai, B.; Zhou, T.; Li, H-Y.; Man, J-H.; Liu, B-Y.; Gong, W-L.; Wang, J.; Li, A.L.; Zhang, X.M. Proteomics analysis reveals insight into the mechanism of H-Ras-mediated transformation. J. Proteome Res., 2006, 5(10), 2815-2823.
[http://dx.doi.org/10.1021/pr060283f] [PMID: 17022653]
[39]
Juarez, J.C.; Betancourt, O., Jr; Pirie-Shepherd, S.R.; Guan, X.; Price, M.L.; Shaw, D.E.; Mazar, A.P.; Doñate, F. Copper binding by tetrathiomolybdate attenuates angiogenesis and tumor cell proliferation through the inhibition of superoxide dismutase 1. Clin. Cancer Res., 2006, 12(16), 4974-4982.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0171] [PMID: 16914587]
[40]
Huang, P.; Feng, L.; Oldham, E.A.; Keating, M.J.; Plunkett, W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature, 2000, 407(6802), 390-395.
[http://dx.doi.org/10.1038/35030140] [PMID: 11014196]
[41]
Frendo, J-L.; Thérond, P.; Bird, T.; Massin, N.; Muller, F.; Guibourdenche, J.; Luton, D.; Vidaud, M.; Anderson, W.B.; Evain-Brion, D. Overexpression of copper zinc superoxide dismutase impairs human trophoblast cell fusion and differentiation. Endocrinology, 2001, 142(8), 3638-3648.
[http://dx.doi.org/10.1210/endo.142.8.8329] [PMID: 11459813]
[42]
Tian, C.; Gao, P.; Zheng, Y.; Yue, W.; Wang, X.; Jin, H.; Chen, Q. Redox status of thioredoxin-1 (TRX1) determines the sensitivity of human liver carcinoma cells (HepG2) to arsenic trioxide-induced cell death. Cell Res., 2008, 18(4), 458-471.
[http://dx.doi.org/10.1038/cr.2007.112] [PMID: 18157160]
[43]
Powis, G.; Mustacich, D.; Coon, A. The role of the redox protein thioredoxin in cell growth and cancer. Free Radic. Biol. Med., 2000, 29(3-4), 312-322.
[http://dx.doi.org/10.1016/S0891-5849(00)00313-0] [PMID: 11035260]
[44]
Soini, Y.; Kahlos, K.; Näpänkangas, U.; Kaarteenaho-Wiik, R.; Säily, M.; Koistinen, P.; Pääakkö, P.; Holmgren, A.; Kinnula, V.L. Widespread expression of thioredoxin and thioredoxin reductase in non-small cell lung carcinoma. Clin. Cancer Res., 2001, 7(6), 1750-1757.
[PMID: 11410516]
[45]
Powis, G.; Kirkpatrick, D.L. Thioredoxin signaling as a target for cancer therapy. Curr. Opin. Pharmacol., 2007, 7(4), 392-397.
[http://dx.doi.org/10.1016/j.coph.2007.04.003] [PMID: 17611157]
[46]
Mochizuki, M.; Kwon, Y-W.; Yodoi, J.; Masutani, H. Thioredoxin regulates cell cycle via the ERK1/2-cyclin D1 pathway. Antioxid. Redox Signal., 2009, 11(12), 2957-2971.
[http://dx.doi.org/10.1089/ars.2009.2623] [PMID: 19622016]
[47]
Mukherjee, A.; Martin, S. The thioredoxin system: A key target in tumour and endothelial cells. The British journal of radiology, 2008, 81(special_issue_1), S57-S68.
[http://dx.doi.org/10.1259/bjr/34180435]
[48]
Young, J.J.; Patel, A.; Rai, P. Suppression of thioredoxin-1 induces premature senescence in normal human fibroblasts. Biochem. Biophys. Res. Commun., 2010, 392(3), 363-368.
[http://dx.doi.org/10.1016/j.bbrc.2010.01.026] [PMID: 20074557]
[49]
Yuen, H-F.; Chan, Y-P.; Law, S.; Srivastava, G.; El-Tanani, M.; Mak, T-W.; Chan, K-W. DJ-1 could predict worse prognosis in esophageal squamous cell carcinoma. Cancer Epidemiol. Biomarkers Prev., 2008, 17(12), 3593-3602.
[http://dx.doi.org/10.1158/1055-9965.EPI-08-0214] [PMID: 19064576]
[50]
Liu, H.; Wang, M.; Li, M.; Wang, D.; Rao, Q.; Wang, Y.; Xu, Z.; Wang, J. Expression and role of DJ-1 in leukemia. Biochem. Biophys. Res. Commun., 2008, 375(3), 477-483.
[http://dx.doi.org/10.1016/j.bbrc.2008.08.046] [PMID: 18722352]
[51]
Bottoni, P.; Giardina, B.; Vitali, A.; Boninsegna, A.; Scatena, R. A proteomic approach to characterizing ciglitazone-induced cancer cell differentiation in Hep-G2 cell line. Biochim. Biophys. Acta, 2009, 1794(4), 615-626.
[http://dx.doi.org/10.1016/j.bbapap.2009.01.006] [PMID: 19336041]
[52]
Zhong, Z.; Yeow, W-S.; Zou, C.; Wassell, R.; Wang, C.; Pestell, R.G.; Quong, J.N.; Quong, A.A. Cyclin D1/cyclin-dependent kinase 4 interacts with filamin A and affects the migration and invasion potential of breast cancer cells. Cancer Res., 2010, 70(5), 2105-2114.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1108] [PMID: 20179208]
[53]
Chlapek, P.; Redova, M.; Zitterbart, K.; Hermanova, M.; Sterba, J.; Veselska, R. Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: An expression profiling study. J. Exp. Clin. Cancer Res., 2010, 29(1), 45.
[http://dx.doi.org/10.1186/1756-9966-29-45] [PMID: 20459794]
[54]
Petroulakis, E.; Parsyan, A.; Dowling, R.J.; LeBacquer, O.; Martineau, Y.; Bidinosti, M.; Larsson, O.; Alain, T.; Rong, L.; Mamane, Y.; Paquet, M.; Furic, L.; Topisirovic, I.; Shahbazian, D.; Livingstone, M.; Costa-Mattioli, M.; Teodoro, J.G.; Sonenberg, N. p53-dependent translational control of senescence and transformation via 4E-BPs. Cancer Cell, 2009, 16(5), 439-446.
[http://dx.doi.org/10.1016/j.ccr.2009.09.025] [PMID: 19878875]
[55]
Fury, M.G.; Drobnjak, M.; Sima, C.S.; Asher, M.; Shah, J.; Lee, N.; Carlson, D.; Wendel, H.G.; Pfister, D.G. Tissue microarray evidence of association between p16 and phosphorylated eIF4E in tonsillar squamous cell carcinoma. Head Neck, 2011, 33(9), 1340-1345.
[http://dx.doi.org/10.1002/hed.21621] [PMID: 21837706]
[56]
He, L.R.; Zhao, H.Y.; Li, B.K.; Liu, Y.H.; Liu, M.Z.; Guan, X.Y.; Bian, X.W.; Zeng, Y.X.; Xie, D. Overexpression of eIF5A-2 is an adverse prognostic marker of survival in stage I non-small cell lung cancer patients. Int. J. Cancer, 2011, 129(1), 143-150.
[http://dx.doi.org/10.1002/ijc.25669] [PMID: 20830705]
[57]
Tang, D.J.; Dong, S.S.; Ma, N.F.; Xie, D.; Chen, L.; Fu, L.; Lau, S.H.; Li, Y.; Li, Y.; Guan, X.Y. Overexpression of eukaryotic initiation factor 5A2 enhances cell motility and promotes tumor metastasis in hepatocellular carcinoma. Hepatology, 2010, 51(4), 1255-1263.
[http://dx.doi.org/10.1002/hep.23451] [PMID: 20112425]
[58]
Winnefeld, M.; Rommelaere, J.; Cziepluch, C. The human small glutamine-rich TPR-containing protein is required for progress through cell division. Exp. Cell Res., 2004, 293(1), 43-57.
[http://dx.doi.org/10.1016/j.yexcr.2003.09.028] [PMID: 14729056]
[59]
Rho, J.H.; Qin, S.; Wang, J.Y.; Roehrl, M.H. Proteomic expression analysis of surgical human colorectal cancer tissues: Up-regulation of PSB7, PRDX1, and SRP9 and hypoxic adaptation in cancer. J. Proteome Res., 2008, 7(7), 2959-2972.
[http://dx.doi.org/10.1021/pr8000892] [PMID: 18549262]
[60]
Mehling, M.; Simon, P.; Mittelbronn, M.; Meyermann, R.; Ferrone, S.; Weller, M.; Wiendl, H. WHO grade associated downregulation of MHC class I antigen-processing machinery components in human astrocytomas: Does it reflect a potential immune escape mechanism? Acta Neuropathol., 2007, 114(2), 111-119.
[http://dx.doi.org/10.1007/s00401-007-0231-8] [PMID: 17541610]
[61]
De Lucia, F.; Ni, J-Q.; Vaillant, C.; Sun, F-L. HP1 modulates the transcription of cell-cycle regulators in Drosophila melanogaster. Nucleic Acids Res., 2005, 33(9), 2852-2858.
[http://dx.doi.org/10.1093/nar/gki584] [PMID: 15905474]
[62]
De Koning, L.; Savignoni, A.; Boumendil, C.; Rehman, H.; Asselain, B.; Sastre-Garau, X.; Almouzni, G. Heterochromatin protein 1α: A hallmark of cell proliferation relevant to clinical oncology. EMBO Mol. Med., 2009, 1(3), 178-191.
[http://dx.doi.org/10.1002/emmm.200900022] [PMID: 20049717]
[63]
Takanashi, M.; Oikawa, K.; Fujita, K.; Kudo, M.; Kinoshita, M.; Kuroda, M. Heterochromatin protein 1γ epigenetically regulates cell differentiation and exhibits potential as a therapeutic target for various types of cancers. Am. J. Pathol., 2009, 174(1), 309-316.
[http://dx.doi.org/10.2353/ajpath.2009.080148] [PMID: 19056850]
[64]
Ma, C.; Nie, X.G.; Wang, Y.L.; Liu, X.H.; Liang, X.; Zhou, Q.L.; Wu, D.P. CBX3 predicts an unfavorable prognosis and promotes tumorigenesis in osteosarcoma. Mol. Med. Rep., 2019, 19(5), 4205-4212.
[http://dx.doi.org/10.3892/mmr.2019.10104] [PMID: 30942427]
[65]
Oberley, M.J.; Inman, D.R.; Farnham, P.J. E2F6 negatively regulates BRCA1 in human cancer cells without methylation of histone H3 on lysine 9. J. Biol. Chem., 2003, 278(43), 42466-42476.
[http://dx.doi.org/10.1074/jbc.M307733200] [PMID: 12909625]
[66]
Nielsen, S.J.; Schneider, R.; Bauer, U-M.; Bannister, A.J.; Morrison, A.; O’Carroll, D.; Firestein, R.; Cleary, M.; Jenuwein, T.; Herrera, R.E.; Kouzarides, T. Rb targets histone H3 methylation and HP1 to promoters. Nature, 2001, 412(6846), 561-565.
[http://dx.doi.org/10.1038/35087620] [PMID: 11484059]
[67]
Lim, L.H.; Pervaiz, S. Annexin 1: The new face of an old molecule. FASEB J., 2007, 21(4), 968-975.
[http://dx.doi.org/10.1096/fj.06-7464rev] [PMID: 17215481]
[68]
Shen, D.; Nooraie, F.; elshimali, Y.; lonsberry, V.; he, j.; Bose, S.; chia, d.; Seligson, d.; chang, hr. Goodglick l: Decreased expression of annexin A1 is correlated with breast cancer development and progression as determined by a tissue microarray analysis. hum Pathol, 2006, 37, 1583-1591.
[69]
Alldridge, L.C.; Bryant, C.E. Annexin 1 regulates cell proliferation by disruption of cell morphology and inhibition of cyclin D1 expression through sustained activation of the ERK1/2 MAPK signal. Exp. Cell Res., 2003, 290(1), 93-107.
[http://dx.doi.org/10.1016/S0014-4827(03)00310-0] [PMID: 14516791]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy