Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Molecular Identification of Phytochemical for Anticancer Treatment

Author(s): Kanchana Usuwanthim*, Prapakorn Wisitpongpun and Thitiya Luetragoon

Volume 20, Issue 6, 2020

Page: [651 - 666] Pages: 16

DOI: 10.2174/1871520620666200213110016

Price: $65

Abstract

Cancer commands the second highest global mortality rate and causes severe public health problems. Recent advances have been made in cancer therapy but the incidence of the disease remains high. Research on more efficient treatment methods with reduced side effects is necessary. Historically, edible plants have been used as traditional medicines for various diseases. These demonstrate the potential of natural products as sources of bioactive compounds for anticancer treatment. Anticancer properties of phytochemicals are attributed to bioactive compounds in plant extracts that suppress cancer cell proliferation and growth by inducing both cell cycle arrest and apoptosis. This review presents a summary of the molecular identification of phytochemicals with anticancer properties and details their action mechanisms and molecular targets. Moreover, the effects of the natural product on both immunomodulatory and anticancer properties are provided.

Keywords: Anticancer, natural product, apoptosis, cell cycle, immunomodulatory, receptor tyrosine kinase.

Graphical Abstract

[1]
Mousa, A.S.; Mousa, S.A. Anti-angiogenesis efficacy of the garlic ingredient alliin and antioxidants: role of nitric oxide and p53. Nutr. Cancer, 2005, 53(1), 104-110.
[http://dx.doi.org/10.1207/s15327914nc5301_12] [PMID: 16351512]
[3]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[4]
Ray, S. The cell: A molecular approach. Yale J. Biol. Med., 2014, 87(4), 603-604.
[5]
Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod., 2003, 66(7), 1022-1037.
[http://dx.doi.org/10.1021/np030096l] [PMID: 12880330]
[6]
Sever, R.; Brugge, J.S. Signal transduction in cancer. Cold Spring Harb. Perspect. Med., 2015, 5(4), a006098
[http://dx.doi.org/10.1101/cshperspect.a006098] [PMID: 25833940]
[7]
Park, K.; Lee, J.H. Photosensitizer effect of curcumin on UVB-irradiated HaCaT cells through activation of caspase pathways. Oncol. Rep., 2007, 17(3), 537-540.
[http://dx.doi.org/10.3892/or.17.3.537] [PMID: 17273730]
[8]
Lin, Y.G.; Kunnumakkara, A.B.; Nair, A.; Merritt, W.M.; Han, L.Y.; Armaiz-Pena, G.N.; Kamat, A.A.; Spannuth, W.A.; Gershenson, D.M.; Lutgendorf, S.K.; Aggarwal, B.B.; Sood, A.K. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin. Cancer Res., 2007, 13(11), 3423-3430.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-3072] [PMID: 17545551]
[9]
Ligeret, H.; Barthelemy, S.; Zini, R.; Tillement, J.P.; Labidalle, S.; Morin, D. Effects of curcumin and curcumin derivatives on mitochondrial permeability transition pore. Free Radic. Biol. Med., 2004, 36(7), 919-929.
[http://dx.doi.org/10.1016/j.freeradbiomed.2003.12.018] [PMID: 15019976]
[10]
Jana, N.R.; Dikshit, P.; Goswami, A.; Nukina, N. Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway. J. Biol. Chem., 2004, 279(12), 11680-11685.
[http://dx.doi.org/10.1074/jbc.M310369200] [PMID: 14701837]
[11]
Satyan, K.S.; Swamy, N.; Dizon, D.S.; Singh, R.; Granai, C.O.; Brard, L. Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: role of caspase and MAPK activation. Gynecol. Oncol., 2006, 103(1), 261-270.
[http://dx.doi.org/10.1016/j.ygyno.2006.03.002] [PMID: 16624391]
[12]
Boreddy, S.R.; Pramanik, K.C.; Srivastava, S.K. Pancreatic tumor suppression by benzyl isothiocyanate is associated with inhibition of PI3K/AKT/FOXO pathway. Clin. Cancer Res., 2011, 17(7), 1784-1795.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1891] [PMID: 21350002]
[13]
Lin, J.F.; Tsai, T.F.; Liao, P.C.; Lin, Y.H.; Lin, Y.C.; Chen, H.E.; Chou, K.Y.; Hwang, T.I. Benzyl isothiocyanate induces protective autophagy in human prostate cancer cells via inhibition of mTOR signaling. Carcinogenesis, 2013, 34(2), 406-414.
[http://dx.doi.org/10.1093/carcin/bgs359] [PMID: 23172666]
[14]
Syed, D.N.; Afaq, F.; Sarfaraz, S.; Khan, N.; Kedlaya, R.; Setaluri, V.; Mukhtar, H. Delphinidin inhibits cell proliferation and invasion via modulation of Met receptor phosphorylation. Toxicol. Appl. Pharmacol., 2008, 231(1), 52-60.
[http://dx.doi.org/10.1016/j.taap.2008.03.023] [PMID: 18499206]
[15]
Sakamoto, K.; Lawson, L.D.; Milner, J.A. Allyl sulfides from garlic suppress the in vitro proliferation of human A549 lung tumor cells. Nutr. Cancer, 1997, 29(2), 152-156.
[http://dx.doi.org/10.1080/01635589709514617] [PMID: 9427979]
[16]
Kaufmann, S.H.; Gores, G.J. Apoptosis in cancer: cause and cure. BioEssays, 2000, 22(11), 1007-1017.
[http://dx.doi.org/10.1002/1521-1878(200011)22:11<1007:AID-BIES7>3.0.CO;2-4] [PMID: 11056477]
[17]
Ghobrial, I.M.; Witzig, T.E.; Adjei, A.A. Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin., 2005, 55(3), 178-194.
[http://dx.doi.org/10.3322/canjclin.55.3.178] [PMID: 15890640]
[18]
Loane, D.J.; Stoica, B.A.; Faden, A.I. Neuroprotection for traumatic brain injury; Elsevier, 2015, Vol. 127, .
[19]
Aft, R.L. Targeted Apoptosis in Breast Cancer Immunotherapy.Targeting New Pathways and Cell Death in Breast Cancer; Aft, R.L., Ed.; InTech: Croatia, 2012.
[http://dx.doi.org/10.5772/1744]
[20]
Lavrik, I.; Golks, A.; Krammer, P.H. Death receptor signaling. J. Cell Sci., 2005, 118(Pt 2), 265-267.
[http://dx.doi.org/10.1242/jcs.01610] [PMID: 15654015]
[21]
Wu, P.P.; Kuo, S.C.; Huang, W.W.; Yang, J.S.; Lai, K.C.; Chen, H.J.; Lin, K.L.; Chiu, Y.J.; Huang, L.J.; Chung, J.G. (-)-Epigallocatechin gallate induced apoptosis in human adrenal cancer NCI-H295 cells through caspase-dependent and caspase-independent pathway. Anticancer Res., 2009, 29(4), 1435-1442.
[PMID: 19414399]
[22]
Nakagawa, H.; Tsuta, K.; Kiuchi, K.; Senzaki, H.; Tanaka, K.; Hioki, K.; Tsubura, A. Growth inhibitory effects of diallyl disulfide on human breast cancer cell lines. Carcinogenesis, 2001, 22(6), 891-897.
[http://dx.doi.org/10.1093/carcin/22.6.891] [PMID: 11375895]
[23]
Karmakar, S.; Banik, N.L.; Patel, S.J.; Ray, S.K. Garlic compounds induced calpain and intrinsic caspase cascade for apoptosis in human malignant neuroblastoma SH-SY5Y cells. Apoptosis, 2007, 12(4), 671-684.
[http://dx.doi.org/10.1007/s10495-006-0024-x] [PMID: 17219050]
[24]
Hong, Y.S.; Ham, Y.A.; Choi, J.H.; Kim, J. Effects of allyl sulfur compounds and garlic extract on the expression of Bcl-2, Bax, and p53 in non small cell lung cancer cell lines. Exp. Mol. Med., 2000, 32(3), 127-134.
[http://dx.doi.org/10.1038/emm.2000.22] [PMID: 11048643]
[25]
Anto, R.J.; Mukhopadhyay, A.; Denning, K.; Aggarwal, B.B. Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis, 2002, 23(1), 143-150.
[http://dx.doi.org/10.1093/carcin/23.1.143] [PMID: 11756235]
[26]
Wu, Y.; Chen, Y.; Xu, J.; Lu, L. Anticancer activities of curcumin on human Burkitt’s lymphoma. Zhonghua Zhong Liu Za Zhi, 2002, 24(4), 348-352.
[PMID: 12408761]
[27]
Singh, M.; Singh, N. Molecular mechanism of curcumin induced cytotoxicity in human cervical carcinoma cells. Mol. Cell. Biochem., 2009, 325(1-2), 107-119.
[http://dx.doi.org/10.1007/s11010-009-0025-5] [PMID: 19191010]
[28]
Gupta, P.; Adkins, C.; Lockman, P.; Srivastava, S.K. Metastasis of breast tumor cells to brain is suppressed by phenethyl isothiocyanate in a novel in vivo metastasis model. PLoS One, 2013, 8(6), e67278
[http://dx.doi.org/10.1371/journal.pone.0067278] [PMID: 23826254]
[29]
Chen, P.Y.; Lin, K.C.; Lin, J.P.; Tang, N.Y.; Yang, J.S.; Lu, K.W.; Chung, J.G. Phenethyl Isothiocyanate (PEITC) inhibits the growth of human oral squamous carcinoma HSC-3 cells through G0/G1 phase arrest and mitochondria-mediated apoptotic cell death. Evid. Based Complement. Alternat. Med., 2012, 2012, 718320
[http://dx.doi.org/10.1155/2012/718320] [PMID: 22919418]
[30]
Tang, N.Y.; Huang, Y.T.; Yu, C.S.; Ko, Y.C.; Wu, S.H.; Ji, B.C.; Yang, J.S.; Yang, J.L.; Hsia, T.C.; Chen, Y.Y.; Chung, J.G. Phenethyl isothiocyanate (PEITC) promotes G2/M phase arrest via p53 expression and induces apoptosis through caspase- and mitochondria-dependent signaling pathways in human prostate cancer DU 145 cells. Anticancer Res., 2011, 31(5), 1691-1702.
[PMID: 21617228]
[31]
Lee, J.W.; Cho, M.K. Phenethyl isothiocyanate induced apoptosis via down regulation of Bcl-2/XIAP and triggering of the mitochondrial pathway in MCF-7 cells. Arch. Pharm. Res., 2008, 31(12), 1604-1612.
[http://dx.doi.org/10.1007/s12272-001-2158-2] [PMID: 19099231]
[32]
Xiao, D.; Lew, K.L.; Zeng, Y.; Xiao, H.; Marynowski, S.W.; Dhir, R.; Singh, S.V. Phenethyl isothiocyanate-induced apoptosis in PC-3 human prostate cancer cells is mediated by reactive oxygen species-dependent disruption of the mitochondrial membrane potential. Carcinogenesis, 2006, 27(11), 2223-2234.
[http://dx.doi.org/10.1093/carcin/bgl087] [PMID: 16774948]
[33]
Anwar, S.; Fratantonio, D.; Ferrari, D.; Saija, A.; Cimino, F.; Speciale, A. Berry anthocyanins reduce proliferation of human colorectal carcinoma cells by inducing caspase-3 activation and p21 upregulation. Mol. Med. Rep., 2016, 14(2), 1397-1403.
[http://dx.doi.org/10.3892/mmr.2016.5397] [PMID: 27314273]
[34]
Shih, P.H.; Yeh, C.T.; Yen, G.C. Anthocyanins induce the activation of phase II enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis. J. Agric. Food Chem., 2007, 55(23), 9427-9435.
[http://dx.doi.org/10.1021/jf071933i] [PMID: 17935293]
[35]
Lee, S.H.; Park, S.M.; Park, S.M.; Park, J.H.; Shin, D.Y.; Kim, G.Y.; Ryu, C.H.; Shin, S.C.; Jung, J.M.; Kang, H.S.; Lee, W.S.; Choi, Y.H. Induction of apoptosis in human leukemia U937 cells by anthocyanins through down-regulation of Bcl-2 and activation of caspases. Int. J. Oncol., 2009, 34(4), 1077-1083.
[PMID: 19287965]
[36]
Charepalli, V.; Reddivari, L.; Vadde, R.; Walia, S.; Radhakrishnan, S.; Vanamala, J.K. Eugenia jambolana (Java Plum) fruit extract exhibits anti-cancer activity against early stage human HCT-116 colon cancer cells and colon cancer stem cells. Cancers (Basel), 2016, 8(3), E29
[http://dx.doi.org/10.3390/cancers8030029] [PMID: 26927179]
[37]
Meeran, S.M.; Katiyar, S.K. Grape seed proanthocyanidins promote apoptosis in human epidermoid carcinoma A431 cells through alterations in Cdki-Cdk-cyclin cascade, and caspase-3 activation via loss of mitochondrial membrane potential. Exp. Dermatol., 2007, 16(5), 405-415.
[http://dx.doi.org/10.1111/j.1600-0625.2007.00542.x] [PMID: 17437483]
[38]
Molinari, M. Cell cycle checkpoints and their inactivation in human cancer. Cell Prolif., 2000, 33(5), 261-274.
[http://dx.doi.org/10.1046/j.1365-2184.2000.00191.x] [PMID: 11063129]
[39]
Murray, A.W. Recycling the cell cycle: cyclins revisited. Cell, 2004, 116(2), 221-234.
[http://dx.doi.org/10.1016/S0092-8674(03)01080-8] [PMID: 14744433]
[40]
Cooper, G.M. Hausman., R.E. Charpter 16: The Cell Cycle.The Cell: A Molecular Approach; Cooper, G.M; Hausman, R.E., Ed.; Library of Congress Cataloging-in-Publication Data: U.S.A, 2007.
[41]
Zhou, D.H.; Wang, X.; Yang, M.; Shi, X.; Huang, W.; Feng, Q. Combination of low concentration of (-)-epigallocatechin gallate (EGCG) and curcumin strongly suppresses the growth of non-small cell lung cancer in vitro and in vivo through causing cell cycle arrest. Int. J. Mol. Sci., 2013, 14(6), 12023-12036.
[http://dx.doi.org/10.3390/ijms140612023] [PMID: 23739680]
[42]
Shankar, S.; Suthakar, G.; Srivastava, R.K. Epigallocatechin-3-gallate inhibits cell cycle and induces apoptosis in pancreatic cancer. Front. Biosci., 2007, 12, 5039-5051.
[http://dx.doi.org/10.2741/2446] [PMID: 17569628]
[43]
Huang, C.H.; Tsai, S.J.; Wang, Y.J.; Pan, M.H.; Kao, J.Y.; Way, T.D. EGCG inhibits protein synthesis, lipogenesis, and cell cycle progression through activation of AMPK in p53 positive and negative human hepatoma cells. Mol. Nutr. Food Res., 2009, 53(9), 1156-1165.
[http://dx.doi.org/10.1002/mnfr.200800592] [PMID: 19662644]
[44]
Sharma, C.; Nusri, Qel-A.; Begum, S.; Javed, E.; Rizvi, T.A.; Hussain, A. (-)-Epigallocatechin-3-gallate induces apoptosis and inhibits invasion and migration of human cervical cancer cells. Asian Pac. J. Cancer Prev., 2012, 13(9), 4815-4822.
[http://dx.doi.org/10.7314/APJCP.2012.13.9.4815] [PMID: 23167425]
[45]
Ma, Y.C.; Li, C.; Gao, F.; Xu, Y.; Jiang, Z.B.; Liu, J.X.; Jin, L.Y. Epigallocatechin gallate inhibits the growth of human lung cancer by directly targeting the EGFR signaling pathway. Oncol. Rep., 2014, 31(3), 1343-1349.
[http://dx.doi.org/10.3892/or.2013.2933] [PMID: 24366444]
[46]
Gupta, S.; Ahmad, N.; Nieminen, A.L.; Mukhtar, H. Growth inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (-)-epigallocatechin-3-gallate in androgen-sensitive and androgen-insensitive human prostate carcinoma cells. Toxicol. Appl. Pharmacol., 2000, 164(1), 82-90.
[http://dx.doi.org/10.1006/taap.1999.8885] [PMID: 10739747]
[47]
Knowles, L.M.; Milner, J.A. Diallyl disulfide inhibits p34(cdc2) kinase activity through changes in complex formation and phosphorylation. Carcinogenesis, 2000, 21(6), 1129-1134.
[http://dx.doi.org/10.1093/carcin/21.6.1129] [PMID: 10837000]
[48]
Xiao, D.; Herman-Antosiewicz, A.; Antosiewicz, J.; Xiao, H.; Brisson, M.; Lazo, J.S.; Singh, S.V. Diallyl trisulfide-induced G(2)-M phase cell cycle arrest in human prostate cancer cells is caused by reactive oxygen species-dependent destruction and hyperphosphorylation of Cdc 25 C. Oncogene, 2005, 24(41), 6256-6268.
[http://dx.doi.org/10.1038/sj.onc.1208759] [PMID: 15940258]
[49]
Herman-Antosiewicz, A.; Singh, S.V. Checkpoint kinase 1 regulates diallyl trisulfide-induced mitotic arrest in human prostate cancer cells. J. Biol. Chem., 2005, 280(31), 28519-28528.
[http://dx.doi.org/10.1074/jbc.M501443200] [PMID: 15961392]
[50]
Herman-Antosiewicz, A.; Stan, S.D.; Hahm, E.R.; Xiao, D.; Singh, S.V. Activation of a novel ataxia-telangiectasia mutated and Rad3 related/checkpoint kinase 1-dependent prometaphase checkpoint in cancer cells by diallyl trisulfide, a promising cancer chemopreventive constituent of processed garlic. Mol. Cancer Ther., 2007, 6(4), 1249-1261.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0477] [PMID: 17406033]
[51]
Antosiewicz, J.; Herman-Antosiewicz, A.; Marynowski, S.W.; Singh, S.V. c-Jun NH(2)-terminal kinase signaling axis regulates diallyl trisulfide-induced generation of reactive oxygen species and cell cycle arrest in human prostate cancer cells. Cancer Res., 2006, 66(10), 5379-5386.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0356] [PMID: 16707465]
[52]
Park, M.J.; Kim, E.H.; Park, I.C.; Lee, H.C.; Woo, S.H.; Lee, J.Y.; Hong, Y.J.; Rhee, C.H.; Choi, S.H.; Shim, B.S.; Lee, S.H.; Hong, S.I. Curcumin inhibits cell cycle progression of immortalized human umbilical vein endothelial (ECV304) cells by up-regulating cyclin-dependent kinase inhibitor, p21WAF1/CIP1, p27KIP1 and p53. Int. J. Oncol., 2002, 21(2), 379-383.
[http://dx.doi.org/10.3892/ijo.21.2.379] [PMID: 12118335]
[53]
Malik, M.; Zhao, C.; Schoene, N.; Guisti, M.M.; Moyer, M.P.; Magnuson, B.A. Anthocyanin-rich extract from Aronia meloncarpa E induces a cell cycle block in colon cancer but not normal colonic cells. Nutr. Cancer, 2003, 46(2), 186-196.
[http://dx.doi.org/10.1207/S15327914NC4602_12] [PMID: 14690795]
[54]
Chen, P.N.; Chu, S.C.; Chiou, H.L.; Chiang, C.L.; Yang, S.F.; Hsieh, Y.S. Cyanidin 3-glucoside and peonidin 3-glucoside inhibit tumor cell growth and induce apoptosis in vitro and suppress tumor growth in vivo. Nutr. Cancer, 2005, 53(2), 232-243.
[http://dx.doi.org/10.1207/s15327914nc5302_12] [PMID: 16573384]
[55]
Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature, 2000, 407(6801), 249-257.
[http://dx.doi.org/10.1038/35025220] [PMID: 11001068]
[56]
Birbrair, A.; Zhang, T.; Wang, Z.M.; Messi, M.L.; Olson, J.D.; Mintz, A.; Delbono, O. Type-2 pericytes participate in normal and tumoral angiogenesis. Am. J. Physiol. Cell Physiol., 2014, 307(1), C25-C38.
[http://dx.doi.org/10.1152/ajpcell.00084.2014] [PMID: 24788248]
[57]
Liekens, S.; De Clercq, E.; Neyts, J. Angiogenesis: regulators and clinical applications. Biochem. Pharmacol., 2001, 61(3), 253-270.
[http://dx.doi.org/10.1016/S0006-2952(00)00529-3] [PMID: 11172729]
[58]
Semenza, G.L. HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell Biol., 2001, 13(2), 167-171.
[http://dx.doi.org/10.1016/S0955-0674(00)00194-0] [PMID: 11248550]
[59]
Relat, J.; Blancafort, A.; Oliveras, G.; Cufí, S.; Haro, D.; Marrero, P.F.; Puig, T. Different fatty acid metabolism effects of (-)-epigallocatechin-3-gallate and C75 in adenocarcinoma lung cancer. BMC Cancer, 2012, 12, 280.
[http://dx.doi.org/10.1186/1471-2407-12-280] [PMID: 22769244]
[60]
Sakamoto, Y.; Terashita, N.; Muraguchi, T.; Fukusato, T.; Kubota, S. Effects of epigallocatechin-3-gallate (EGCG) on A549 lung cancer tumor growth and angiogenesis. Biosci. Biotechnol. Biochem., 2013, 77(9), 1799-1803.
[http://dx.doi.org/10.1271/bbb.120882] [PMID: 24018658]
[61]
Li, X.; Feng, Y.; Liu, J.; Feng, X.; Zhou, K.; Tang, X. Epigallocatechin-3-gallate inhibits IGF-I-stimulated lung cancer angiogenesis through downregulation of HIF-1α and VEGF expression. J. Nutrigenet. Nutrigenomics, 2013, 6(3), 169-178.
[http://dx.doi.org/10.1159/000354402] [PMID: 24008975]
[62]
He, L.; Zhang, E.; Shi, J.; Li, X.; Zhou, K.; Zhang, Q.; Le, A.D.; Tang, X. (-)-Epigallocatechin-3-gallate inhibits human papillomavirus (HPV)-16 oncoprotein-induced angiogenesis in non-small cell lung cancer cells by targeting HIF-1α. Cancer Chemother. Pharmacol., 2013, 71(3), 713-725.
[http://dx.doi.org/10.1007/s00280-012-2063-z] [PMID: 23292117]
[63]
Boreddy, S.R.; Sahu, R.P.; Srivastava, S.K. Benzyl isothiocyanate suppresses pancreatic tumor angiogenesis and invasion by inhibiting HIF-α/VEGF/Rho-GTPases: pivotal role of STAT-3. PLoS One, 2011, 6(10), e25799
[http://dx.doi.org/10.1371/journal.pone.0025799] [PMID: 22016776]
[64]
Warin, R.; Xiao, D.; Arlotti, J.A.; Bommareddy, A.; Singh, S.V. Inhibition of human breast cancer xenograft growth by cruciferous vegetable constituent benzyl isothiocyanate. Mol. Carcinog., 2010, 49(5), 500-507.
[http://dx.doi.org/10.1002/mc.20600] [PMID: 20422714]
[65]
Piwocka, K.; Zabłocki, K.; Wieckowski, M.R.; Skierski, J.; Feiga, I.; Szopa, J.; Drela, N.; Wojtczak, L.; Sikora, E. A novel apoptosis-like pathway, independent of mitochondria and caspases, induced by curcumin in human lymphoblastoid T (Jurkat) cells. Exp. Cell Res., 1999, 249(2), 299-307.
[http://dx.doi.org/10.1006/excr.1999.4480] [PMID: 10366429]
[66]
Hussain, A.R.; Ahmed, M.; Al-Jomah, N.A.; Khan, A.S.; Manogaran, P.; Sultana, M.; Abubaker, J.; Platanias, L.C.; Al-Kuraya, K.S.; Uddin, S. Curcumin suppresses constitutive activation of nuclear factor-kappa B and requires functional Bax to induce apoptosis in Burkitt’s lymphoma cell lines. Mol. Cancer Ther., 2008, 7(10), 3318-3329.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0541] [PMID: 18852135]
[67]
Srivastava, R.K.; Chen, Q.; Siddiqui, I.; Sarva, K.; Shankar, S. Linkage of curcumin-induced cell cycle arrest and apoptosis by cyclin-dependent kinase inhibitor p21(/WAF1/CIP1). Cell Cycle, 2007, 6(23), 2953-2961.
[http://dx.doi.org/10.4161/cc.6.23.4951] [PMID: 18156803]
[68]
Shen, S.; Xu, X.; Liu, Z.; Liu, J.; Hu, L. Synthesis and structure-activity relationships of boswellic acid derivatives as potent VEGFR-2 inhibitors. Bioorg. Med. Chem., 2015, 23(9), 1982-1993.
[http://dx.doi.org/10.1016/j.bmc.2015.03.022] [PMID: 25819335]
[69]
Pierpaoli, E.; Damiani, E.; Orlando, F.; Lucarini, G.; Bartozzi, B.; Lombardi, P.; Salvatore, C.; Geroni, C.; Donati, A.; Provinciali, M. Antiangiogenic and antitumor activities of berberine derivative NAX014 compound in a transgenic murine model of HER2/neu-positive mammary carcinoma. Carcinogenesis, 2015, 36(10), 1169-1179.
[http://dx.doi.org/10.1093/carcin/bgv103] [PMID: 26168818]
[70]
Babu, T.M.; Rammohan, A.; Baki, V.B.; Devi, S.; Gunasekar, D.; Rajendra, W. Development of novel HER2 inhibitors against gastric cancer derived from flavonoid source of Syzygium alternifolium through molecular dynamics and pharmacophore-based screening. Drug Des. Devel. Ther., 2016, 10, 3611-3632.
[http://dx.doi.org/10.2147/DDDT.S111914] [PMID: 27853354]
[71]
Herbst, R.S. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys., 2004, 59(2)(Suppl.), 21-26.
[http://dx.doi.org/10.1016/j.ijrobp.2003.11.041] [PMID: 15142631]
[72]
White, P.T.; Subramanian, C.; Motiwala, H.F.; Cohen, M.S. Natural withanolides in the treatment of chronic diseases. Adv. Exp. Med. Biol., 2016, 928, 329-373.
[http://dx.doi.org/10.1007/978-3-319-41334-1_14] [PMID: 27671823]
[73]
Arora, S.; Singh, S.; Piazza, G.A.; Contreras, C.M.; Panyam, J.; Singh, A.P. Honokiol: a novel natural agent for cancer prevention and therapy. Curr. Mol. Med., 2012, 12(10), 1244-1252.
[http://dx.doi.org/10.2174/156652412803833508] [PMID: 22834827]
[74]
Efferth, T. Cancer combination therapy of the sesquiterpenoid artesunate and the selective EGFR-tyrosine kinase inhibitor erlotinib. Phytomedicine, 2017, 37, 58-61.
[http://dx.doi.org/10.1016/j.phymed.2017.11.003] [PMID: 29174651]
[75]
Padmavathi, G.; Rathnakaram, S.R.; Monisha, J.; Bordoloi, D.; Roy, N.K.; Kunnumakkara, A.B. Potential of butein, a tetrahydroxychalcone to obliterate cancer. Phytomedicine, 2015, 22(13), 1163-1171.
[http://dx.doi.org/10.1016/j.phymed.2015.08.015] [PMID: 26598915]
[76]
Williams, L.T.; Escobedo, J.A.; Keating, M.T.; Coughlin, S.R. Signal transduction by the platelet-derived growth factor receptor. Cold Spring Harb. Symp. Quant. Biol., 1988, 53(Pt 1), 455-465.
[http://dx.doi.org/10.1101/SQB.1988.053.01.053] [PMID: 2855486]
[77]
Hinterding, K.; Knebel, A.; Herrlich, P.; Waldmann, H. Synthesis and biological evaluation of aeroplysinin analogues: a new class of receptor tyrosine kinase inhibitors. Bioorg. Med. Chem., 1998, 6(8), 1153-1162.
[http://dx.doi.org/10.1016/S0968-0896(98)00070-4] [PMID: 9784857]
[78]
Sun, L.; Zhao, R.; Lan, X.; Chen, R.; Wang, S.; Du, G.; Goniolactone, C. Goniolactone C, a styryl lactone derivative, inhibits PDGF-BB-induced vascular smooth muscle cell migration and proliferation via PDGFR/ERK signaling. Molecules, 2014, 19(12), 19501-19515.
[http://dx.doi.org/10.3390/molecules191219501] [PMID: 25432005]
[79]
Kim, D.Y.; Won, K.J.; Yoon, M.S.; Yu, H.J.; Park, J.H.; Kim, B.; Lee, H.M. Chrysanthemum boreale flower floral water inhibits platelet-derived growth factor-stimulated migration and proliferation in vascular smooth muscle cells. Pharm. Biol., 2015, 53(5), 725-734.
[http://dx.doi.org/10.3109/13880209.2014.941882] [PMID: 25330930]
[80]
Chae, Y.K.; Ranganath, K.; Hammerman, P.S.; Vaklavas, C.; Mohindra, N.; Kalyan, A.; Matsangou, M.; Costa, R.; Carneiro, B.; Villaflor, V.M.; Cristofanilli, M.; Giles, F.J. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. Oncotarget, 2017, 8(9), 16052-16074.
[http://dx.doi.org/10.18632/oncotarget.14109] [PMID: 28030802]
[81]
Im, H.J.; Li, X.; Chen, D.; Yan, D.; Kim, J.; Ellman, M.B.; Stein, G.S.; Cole, B.; Kc, R.; Cs-Szabo, G.; van Wijnen, A.J. Biological effects of the plant-derived polyphenol resveratrol in human articular cartilage and chondrosarcoma cells. J. Cell. Physiol., 2012, 227(10), 3488-3497.
[http://dx.doi.org/10.1002/jcp.24049] [PMID: 22252971]
[82]
Mohan, R.; Sivak, J.; Ashton, P.; Russo, L.A.; Pham, B.Q.; Kasahara, N.; Raizman, M.B.; Fini, M.E. Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B. J. Biol. Chem., 2000, 275(14), 10405-10412.
[http://dx.doi.org/10.1074/jbc.275.14.10405] [PMID: 10744729]
[83]
Ciarlo, C.; Kaufman, C.K.; Kinikoglu, B.; Michael, J.; Yang, S.C.D.A; Blokzijl-Franke, S.; den Hertog, J.; Schlaeger, T.M.; Zhou, Y.; Liao, E.; Zon, L.I. A chemical screen in zebrafish embryonic cells establishes that Akt activation is required for neural crest development. eLife, 2017, 6 pii: , e29145
[84]
Hussain, S.; Slevin, M.; Ahmed, N.; West, D.; Choudhary, M.I.; Naz, H.; Gaffney, J. Stilbene glycosides are natural product inhibitors of FGF-2-induced angiogenesis. BMC Cell Biol., 2009, 10, 30.
[http://dx.doi.org/10.1186/1471-2121-10-30] [PMID: 19389252]
[85]
Luesch, H.; Chanda, S.K.; Raya, R.M.; DeJesus, P.D.; Orth, A.P.; Walker, J.R.; Izpisúa Belmonte, J.C.; Schultz, P.G. A functional genomics approach to the mode of action of apratoxin A. Nat. Chem. Biol., 2006, 2(3), 158-167.
[http://dx.doi.org/10.1038/nchembio769] [PMID: 16474387]
[86]
Hussain, S.; Slevin, M.; Matou, S.; Ahmed, N.; Choudhary, M.I.; Ranjit, R.; West, D.; Gaffney, J. Anti-angiogenic activity of sesterterpenes; natural product inhibitors of FGF-2-induced angiogenesis. Angiogenesis, 2008, 11(3), 245-256.
[http://dx.doi.org/10.1007/s10456-008-9108-2] [PMID: 18330714]
[87]
Liang, F.; Han, Y.; Gao, H.; Xin, S.; Chen, S.; Wang, N.; Qin, W.; Zhong, H.; Lin, S.; Yao, X.; Li, S. Kaempferol identified by Zebrafish assay and fine fractionations strategy from Dysosma versipellis inhibits angiogenesis through VEGF and FGF pathways. Sci. Rep., 2015, 5, 14468.
[http://dx.doi.org/10.1038/srep14468] [PMID: 26446489]
[88]
Boly, R.; Gras, T.; Lamkami, T.; Guissou, P.; Serteyn, D.; Kiss, R.; Dubois, J. Quercetin inhibits a large panel of kinases implicated in cancer cell biology. Int. J. Oncol., 2011, 38(3), 833-842.
[PMID: 21206969]
[89]
Bottaro, D.P.; Rubin, J.S.; Faletto, D.L.; Chan, A.M.; Kmiecik, T.E.; Vande Woude, G.F.; Aaronson, S.A. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science, 1991, 251(4995), 802-804.
[http://dx.doi.org/10.1126/science.1846706] [PMID: 1846706]
[90]
Gual, P.; Giordano, S.; Williams, T.A.; Rocchi, S.; Van Obberghen, E.; Comoglio, P.M. Sustained recruitment of phospholipase C-gamma to Gab1 is required for HGF-induced branching tubulogenesis. Oncogene, 2000, 19(12), 1509-1518.
[http://dx.doi.org/10.1038/sj.onc.1203514] [PMID: 10734310]
[91]
Bardelli, A.; Corso, S.; Bertotti, A.; Hobor, S.; Valtorta, E.; Siravegna, G.; Sartore-Bianchi, A.; Scala, E.; Cassingena, A.; Zecchin, D.; Apicella, M.; Migliardi, G.; Galimi, F.; Lauricella, C.; Zanon, C.; Perera, T.; Veronese, S.; Corti, G.; Amatu, A.; Gambacorta, M.; Diaz, L.A., Jr; Sausen, M.; Velculescu, V.E.; Comoglio, P.; Trusolino, L.; Di Nicolantonio, F.; Giordano, S.; Siena, S. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov., 2013, 3(6), 658-673.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0558] [PMID: 23729478]
[92]
Mehta, R.; Katta, H.; Alimirah, F.; Patel, R.; Murillo, G.; Peng, X.; Muzzio, M.; Mehta, R.G. Deguelin action involves c-Met and EGFR signaling pathways in triple negative breast cancer cells. PLoS One, 2013, 8(6), e65113
[http://dx.doi.org/10.1371/journal.pone.0065113] [PMID: 23762292]
[93]
Ebrahim, H.Y.; Elsayed, H.E.; Mohyeldin, M.M.; Akl, M.R.; Bhattacharjee, J.; Egbert, S.; El Sayed, K.A. Norstictic acid inhibits breast cancer cell proliferation, migration, invasion, and in vivo invasive growth through targeting c-Met. Phytother. Res., 2016, 30(4), 557-566.
[http://dx.doi.org/10.1002/ptr.5551] [PMID: 26744260]
[94]
Lai, S.; Chen, J.N.; Huang, H.W.; Zhang, X.Y.; Jiang, H.L.; Li, W.; Wang, P.L.; Wang, J.; Liu, F.N. Structure activity relationships of chrysoeriol and analogs as dual c‑Met and VEGFR2 tyrosine kinase inhibitors. Oncol. Rep., 2018, 40(3), 1650-1656.
[http://dx.doi.org/10.3892/or.2018.6542] [PMID: 30015973]
[95]
Jung, S.K.; Lee, M.H.; Lim, D.Y.; Lee, S.Y.; Jeong, C.H.; Kim, J.E.; Lim, T.G.; Chen, H.; Bode, A.M.; Lee, H.J.; Lee, K.W.; Dong, Z. Butein, a novel dual inhibitor of MET and EGFR, overcomes gefitinib-resistant lung cancer growth. Mol. Carcinog., 2015, 54(4), 322-331.
[http://dx.doi.org/10.1002/mc.22191] [PMID: 24974831]
[96]
Balan, M.; Chakraborty, S.; Flynn, E.; Zurakowski, D.; Pal, S. Honokiol inhibits c-Met-HO-1 tumor-promoting pathway and its cross-talk with calcineurin inhibitor-mediated renal cancer growth. Sci. Rep., 2017, 7(1), 5900.
[http://dx.doi.org/10.1038/s41598-017-05455-1] [PMID: 28724911]
[97]
Aliebrahimi, S.; Kouhsari, S.M.; Arab, S.S.; Shadboorestan, A.; Ostad, S.N. Phytochemicals, withaferin A and carnosol, overcome pancreatic cancer stem cells as c-Met inhibitors. Biomed. Pharmacother., 2018, 106, 1527-1536.
[http://dx.doi.org/10.1016/j.biopha.2018.07.055] [PMID: 30119228]
[98]
Wang, L.; Wu, R.; Fu, W.; Lao, Y.; Zheng, C.; Tan, H.; Xu, H. Synthesis and biological evaluation of Oblongifolin C derivatives as c-Met inhibitors. Bioorg. Med. Chem., 2016, 24(18), 4120-4128.
[http://dx.doi.org/10.1016/j.bmc.2016.06.054] [PMID: 27396929]
[99]
Blum, G.; Gazit, A.; Levitzki, A. Substrate competitive inhibitors of IGF-1 receptor kinase. Biochemistry, 2000, 39(51), 15705-15712.
[http://dx.doi.org/10.1021/bi001516y] [PMID: 11123895]
[100]
Krueckl, S.L.; Sikes, R.A.; Edlund, N.M.; Bell, R.H.; Hurtado-Coll, A.; Fazli, L.; Gleave, M.E.; Cox, M.E. Increased insulin-like growth factor I receptor expression and signaling are components of androgen-independent progression in a lineage-derived prostate cancer progression model. Cancer Res., 2004, 64(23), 8620-8629.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2446] [PMID: 15574769]
[101]
Marconett, C.N.; Singhal, A.K.; Sundar, S.N.; Firestone, G.L. Indole-3-carbinol disrupts estrogen receptor-alpha dependent expression of insulin-like growth factor-1 receptor and insulin receptor substrate-1 and proliferation of human breast cancer cells. Mol. Cell. Endocrinol., 2012, 363(1-2), 74-84.
[http://dx.doi.org/10.1016/j.mce.2012.07.008] [PMID: 22835548]
[102]
Tong, L.J.; Xie, H.; Peng, T.; Liu, X.F.; Xin, X.L.; Huang, X.; Chen, S.M.; Liu, H.Y.; Li, H.L.; Geng, M.Y.; Yin, M.; Ding, J. Establishment of platform for screening insulin-like growth factor-1 receptor inhibitors and evaluation of novel inhibitors. Acta Pharmacol. Sin., 2011, 32(7), 930-938.
[http://dx.doi.org/10.1038/aps.2011.23] [PMID: 21643004]
[103]
Zovko, A.; Novak, M.; Hååg, P.; Kovalerchick, D.; Holmlund, T.; Färnegårdh, K.; Ilan, M.; Carmeli, S.; Lewensohn, R.; Viktorsson, K. Compounds from the marine sponge Cribrochalina vasculum offer a way to target IGF-1R mediated signaling in tumor cells. Oncotarget, 2016, 7(31), 50258-50276.
[http://dx.doi.org/10.18632/oncotarget.10361] [PMID: 27384680]
[104]
Balkwill, F.; Charles, K.A.; Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 2005, 7(3), 211-217.
[http://dx.doi.org/10.1016/j.ccr.2005.02.013] [PMID: 15766659]
[105]
Xiao, H.; Yang, C.S. Combination regimen with statins and NSAIDs: a promising strategy for cancer chemoprevention. Int. J. Cancer, 2008, 123(5), 983-990.
[http://dx.doi.org/10.1002/ijc.23718] [PMID: 18548583]
[106]
Robak, J.; Gryglewski, R.J. Bioactivity of flavonoids. Pol. J. Pharmacol., 1996, 48(6), 555-564.
[PMID: 9112694]
[107]
Russo, A.; Acquaviva, R.; Campisi, A.; Sorrenti, V.; Di Giacomo, C.; Virgata, G.; Barcellona, M.L.; Vanella, A. Bioflavonoids as antiradicals, antioxidants and DNA cleavage protectors. Cell Biol. Toxicol., 2000, 16(2), 91-98.
[http://dx.doi.org/10.1023/A:1007685909018] [PMID: 10917564]
[108]
Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther., 2002, 96(2-3), 67-202.
[http://dx.doi.org/10.1016/S0163-7258(02)00298-X] [PMID: 12453566]
[109]
Chang, H.W.; Baek, S.H.; Chung, K.W.; Son, K.H.; Kim, H.P.; Kang, S.S. Inactivation of phospholipase A2 by naturally occurring biflavonoid, ochnaflavone. Biochem. Biophys. Res. Commun., 1994, 205(1), 843-849.
[http://dx.doi.org/10.1006/bbrc.1994.2741] [PMID: 7999121]
[110]
Gil, B.; Sanz, M.J.; Terencio, M.C.; Gunasegaran, R.; Payá, M.; Alcaraz, M.J. Morelloflavone, a novel biflavonoid inhibitor of human secretory phospholipase A2 with anti-inflammatory activity. Biochem. Pharmacol., 1997, 53(5), 733-740.
[http://dx.doi.org/10.1016/S0006-2952(96)00773-3] [PMID: 9113093]
[111]
Chi, Y.S.; Jong, H.G.; Son, K.H.; Chang, H.W.; Kang, S.S.; Kim, H.P. Effects of naturally occurring prenylated flavonoids on enzymes metabolizing arachidonic acid: cyclooxygenases and lipoxygenases. Biochem. Pharmacol., 2001, 62(9), 1185-1191.
[http://dx.doi.org/10.1016/S0006-2952(01)00773-0] [PMID: 11705451]
[112]
Kobuchi, H.; Virgili, F.; Packer, L. Assay of inducible form of nitric oxide synthase activity: effect of flavonoids and plant extracts. Methods Enzymol., 1999, 301, 504-513.
[http://dx.doi.org/10.1016/S0076-6879(99)01113-1] [PMID: 9919598]
[113]
Cheon, B.S.; Kim, Y.H.; Son, K.S.; Chang, H.W.; Kang, S.S.; Kim, H.P. Effects of prenylated flavonoids and biflavonoids on lipopolysaccharide-induced nitric oxide production from the mouse macrophage cell line RAW 264.7. Planta Med., 2000, 66(7), 596-600.
[http://dx.doi.org/10.1055/s-2000-8621] [PMID: 11105561]
[114]
García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A.; Martínez, J.A. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm. Res., 2009, 58(9), 537-552.
[http://dx.doi.org/10.1007/s00011-009-0037-3] [PMID: 19381780]
[115]
Kooltheat, N.; Sranujit, R.P.; Chumark, P.; Potup, P.; Laytragoon-Lewin, N.; Usuwanthim, K. An ethyl acetate fraction of Moringa oleifera Lam. Inhibits human macrophage cytokine production induced by cigarette smoke. Nutrients, 2014, 6(2), 697-710.
[http://dx.doi.org/10.3390/nu6020697] [PMID: 24553063]
[116]
Kooltheat, N.; Kamuthachad, L.; Anthapanya, M.; Samakchan, N.; Sranujit, R.P.; Potup, P.; Ferrante, A.; Usuwanthim, K. Kaffir lime leaves extract inhibits biofilm formation by Streptococcus mutans. Nutrition, 2016, 32(4), 486-490.
[http://dx.doi.org/10.1016/j.nut.2015.10.010] [PMID: 26743975]
[117]
Karin, M.; Cao, Y.; Greten, F.R.; Li, Z.W. NF-kappaB in cancer: from innocent bystander to major culprit. Nat. Rev. Cancer, 2002, 2(4), 301-310.
[http://dx.doi.org/10.1038/nrc780] [PMID: 12001991]
[118]
Singh, S.; Aggarwal, B.B. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J. Biol. Chem., 1995, 270(42), 24995-25000.
[http://dx.doi.org/10.1074/jbc.270.42.24995] [PMID: 7559628]
[119]
Natarajan, K.; Singh, S.; Burke, T.R., Jr; Grunberger, D.; Aggarwal, B.B. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc. Natl. Acad. Sci. USA, 1996, 93(17), 9090-9095.
[http://dx.doi.org/10.1073/pnas.93.17.9090] [PMID: 8799159]
[120]
Lin, Z.B.; Zhang, H.N. Anti-tumor and immunoregulatory activities of Ganoderma lucidum and its possible mechanisms. Acta Pharmacol. Sin., 2004, 25(11), 1387-1395.
[PMID: 15525457]
[121]
Lin, Z.B. The pharmacological study of Ganoderma lucidum. Part VI: Effects of different extract fractions from Ganoderma lucidum fruiting bodies on the phagocytic activity of mouse peritoneal macrophages. Edib Fungi, 1980, 3, 3-6.
[122]
Gu, L. The effect of Ganoderma capense on mouse peritoneal macrophages. Shanghai J. Immunol., 1990, 10, 205-207.
[123]
Gao, B.Y.G.Z. Effects of Ganoderma applanatum polysaccharides on immune function of normal mouse and its tumor inhibiting action. Chin. J. Immunol., 1989, 5, 363-366.
[124]
Li, M.C.; Liang, D.S.; Xu, Z.M.; Lei, L.S.; Yang, S.Q. [Effect of Ganoderma polysaccharides on cAMP in murine peritoneal macrophages]. Zhongguo Zhongyao Zazhi, 2000, 25(1), 41-43.
[PMID: 12205974]
[125]
Cao, L.Z.; Lin, Z.B. Regulatory effect of Ganoderma lucidum polysaccharides on cytotoxic T-lymphocytes induced by dendritic cells in vitro. Acta Pharmacol. Sin., 2003, 24(4), 321-326.
[PMID: 12676071]
[126]
Chien, C.M.; Cheng, J.L.; Chang, W.T.; Tien, M.H.; Wu, W.Y.; Chang, Y.H.; Chang, H.Y.; Chen, S.T. Cell phenotype analysis using a cell fluid-based microchip with high sensitivity and accurate quantitation. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, 795(1), 1-8.
[http://dx.doi.org/10.1016/S1570-0232(03)00471-9] [PMID: 12957163]
[127]
Lei, L.S. Effects of Ganoderma polysaccharides on the MLC reaction. Basic Med. Clin., 1992, 12, 59-60.
[128]
Kimura, Y.; Taniguchi, M.; Baba, K. Antitumor and antimetastatic effects on liver of triterpenoid fractions of Ganoderma lucidum: mechanism of action and isolation of an active substance. Anticancer Res., 2002, 22(6A), 3309-3318.
[PMID: 12530080]
[129]
Liu, X.; Yuan, J.P.; Chung, C.K.; Chen, X.J. Antitumor activity of the sporoderm-broken germinating spores of Ganoderma lucidum. Cancer Lett., 2002, 182(2), 155-161.
[http://dx.doi.org/10.1016/S0304-3835(02)00080-0] [PMID: 12048161]
[130]
Gao, Y.; Zhou, S.; Jiang, W.; Huang, M.; Dai, X. Effects of ganopoly (a Ganoderma lucidum polysaccharide extract) on the immune functions in advanced-stage cancer patients. Immunol. Invest., 2003, 32(3), 201-215.
[http://dx.doi.org/10.1081/IMM-120022979] [PMID: 12916709]
[131]
Amirghofran, Z.; Ahmadi, H.; Karimi, M.H. Immunomodulatory activity of the water extract of Thymus vulgaris, Thymus daenensis, and Zataria multiflora on dendritic cells and T cells responses. J. Immunoassay Immunochem., 2012, 33(4), 388-402.
[http://dx.doi.org/10.1080/15321819.2012.655822] [PMID: 22963488]
[132]
Amirghofran, Z.; Shekofteh, N.; Ghafourian, M.; Khosravi, N.; Kalantar, K.; Malek-Hosseini, S. Tumor cell death via apoptosis and improvement of activated lymphocyte cytokine secretion by extracts from Euphorbia hebecarpa and Euphorbia petiolata. Asian Pac. J. Cancer Prev., 2019, 20(7), 1979-1988.
[http://dx.doi.org/10.31557/APJCP.2019.20.7.1979] [PMID: 31350954]
[133]
Ozbilgin, S.C.G. Uses of some Euphorbia species in traditional medicine and their biological activities. Turk. J. Pharmaceut. Sci., 2012, 9, 241-256.
[134]
Harlev, E.; Nevo, E.; Lansky, E.P.; Ofir, R.; Bishayee, A. Anticancer potential of aloes: antioxidant, antiproliferative, and immunostimulatory attributes. Planta Med., 2012, 78(9), 843-852.
[http://dx.doi.org/10.1055/s-0031-1298453] [PMID: 22516934]
[135]
Punturee, K.; Wild, C.P.; Kasinrerk, W.; Vinitketkumnuen, U. Immunomodulatory activities of Centella asiatica and Rhinacanthus nasutus extracts. Asian Pac. J. Cancer Prev., 2005, 6(3), 396-400.
[PMID: 16236006]
[136]
Morioka, N.; Sze, L.L.; Morton, D.L.; Irie, R.F. A protein fraction from aged garlic extract enhances cytotoxicity and proliferation of human lymphocytes mediated by interleukin-2 and concanavalin A. Cancer Immunol. Immunother., 1993, 37(5), 316-322.
[http://dx.doi.org/10.1007/BF01518454] [PMID: 8402735]
[137]
Kumar, R.A.; Sridevi, K.; Kumar, N.V.; Nanduri, S.; Rajagopal, S. Anticancer and immunostimulatory compounds from Andrographis paniculata. J. Ethnopharmacol., 2004, 92(2-3), 291-295.
[http://dx.doi.org/10.1016/j.jep.2004.03.004] [PMID: 15138014]
[138]
Gomez-Cadena, A.; Urueña, C.; Prieto, K.; Martinez-Usatorre, A.; Donda, A.; Barreto, A.; Romero, P.; Fiorentino, S. Immune-system-dependent anti-tumor activity of a plant-derived polyphenol rich fraction in a melanoma mouse model. Cell Death Dis., 2016, 7(6), e2243
[http://dx.doi.org/10.1038/cddis.2016.134] [PMID: 27253407]
[139]
Fu, Y.; Li, F.; Zhang, P.; Liu, M.; Qian, L.; Lv, F.; Cheng, W.; Hou, R. Myrothecine A modulates the proliferation of HCC cells and the maturation of dendritic cells through downregulating miR-221. Int. Immunopharmacol., 2019, 75, 105783
[http://dx.doi.org/10.1016/j.intimp.2019.105783] [PMID: 31376622]
[140]
Clark, G.J.; Angel, N.; Kato, M.; López, J.A.; MacDonald, K.; Vuckovic, S.; Hart, D.N. The role of dendritic cells in the innate immune system. Microbes Infect., 2000, 2(3), 257-272.
[http://dx.doi.org/10.1016/S1286-4579(00)00302-6] [PMID: 10758402]
[141]
Mayordomo, J.I.; Zorina, T.; Storkus, W.J.; Zitvogel, L.; Celluzzi, C.; Falo, L.D.; Melief, C.J.; Ildstad, S.T.; Kast, W.M.; Deleo, A.B.; Lotze, M.T. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat. Med., 1995, 1(12), 1297-1302.
[http://dx.doi.org/10.1038/nm1295-1297] [PMID: 7489412]
[142]
Nestle, F.O.; Alijagic, S.; Gilliet, M.; Sun, Y.; Grabbe, S.; Dummer, R.; Burg, G.; Schadendorf, D. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med., 1998, 4(3), 328-332.
[http://dx.doi.org/10.1038/nm0398-328] [PMID: 9500607]
[143]
Isaka, M.; Punya, J.; Lertwerawat, Y.; Tanticharoen, M.; Thebtaranonth, Y. Antimalarial activity of macrocyclic trichothecenes isolated from the fungus Myrothecium verrucaria. J. Nat. Prod., 1999, 62(2), 329-331.
[http://dx.doi.org/10.1021/np980323x] [PMID: 10075777]
[144]
Shen, L.; Zhu, L.; Tan, Q.; Wan, D.; Xie, J.; Peng, J. New cytotoxic trichothecene macrolide epimers from endophytic Myrothecium roridum IFB-E012. J. Antibiot. (Tokyo), 2016, 69(8), 652-655.
[http://dx.doi.org/10.1038/ja.2016.86] [PMID: 27406908]
[145]
Bernd, A.; Ramirez-Bosca, A.; Huber, H.; Diaz Alperi, J.; Thaci, D.; Sewell, A.; Quintanilla Almagro, E.; Holzmann, H. In vitro studies on the immunomodulating effects of polypodium leucotomos extract on human leukocyte fractions. Arzneimittelforschung, 1995, 45(8), 901-904.
[PMID: 7575758]
[146]
Zhang, J.; Shan, B.E.; Zhang, C.; Zhao, R.N.; Li, Q.L.; Liu, J.H.; Li, Q.M.; Li, R.Q. [The effect on the differentiation and maturation of dendritic cells by lupane acetate of cortex periplocae]. Xibao Yu Fenzi Mianyixue Zazhi, 2006, 22(1), 26-28, 32.
[PMID: 16388738]
[147]
Santander, S.P.; Hernández, J.F.; Barreto, C.C.; Masayuki, A.; Moins-Teisserenc, H.; Fiorentino, S. Immunomodulatory effects of aqueous and organic fractions from Petiveria alliacea on human dendritic cells. Am. J. Chin. Med., 2012, 40(4), 833-844.
[http://dx.doi.org/10.1142/S0192415X12500620] [PMID: 22809035]
[148]
Wang, Z.; Meng, J.; Xia, Y.; Meng, Y.; Du, L.; Zhang, Z.; Wang, E.; Shan, F. Maturation of murine bone marrow dendritic cells induced by acidic Ginseng polysaccharides. Int. J. Biol. Macromol., 2013, 53, 93-100.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.11.009] [PMID: 23164755]
[149]
Zhu, J.; Zhao, L.H.; Chen, Z. [Stimulation by Lycium bararum polysaccharides of the maturation of dendritic cells in murine bone marrow]. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2006, 35(6), 648-652.
[PMID: 17177338]
[150]
Chen, Z.; Lu, J.; Srinivasan, N.; Tan, B.K.; Chan, S.H. Polysaccharide-protein complex from Lycium barbarum L. is a novel stimulus of dendritic cell immunogenicity. J. Immunol., 2009, 182(6), 3503-3509.
[http://dx.doi.org/10.4049/jimmunol.0802567] [PMID: 19265128]
[151]
Zhu, J.; Zhang, Y.; Shen, Y.; Zhou, H.; Yu, X. Lycium barbarum polysaccharides induce Toll-like receptor 2- and 4-mediated phenotypic and functional maturation of murine dendritic cells via activation of NF-κB. Mol. Med. Rep., 2013, 8(4), 1216-1220.
[http://dx.doi.org/10.3892/mmr.2013.1608] [PMID: 23904044]
[152]
Zou, Y.; Meng, J.; Chen, W.; Liu, J.; Li, X.; Li, W.; Lu, C.; Shan, F. Modulation of phenotypic and functional maturation of murine dendritic cells (DCs) by purified Achyranthes bidentata polysaccharide (ABP). Int. Immunopharmacol., 2011, 11(8), 1103-1108.
[http://dx.doi.org/10.1016/j.intimp.2011.03.006] [PMID: 21439398]
[153]
Li, X.; Xu, W.; Chen, J. Polysaccharide purified from Polyporus umbellatus (Per) Fr induces the activation and maturation of murine bone-derived dendritic cells via toll-like receptor 4. Cell. Immunol., 2010, 265(1), 50-56.
[http://dx.doi.org/10.1016/j.cellimm.2010.07.002] [PMID: 20673883]
[154]
Shainheit, M.G.; Smith, P.M.; Bazzone, L.E.; Wang, A.C.; Rutitzky, L.I.; Stadecker, M.J. Dendritic cell IL-23 and IL-1 production in response to schistosome eggs induces Th17 cells in a mouse strain prone to severe immunopathology. J. Immunol., 2008, 181(12), 8559-8567.
[http://dx.doi.org/10.4049/jimmunol.181.12.8559] [PMID: 19050275]
[155]
Benson, J.M.; Pokorny, A.J.; Rhule, A.; Wenner, C.A.; Kandhi, V.; Cech, N.B.; Shepherd, D.M. Echinacea purpurea extracts modulate murine dendritic cell fate and function. Food Chem. Toxicol., 2010, 48(5), 1170-1177.
[http://dx.doi.org/10.1016/j.fct.2010.02.007] [PMID: 20149833]
[156]
Yin, S.Y.; Wang, W.H.; Wang, B.X.; Aravindaram, K.; Hwang, P.I.; Wu, H.M.; Yang, N.S. Stimulatory effect of Echinacea purpurea extract on the trafficking activity of mouse dendritic cells: revealed by genomic and proteomic analyses. BMC Genomics, 2010, 11, 612.
[http://dx.doi.org/10.1186/1471-2164-11-612] [PMID: 21040561]
[157]
Huang, D.F.; Tang, Y.F.; Nie, S.P.; Wan, Y.; Xie, M.Y.; Xie, X.M. Effect of phenylethanoid glycosides and polysaccharides from the seed of Plantago asiatica L. on the maturation of murine bone marrow-derived dendritic cells. Eur. J. Pharmacol., 2009, 620(1-3), 105-111.
[http://dx.doi.org/10.1016/j.ejphar.2009.07.025] [PMID: 19664618]
[158]
Miller, A.K.; Benson, J.M.; Muanza, D.N.; Smith, J.R.; Shepherd, D.M. Anti-inflammatory effects of natural product formulations on murine dendritic cells. J. Diet. Suppl., 2011, 8(1), 19-33.
[http://dx.doi.org/10.3109/19390211.2010.542233] [PMID: 21399725]
[159]
Jiraviriyakul, A.; Songjang, W.; Kaewthet, P.; Tanawatkitichai, P.; Bayan, P.; Pongcharoen, S. Honokiol-enhanced cytotoxic T lymphocyte activity against cholangiocarcinoma cells mediated by dendritic cells pulsed with damage-associated molecular patterns. World J. Gastroenterol., 2019, 25(29), 3941-3955.
[http://dx.doi.org/10.3748/wjg.v25.i29.3941] [PMID: 31413529]
[160]
Lee, Y.J.; Lee, Y.M.; Lee, C.K.; Jung, J.K.; Han, S.B.; Hong, J.T. Therapeutic applications of compounds in the Magnolia family. Pharmacol. Ther., 2011, 130(2), 157-176.
[http://dx.doi.org/10.1016/j.pharmthera.2011.01.010] [PMID: 21277893]
[161]
Knott, A.; Reuschlein, K.; Mielke, H.; Wensorra, U.; Mummert, C.; Koop, U.; Kausch, M.; Kolbe, L.; Peters, N.; Stäb, F.; Wenck, H.; Gallinat, S. Natural Arctium lappa fruit extract improves the clinical signs of aging skin. J. Cosmet. Dermatol., 2008, 7(4), 281-289.
[http://dx.doi.org/10.1111/j.1473-2165.2008.00407.x] [PMID: 19146605]
[162]
Ryu, H.S.; Lee, H.K.; Kim, J.S.; Kim, Y.G.; Pyo, M.; Yun, J.; Hwang, B.Y.; Hong, J.T.; Kim, Y.; Han, S.B. Saucerneol D inhibits dendritic cell activation by inducing heme oxygenase-1, but not by directly inhibiting toll-like receptor 4 signaling. J. Ethnopharmacol., 2015, 166, 92-101.
[http://dx.doi.org/10.1016/j.jep.2015.03.020] [PMID: 25792017]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy