Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Mini-Review Article

Self-Assembly of Cyclic Dipeptides: Platforms for Functional Materials

Author(s): Yu Chen, Kai Tao, Wei Ji, Pandeeswar Makam, Sigal Rencus-Lazar and Ehud Gazit*

Volume 27, Issue 8, 2020

Page: [688 - 697] Pages: 10

DOI: 10.2174/0929866527666200212123542

Price: $65

Abstract

Supramolecular self-assembled functional materials comprised of cyclic dipeptide building blocks have excellent prospects for biotechnology applications due to their exceptional structural rigidity, morphological flexibility, ease of preparation and modification. Although the pharmacological uses of many natural cyclic dipeptides have been studied in detail, relatively little is reported on the engineering of these supramolecular architectures for the fabrication of functional materials. In this review, we discuss the progress in the design, synthesis, and characterization of cyclic dipeptide supramolecular nanomaterials over the past few decades, highlighting applications in biotechnology and optoelectronics engineering.

Keywords: Self-assembly, biomaterial, cyclic dipeptide, bionanotechnology, optoelectronic, photoluminescence.

Graphical Abstract

[1]
Gazit, E. Self-assembled peptide nanostructures: The design of molecular building blocks and their technological utilization. Chem. Soc. Rev., 2007, 36(8), 1263-1269.
[http://dx.doi.org/10.1039/b605536m] [PMID: 17619686]
[2]
Wei, G.; Su, Z.; Reynolds, N.P.; Arosio, P.; Hamley, I.W.; Gazit, E.; Mezzenga, R. Self-assembling peptide and protein amyloids: From structure to tailored function in nanotechnology. Chem. Soc. Rev., 2017, 46(15), 4661-4708.
[http://dx.doi.org/10.1039/C6CS00542J] [PMID: 28530745]
[3]
Habchi, J.; Chia, S.; Galvagnion, C.; Michaels, T.C.T.; Bellaiche, M.M.J.; Ruggeri, F.S.; Sanguanini, M.; Idini, I.; Kumita, J.R.; Sparr, E.; Linse, S.; Dobson, C.M.; Knowles, T.P.J.; Vendruscolo, M. Cholesterol catalyses Aβ42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes. Nat. Chem., 2018, 10(6), 673-683.
[http://dx.doi.org/10.1038/s41557-018-0031-x] [PMID: 29736006]
[4]
Bolisetty, S.; Mezzenga, R. Amyloid-carbon hybrid membranes for universal water purification. Nat. Nanotechnol., 2016, 11(4), 365-371.
[http://dx.doi.org/10.1038/nnano.2015.310] [PMID: 26809058]
[5]
Lee, H-E.; Ahn, H-Y.; Mun, J.; Lee, Y.Y.; Kim, M.; Cho, N.H.; Chang, K.; Kim, W.S.; Rho, J.; Nam, K.T. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature, 2018, 556(7701), 360-365.
[http://dx.doi.org/10.1038/s41586-018-0034-1] [PMID: 29670265]
[6]
Bai, Y.; Chotera, A.; Taran, O.; Liang, C.; Ashkenasy, G.; Lynn, D.G. Achieving biopolymer synergy in systems chemistry. Chem. Soc. Rev., 2018, 47(14), 5444-5456.
[http://dx.doi.org/10.1039/C8CS00174J] [PMID: 29850753]
[7]
Tao, K.; Makam, P.; Aizen, R.; Gazit, E. Self-assembling peptide semiconductors. Science, 2017, 358(6365)eaam9756
[http://dx.doi.org/10.1126/science.aam9756] [PMID: 29146781]
[8]
Zhang, S.Q.; Huang, H.; Yang, J.; Kratochvil, H.T.; Lolicato, M.; Liu, Y.; Shu, X.; Liu, L.; DeGrado, W.F. Designed peptides that assemble into cross-α amyloid-like structures. Nat. Chem. Biol., 2018, 14(9), 870-875.
[http://dx.doi.org/10.1038/s41589-018-0105-5] [PMID: 30061717]
[9]
Yuan, T.; Xu, Y.; Fei, J.; Xue, H.; Li, X.; Wang, C.; Fytas, G.; Li, J. The ultrafast assembly of a dipeptide supramolecular organogel and its phase transition from gel to crystal. Angew. Chem. Int. Ed. Engl., 2019, 58(32), 11072-11077.
[http://dx.doi.org/10.1002/anie.201903829] [PMID: 31166060]
[10]
Yan, X.; Zhu, P.; Li, J. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev., 2010, 39(6), 1877-1890.
[http://dx.doi.org/10.1039/b915765b] [PMID: 20502791]
[11]
Hauser, C.A.E.; Zhang, S. Nanotechnology: Peptides as biological semiconductors. Nature, 2010, 468(7323), 516-517.
[http://dx.doi.org/10.1038/468516a] [PMID: 21107418]
[12]
Fleming, S.; Ulijn, R.V. Design of nanostructures based on aromatic peptide amphiphiles. Chem. Soc. Rev., 2014, 43(23), 8150-8177.
[http://dx.doi.org/10.1039/C4CS00247D] [PMID: 25199102]
[13]
Lampel, A.; McPhee, S.A.; Park, H-A.; Scott, G.G.; Humagain, S.; Hekstra, D.R.; Yoo, B.; Frederix, P.W.J.M.; Li, T-D.; Abzalimov, R.R.; Greenbaum, S.G.; Tuttle, T.; Hu, C.; Bettinger, C.J.; Ulijn, R.V. Polymeric peptide pigments with sequence-encoded properties. Science, 2017, 356(6342), 1064-1068.
[http://dx.doi.org/10.1126/science.aal5005] [PMID: 28596363]
[14]
Reches, M.; Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science, 2003, 300(5619), 625-627.
[http://dx.doi.org/10.1126/science.1082387] [PMID: 12714741]
[15]
Yadav, V.N.; Comotti, A.; Sozzani, P.; Bracco, S.; Bonge-Hansen, T.; Hennum, M.; Görbitz, C.H. Microporous molecular materials from dipeptides containing non-proteinogenic residues. Angew. Chem. Int. Ed. Engl., 2015, 54(52), 15684-15688.
[http://dx.doi.org/10.1002/anie.201507321] [PMID: 26411742]
[16]
Zozulia, O.; Dolan, M.A.; Korendovych, I.V. Catalytic peptide assemblies. Chem. Soc. Rev., 2018, 47(10), 3621-3639.
[http://dx.doi.org/10.1039/C8CS00080H] [PMID: 29594277]
[17]
Kim, J.H.; Lim, S.Y.; Nam, D.H.; Ryu, J.; Ku, S.H.; Park, C.B. Self-assembled, photoluminescent peptide hydrogel as a versatile platform for enzyme-based optical biosensors. Biosens. Bioelectron., 2011, 26(5), 1860-1865.
[http://dx.doi.org/10.1016/j.bios.2010.01.026] [PMID: 20171868]
[18]
Guo, L.; Yang, B.; Wu, D.; Tao, Y.; Kong, Y. Chiral sensing platform based on the self-assemblies of diphenylalanine and oxalic acid. Anal. Chem., 2018, 90(8), 5451-5458.
[http://dx.doi.org/10.1021/acs.analchem.8b00762] [PMID: 29595059]
[19]
Yan, X.; Su, Y.; Li, J.; Früh, J.; Möhwald, H. Uniaxially oriented peptide crystals for active optical waveguiding. Angew. Chem. Int. Ed. Engl., 2011, 50(47), 11186-11191.
[http://dx.doi.org/10.1002/anie.201103941] [PMID: 21956859]
[20]
Gan, Z.; Wu, X.; Zhu, X.; Shen, J. Light-induced ferroelectricity in bioinspired self-assembled diphenylalanine nanotubes/microtubes. Angew. Chem. Int. Ed. Engl., 2013, 52(7), 2055-2059.
[http://dx.doi.org/10.1002/anie.201207992] [PMID: 23307702]
[21]
Nikitin, T.; Kopyl, S.; Shur, V.Y.; Kopelevich, Y.V.; Kholkin, A.L. Low-temperature photoluminescence in self-assembled diphenylalanine microtubes. Phys. Lett. A, 2016, 380(18), 1658.
[http://dx.doi.org/10.1016/j.physleta.2016.02.043]
[22]
Sun, B.; Li, Q.; Riegler, H.; Eickelmann, S.; Dai, L.; Yang, Y.; Perez-Garcia, R.; Jia, Y.; Chen, G.; Fei, J.; Holmberg, K.; Li, J. Self-Assembly of ultralong aligned dipeptide single crystals. ACS Nano, 2017, 11(10), 10489-10494.
[http://dx.doi.org/10.1021/acsnano.7b05800] [PMID: 28945958]
[23]
Sun, B.; Riegler, H.; Dai, L.; Eickelmann, S.; Li, Y.; Li, G.; Yang, Y.; Li, Q.; Fu, M.; Fei, J.; Li, J. Directed self-assembly of dipeptide single crystal in a capillary. ACS Nano, 2018, 12(2), 1934-1939.
[http://dx.doi.org/10.1021/acsnano.7b08925] [PMID: 29337528]
[24]
Nguyen, V.; Zhu, R.; Jenkins, K.; Yang, R. Self-assembly of diphenylalanine peptide with controlled polarization for power generation. Nat. Commun., 2016, 7, 13566.
[http://dx.doi.org/10.1038/ncomms13566] [PMID: 27857133]
[25]
Lee, J-H.; Heo, K.; Schulz-Schönhagen, K.; Lee, J.H.; Desai, M.S.; Jin, H-E.; Lee, S-W. Diphenylalanine peptide nanotube energy harvesters. ACS Nano, 2018, 12(8), 8138-8144.
[http://dx.doi.org/10.1021/acsnano.8b03118] [PMID: 30071165]
[26]
MacDonald, J.C.; Whitesides, G.M. Solid-state structures of hydrogen-bonded tapes based on cyclic secondary diamides. Chem. Rev., 1994, 94(8), 2383.
[http://dx.doi.org/10.1021/cr00032a007]
[27]
Prasad, C. Bioactive cyclic dipeptides. Peptides, 1995, 16(1), 151-164.
[http://dx.doi.org/10.1016/0196-9781(94)00017-Z] [PMID: 7716068]
[28]
Borthwick, A.D. 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem. Rev., 2012, 112(7), 3641-3716.
[http://dx.doi.org/10.1021/cr200398y] [PMID: 22575049]
[29]
Palacin, S.; Chin, D.N.; Simanek, E.E.; MacDonald, J.C.; Whitesides, G.M.; McBride, M.T.; Palmore, G.T.R. Hydrogen-bonded tapes based on symmetrically substituted diketopiperazines: A robust structural motif for the engineering of molecular solids. J. Am. Chem. Soc., 1997, 119(49), 11807.
[http://dx.doi.org/10.1021/ja962905b]
[30]
Bellezza, I.; Peirce, M.J.; Minelli, A. Cyclic dipeptides: From bugs to brain. Trends Mol. Med., 2014, 20(10), 551-558.
[http://dx.doi.org/10.1016/j.molmed.2014.08.003] [PMID: 25217340]
[31]
Stamatelopoulou, E.; Agriopoulou, S.; Dourtoglou, E.; Chatzilazarou, A.; Drosou, F.; Marinea, M.; Dourtoglou, V. Diketopiperazines in wines. J. Wine Res., 2018, 29(1), 37.
[http://dx.doi.org/10.1080/09571264.2018.1433137]
[32]
Mishra, A.K.; Choi, J.; Choi, S.J.; Baek, K.H. Cyclodipeptides: An overview of their biosynthesis and biological activity. Molecules, 2017, 22(10)E1796
[http://dx.doi.org/10.3390/molecules22101796] [PMID: 29065531]
[33]
Giessen, T.W.; Marahiel, M.A. Rational and combinatorial tailoring of bioactive cyclic dipeptides. Front. Microbiol., 2015, 6(JUL), 785.
[http://dx.doi.org/10.3389/fmicb.2015.00785] [PMID: 26284060]
[34]
Borgman, P.; Lopez, R.D.; Lane, A.L. The expanding spectrum of diketopiperazine natural product biosynthetic pathways containing cyclodipeptide synthases. Org. Biomol. Chem., 2019, 17(9), 2305-2314.
[http://dx.doi.org/10.1039/C8OB03063D] [PMID: 30688950]
[35]
Jacques, I.B.; Moutiez, M.; Witwinowski, J.; Darbon, E.; Martel, C.; Seguin, J.; Favry, E.; Thai, R.; Lecoq, A.; Dubois, S.; Pernodet, J.L.; Gondry, M.; Belin, P. Analysis of 51 cyclodipeptide synthases reveals the basis for substrate specificity. Nat. Chem. Biol., 2015, 11(9), 721-727.
[http://dx.doi.org/10.1038/nchembio.1868] [PMID: 26236937]
[36]
Seguin, J.; Moutiez, M.; Li, Y.; Belin, P.; Lecoq, A.; Fonvielle, M.; Charbonnier, J.B.; Pernodet, J.L.; Gondry, M. Nonribosomal peptide synthesis in animals: The cyclodipeptide synthase of Nematostella. Chem. Biol., 2011, 18(11), 1362-1368.
[http://dx.doi.org/10.1016/j.chembiol.2011.09.010] [PMID: 22118670]
[37]
Huang, R.; Zhou, X.; Xu, T.; Yang, X.; Liu, Y. Diketopiperazines from marine organisms. Chem. Biodivers., 2010, 7(12), 2809-2829.
[http://dx.doi.org/10.1002/cbdv.200900211] [PMID: 21161995]
[38]
Giessen, T.W.; von Tesmar, A.M.; Marahiel, M.A. Insights into the generation of structural diversity in a tRNA-dependent pathway for highly modified bioactive cyclic dipeptides. Chem. Biol., 2013, 20(6), 828-838.
[http://dx.doi.org/10.1016/j.chembiol.2013.04.017] [PMID: 23790493]
[39]
Kumar, N.; Mohandas, C.; Nambisan, B.; Kumar, D.R.S.; Lankalapalli, R.S. Isolation of proline-based cyclic dipeptides from Bacillus sp. N strain associated with rhabditid [corrected] entomopathogenic nematode and its antimicrobial properties. World J. Microbiol. Biotechnol., 2013, 29(2), 355-364.
[http://dx.doi.org/10.1007/s11274-012-1189-9] [PMID: 23065379]
[40]
Milne, P.J.; Hunt, A.L.; Rostoll, K.; Van Der Walt, J.J.; Graz, C.J.M. The biological activity of selected cyclic dipeptides. J. Pharm. Pharmacol., 1998, 50(12), 1331-1337.
[http://dx.doi.org/10.1111/j.2042-7158.1998.tb03355.x] [PMID: 10052845]
[41]
Ortiz, A.; Sansinenea, E. Cyclic dipeptides: Secondary metabolites isolated from different microorganisms with diverse biological activities. Curr. Med. Chem., 2017, 24(25), 2773-2780.
[http://dx.doi.org/10.2174/0929867324666170623092818] [PMID: 28641557]
[42]
Bataini, F.; Koch, Y.; Takahara, Y.; Peterkofsky, A. Specific binding to adrenal particulate fraction of cyclo(histidyl-proline), a TRH metabolite. Peptides, 1983, 4(1), 89-96.
[http://dx.doi.org/10.1016/0196-9781(83)90172-9] [PMID: 6306620]
[43]
Prasad, C.; Mori, M.; Wilber, J.F.; Pierson, W.; Pegues, J.; Jayaraman, A. Distribution and metabolism of cyclo (His-Pro): A new member of the neuropeptide family. Peptides, 1982, 3(3), 591-598.
[http://dx.doi.org/10.1016/0196-9781(82)90129-2] [PMID: 6812031]
[44]
Manchineella, S.; Govindaraju, T. Molecular self-assembly of cyclic dipeptide derivatives and their applications. ChemPlusChem, 2017, 82(1), 88.
[http://dx.doi.org/10.1002/cplu.201600450]
[45]
Tala, S.R.; Schnell, S.M.; Haskell-Luevano, C. Microwave-assisted solid-phase synthesis of side-chain to side-chain lactam-bridge cyclic peptides. Bioorg. Med. Chem. Lett., 2015, 25(24), 5708-5711.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.095] [PMID: 26555357]
[46]
Sun, X.; Rai, R.; Mackerell, A.D., Jr; Faden, A.I.; Xue, F. Facile one-step synthesis of 2,5-diketopiperazines. Tetrahedron Lett., 2014, 55(11), 1905.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.133]
[47]
Jainta, M.; Nieger, M.; Bräse, S. Microwave-assisted stereoselective one-pot synthesis of symmetrical and unsymmetrical 2,5-diketopiperazines from unprotected amino acids. Eur. J. Org. Chem., 2008, (32), 5418.
[http://dx.doi.org/10.1002/ejoc.200800605]
[48]
Thajudeen, H.; Park, K.; Moon, S.S.; Hong, I.S. An efficient green synthesis of proline-based cyclic dipeptides under water-mediated catalyst-free conditions. Tetrahedron Lett., 2010, 51(9), 1303.
[http://dx.doi.org/10.1016/j.tetlet.2009.12.134]
[49]
Wang, G.; Li, C.; Li, J.; Jia, X. Catalyst-free water-mediated N-Boc deprotection. Tetrahedron Lett., 2009, 50(13), 1438.
[http://dx.doi.org/10.1016/j.tetlet.2009.01.056]
[50]
López-Cobeñas, A.; Cledera, P.; Sánchez, J.D.; Pérez-Contreras, R.; López-Alvarado, P.; Ramos, M.T.; Avendaño, C.; Menéndez, J.C. Solvent-free, efficient synthesis of 2,5-piperazinediones from Boc-protected dipeptide esters under microwave irradiation. Synlett, 2005, 205(7), 1158.
[51]
Tullberg, M.; Grøtli, M.; Luthman, K. Efficient synthesis of 2,5-diketopiperazines using microwave assisted heating. Tetrahedron, 2006, 62(31), 7484.
[http://dx.doi.org/10.1016/j.tet.2006.05.010]
[52]
Ziganshin, M.A.; Larionov, R.A.; Gerasimov, A.V.; Ziganshina, S.A.; Klimovitskii, A.E.; Khayarov, K.R.; Mukhametzyanov, T.A.; Gorbatchuk, V.V. Thermally induced cyclization of L -isoleucyl-L -alanine in solid state: Effect of dipeptide structure on reaction temperature and self-assembly. J. Pept. Sci., 2019, 25(8)e3177
[http://dx.doi.org/10.1002/psc.3177] [PMID: 31317614]
[53]
Ziganshin, M.A.; Gerasimov, A.V.; Ziganshina, S.A.; Gubina, N.S.; Abdullina, G.R.; Klimovitskii, A.E.; Gorbatchuk, V.V.; Bukharaev, A.A. Thermally induced diphenylalanine cyclization in solid phase. J. Therm. Anal. Calorim., 2016, 125(2), 905.
[http://dx.doi.org/10.1007/s10973-016-5458-y]
[54]
Ziganshin, M.A.; Safiullina, A.S.; Gerasimov, A.V.; Ziganshina, S.A.; Klimovitskii, A.E.; Khayarov, K.R.; Gorbatchuk, V.V. Thermally induced self-assembly and cyclization of l-leucyl-l-leucine in solid state. J. Phys. Chem. B, 2017, 121(36), 8603-8610.
[http://dx.doi.org/10.1021/acs.jpcb.7b06759] [PMID: 28820260]
[55]
Adler-Abramovich, L.; Aronov, D.; Beker, P.; Yevnin, M.; Stempler, S.; Buzhansky, L.; Rosenman, G.; Gazit, E. Self-assembled arrays of peptide nanotubes by vapour deposition. Nat. Nanotechnol., 2009, 4(12), 849-854.
[http://dx.doi.org/10.1038/nnano.2009.298] [PMID: 19893524]
[56]
Lee, J.S.; Yoon, I.; Kim, J.; Ihee, H.; Kim, B.; Park, C.B. Self-assembly of semiconducting photoluminescent peptide nanowires in the vapor phase. Angew. Chem. Int. Ed. Engl., 2011, 50(5), 1164-1167.
[http://dx.doi.org/10.1002/anie.201003446] [PMID: 21268218]
[57]
Benedetti, E.; Corradini, P.; Pedone, C. The crystal and molecular structure of trans-3,6-dimethyl-2,5-piperazinedione (L-alanyl-D-alanyl-2,5-diketopiperazine). J. Phys. Chem., 1969, 73(9), 2891.
[http://dx.doi.org/10.1021/j100843a018]
[58]
Knowles, T.P.J.; Buehler, M.J. Nanomechanics of functional and pathological amyloid materials. Nat. Nanotechnol., 2011, 6(8), 469-479.
[http://dx.doi.org/10.1038/nnano.2011.102] [PMID: 21804553]
[59]
Tao, K.; Xue, B.; Li, Q.; Hu, W.; Shimon, L.J.W.; Makam, P.; Si, M.; Yan, X.; Zhang, M.; Cao, Y.; Yang, R.; Li, J.; Gazit, E. Stable and optoelectronic dipeptide assemblies for power harvesting. Mater. Today (Kidlington), 2019, 30, 10-16.
[http://dx.doi.org/10.1016/j.mattod.2019.04.002] [PMID: 31719792]
[60]
Tao, K.; Hu, W.; Xue, B.; Chovan, D.; Brown, N.; Shimon, L.J.W.; Maraba, O.; Cao, Y.; Tofail, S.A.M.; Thompson, D.; Li, J.; Yang, R.; Gazit, E. Bioinspired stable and photoluminescent assemblies for power generation. Adv. Mater., 2019, 31(12)e180748
[http://dx.doi.org/10.1002/adma.201807481] [PMID: 30706551]
[61]
Avinash, M.B.; Raut, D.; Mishra, M.K.; Ramamurty, U.; Govindaraju, T. Bioinspired reductionistic peptide engineering for exceptional mechanical properties. Sci. Rep., 2015, 5, 16070.
[http://dx.doi.org/10.1038/srep16070] [PMID: 26525957]
[62]
Park, I.W.; Choi, J.; Kim, K.Y.; Jeong, J.; Gwak, D.; Lee, Y.; Ahn, Y.H.; Choi, Y.J.; Hong, Y.J.; Chung, W.J. Vertically aligned cyclo-phenylalanine peptide nanowire-based high-performance triboelectric energy generator. Nano Energy, 2019, 57, 737.
[http://dx.doi.org/10.1016/j.nanoen.2019.01.008]
[63]
Sun, B.; Tao, K.; Jia, Y.; Yan, X.; Zou, Q.; Gazit, E.; Li, J. Photoactive properties of supramolecular assembled short peptides. Chem. Soc. Rev., 2019, 48(16), 4387-4400.
[http://dx.doi.org/10.1039/C9CS00085B] [PMID: 31237282]
[64]
Tao, K.; Fan, Z.; Sun, L.; Makam, P.; Tian, Z.; Ruegsegger, M.; Shaham-Niv, S.; Hansford, D.; Aizen, R.; Pan, Z.; Galster, S.; Ma, J.; Yuan, F.; Si, M.; Qu, S.; Zhang, M.; Gazit, E.; Li, J. Quantum confined peptide assemblies with tunable visible to near-infrared spectral range. Nat. Commun., 2018, 9(1), 3217.
[http://dx.doi.org/10.1038/s41467-018-05568-9] [PMID: 30104564]
[65]
Li, Y.; Yan, L.; Liu, K.; Wang, J.; Wang, A.; Bai, S.; Yan, X. Solvothermally mediated self-assembly of ultralong peptide nanobelts capable of optical waveguiding. Small, 2016, 12(19), 2575-2579.
[http://dx.doi.org/10.1002/smll.201600230] [PMID: 27028848]
[66]
Jeziorna, A.; Stopczyk, K.; Skorupska, E.; Luberda-Durnas, K.; Oszajca, M.; Lasocha, W.; Górecki, M.; Frelek, J.; Potrzebowski, M.J. Cyclic dipeptides as building units of nano- and microdevices: Synthesis, properties, and structural studies. Cryst. Growth Des., 2015, 15(10), 5138.
[http://dx.doi.org/10.1021/acs.cgd.5b01121]
[67]
Hoshizawa, H.; Suzuki, M.; Hanabusa, K. Cyclo(L-aspartyl-L-phenylalanyl)-containing poly(dimethylsiloxane)-based thixotropic organogels. Chem. Lett., 2011, 40(10), 1143.
[http://dx.doi.org/10.1246/cl.2011.1143]
[68]
Hoshizawa, H.; Minemura, Y.; Yoshikawa, K.; Suzuki, M.; Hanabusa, K. Thixotropic hydrogelators based on a cyclo(dipeptide) derivative. Langmuir, 2013, 29(47), 14666-14673.
[http://dx.doi.org/10.1021/la402333h] [PMID: 24131483]
[69]
Xie, Z.; Zhang, A.; Ye, L.; Feng, Z.G. Organo- and hydrogels derived from cyclo(L-Tyr-L-Lys) and its ε-amino derivatives. Soft Matter, 2009, 5(7), 1474.
[http://dx.doi.org/10.1039/b816664a]
[70]
Pianowski, Z.L.; Karcher, J.; Schneider, K. Photoresponsive self-healing supramolecular hydrogels for light-induced release of DNA and doxorubicin. Chem. Commun. (Camb.), 2016, 52(15), 3143-3146.
[http://dx.doi.org/10.1039/C5CC09633B] [PMID: 26804160]
[71]
Manchineella, S.; Govindaraju, T. Hydrogen bond directed self-assembly of cyclic dipeptide derivatives: Gelation and ordered hierarchical architectures. RSC Advances, 2012, 2(13), 5539.
[http://dx.doi.org/10.1039/c2ra20342a]
[72]
Seo, M.J.; Song, J.; Kantha, C.; Khazi, M.I.; Kundapur, U.; Heo, J.M.; Kim, J.M. Reversibly thermochromic cyclic dipeptide nanotubes. Langmuir, 2018, 34(28), 8365-8373.
[http://dx.doi.org/10.1021/acs.langmuir.8b00743] [PMID: 29933690]
[73]
Manchineella, S.; Murugan, N.A.; Govindaraju, T. Cyclic dipeptide-based ambidextrous supergelators: Minimalistic rational design, structure-gelation studies, and in situ hydrogelation. Biomacromolecules, 2017, 18(11), 3581-3590.
[http://dx.doi.org/10.1021/acs.biomac.7b00924] [PMID: 28856890]
[74]
Yang, M.; Xing, R.; Shen, G.; Yuan, C.; Yan, X. A versatile cyclic dipeptide hydrogelator: Self-assembly and rheology in various physiological conditions. Colloids Surf. A Physicochem. Eng. Asp., 2019, 572, 259.
[http://dx.doi.org/10.1016/j.colsurfa.2019.04.020]
[75]
Shi, J.; Li, J.; Zeng, H.; Zou, G.; Zhang, Q.; Lin, Z. Water stable oxalate-based coordination polymers with in situ generated cyclic dipeptides showing high proton conductivity. Dalton Trans., 2018, 47(43), 15288-15292.
[http://dx.doi.org/10.1039/C8DT03659D] [PMID: 30295299]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy