Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Glioblastoma: Prognostic Factors and Predictive Response to Radio and Chemotherapy

Author(s): Francesco Fiorica*, Maria Colella, Rosaria Taibi, Andrea Bonetti, Jacopo Giuliani, Maria Sole Perrone, Sonia Missiroli and Carlotta Giorgi

Volume 27, Issue 17, 2020

Page: [2814 - 2825] Pages: 12

DOI: 10.2174/0929867327666200131095256

Price: $65

Abstract

Glioblastoma multiforme (GBM) is characterized by poor prognosis despite an aggressive therapeutic strategy. In recent years, many advances have been achieved in the field of glioblastoma biology.

Here we try to summarize the main clinical and biological factors impacting clinical prognostication and therapy of GBM patients. From that standpoint, hopefully, in the near future, personalized therapies will be available.

Keywords: Glioblastoma, prognostic factor, predictive response, Glioblastoma multiforme (GBM).

[1]
Baldin, E.; Testoni, S.; de Pasqua, S.; Ferro, S.; Albani, F.; Baruzzi, A.; D’Alessandro, R. PERNO study group. Incidence of neuroepithelial primary brain tumors among adult population of Emilia-Romagna Region, Italy. Neurol. Sci., 2017, 38(2), 255-262.
[http://dx.doi.org/10.1007/s10072-016-2747-y] [PMID: 27807698]
[2]
Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.B.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; Hau, P.; Brandes, A.A.; Gijtenbeek, J.; Marosi, C.; Vecht, C.J.; Mokhtari, K.; Wesseling, P.; Villa, S.; Eisenhauer, E.; Gorlia, T.; Weller, M.; Lacombe, D.; Cairncross, J.G.; Mirimanoff, R.O. European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups National Cancer Institute of Canada Clinical Trials Group. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol., 2009, 10(5), 459-466.
[http://dx.doi.org/10.1016/S1470-2045(09)70025-7] [PMID: 19269895]
[3]
Louis, D.N.; Ohgaki, H.; Wiestler, O.D.; Cavenee, W.K.; Burger, P.C.; Jouvet, A.; Scheithauer, B.W.; Kleihues, P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol., 2007, 114(2), 97-109.
[http://dx.doi.org/10.1007/s00401-007-0243-4] [PMID: 17618441]
[4]
Theeler, B.J.; Gilbert, M.R. Advances in the treatment of newly diagnosed glioblastoma. BMC Med., 2015, 13, 293.
[http://dx.doi.org/10.1186/s12916-015-0536-8] [PMID: 26646075]
[5]
Scherer, H.J. Cerebral astrocytomas and their derivatives. Am. J. Cancer, 1940, 40(2), 159-198.
[6]
Ohgaki, H.; Dessen, P.; Jourde, B.; Horstmann, S.; Nishikawa, T.; Di Patre, P-L.; Burkhard, C.; Schüler, D.; Probst-Hensch, N.M.; Maiorka, P.C.; Baeza, N.; Pisani, P.; Yonekawa, Y.; Yasargil, M.G.; Lütolf, U.M.; Kleihues, P. Genetic pathways to glioblastoma: a population-based study. Cancer Res., 2004, 64(19), 6892-6899.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1337] [PMID: 15466178]
[7]
Watanabe, K.; Tachibana, O.; Sata, K.; Yonekawa, Y.; Kleihues, P.; Ohgaki, H. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol. Zurich Switz., 1996, 6(3), 217-223.
[http://dx.doi.org/10.1111/j.1750-3639.1996.tb00848.x] [PMID: 8864278]
[8]
Yan, H.; Parsons, D.W.; Jin, G.; McLendon, R.; Rasheed, B.A.; Yuan, W.; Kos, I.; Batinic-Haberle, I.; Jones, S.; Riggins, G.J.; Friedman, H.; Friedman, A.; Reardon, D.; Herndon, J.; Kinzler, K.W.; Velculescu, V.E.; Vogelstein, B.; Bigner, D.D. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med., 2009, 360(8), 765-773.
[http://dx.doi.org/10.1056/NEJMoa0808710] [PMID: 19228619]
[9]
Pekmezci, M.; Rice, T.; Molinaro, A.M.; Walsh, K.M.; Decker, P.A.; Hansen, H. Adult infiltrating gliomas with WHO 2016 integrated diagnosis: additional prognostic roles of ATRX and TERT. Acta Neuropathol., 2017, 133(6), 1001-1016.
[http://dx.doi.org/10.1007/s00401-017-1690-1] [PMID: 28255664]
[10]
Fiorica, F.; Berretta, M.; Colosimo, C.; Stefanelli, A.; Ursino, S.; Zanet, E.; Palmucci, T.; Maugeri, D.; Malaguarnera, M.; Palmucci, S.; Grasso, M.; Tirelli, U.; Cartei, F. Glioblastoma in elderly patients: safety and efficacy of adjuvant radiotherapy with concomitant temozolomide. Arch. Gerontol. Geriatr., 2010, 51(1), 31-35.
[http://dx.doi.org/10.1016/j.archger.2009.06.011] [PMID: 19628288]
[11]
Iwamoto, F.M.; Reiner, A.S.; Panageas, K.S.; Elkin, E.B.; Abrey, L.E. Patterns of care in elderly glioblastoma patients. Ann. Neurol., 2008, 64(6), 628-634.
[http://dx.doi.org/10.1002/ana.21521] [PMID: 19107984]
[12]
Fiorica, F.; Colella, M. In regard to Arvold et al. Int. J. Radiat. Oncol. Biol. Phys., 2015, 93(4), 939.
[http://dx.doi.org/10.1016/j.ijrobp.2015.06.025] [PMID: 26530769]
[13]
Mirimanoff, R-O.; Gorlia, T.; Mason, W.; Van den Bent, M.J.; Kortmann, R-D.; Fisher, B.; Reni, M.; Brandes, A.A.; Curschmann, J.; Villa, S.; Cairncross, G.; Allgeier, A.; Lacombe, D.; Stupp, R. Radiotherapy and temozolomide for newly diagnosed glioblastoma: recursive partitioning analysis of the EORTC 26981/22981-NCIC CE3 phase III randomized trial. J. Clin. Oncol., 2006, 24(16), 2563-2569.
[http://dx.doi.org/10.1200/JCO.2005.04.5963] [PMID: 16735709]
[14]
Scott, J.N.; Rewcastle, N.B.; Brasher, P.M.; Fulton, D.; MacKinnon, J.A.; Hamilton, M.; Cairncross, J.G.; Forsyth, P. Which glioblastoma multiforme patient will become a long-term survivor? A population-based study. Ann. Neurol., 1999, 46(2), 183-188.
[http://dx.doi.org/10.1002/1531-8249(199908)46:2<183:AID-ANA7>3.0.CO;2-7] [PMID: 10443883]
[15]
Chaichana, K.; Parker, S.; Olivi, A.; Quiñones-Hinojosa, A. A proposed classification system that projects outcomes based on preoperative variables for adult patients with glioblastoma multiforme. J. Neurosurg., 2010, 112(5), 997-1004.
[http://dx.doi.org/10.3171/2009.9.JNS09805] [PMID: 19817542]
[16]
Jiang, H.; Cui, Y.; Liu, X.; Ren, X.; Lin, S. Patient-specific resection strategy of glioblastoma multiforme: choice based on a preoperative scoring scale. Ann. Surg. Oncol., 2017, 24(7), 2006-2014.
[http://dx.doi.org/10.1245/s10434-017-5843-1] [PMID: 28321691]
[17]
Noorbakhsh, A.; Tang, J.A.; Marcus, L.P.; McCutcheon, B.; Gonda, D.D.; Schallhorn, C.S.; Talamini, M.A.; Chang, D.C.; Carter, B.S.; Chen, C.C. Gross-total resection outcomes in an elderly population with glioblastoma: a SEER-based analysis. J. Neurosurg., 2014, 120(1), 31-39.
[http://dx.doi.org/10.3171/2013.9.JNS13877] [PMID: 24205904]
[18]
Grabowski, M.M.; Recinos, P.F.; Nowacki, A.S.; Schroeder, J.L.; Angelov, L.; Barnett, G.H.; Vogelbaum, M.A. Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma. J. Neurosurg., 2014, 121(5), 1115-1123.
[http://dx.doi.org/10.3171/2014.7.JNS132449] [PMID: 25192475]
[19]
Brandes, A.A.; Franceschi, E.; Ermani, M.; Tosoni, A.; Albani, F.; Depenni, R.; Faedi, M.; Pisanello, A.; Crisi, G.; Urbini, B.; Dazzi, C.; Cavanna, L.; Mucciarini, C.; Pasini, G.; Bartolini, S.; Marucci, G.; Morandi, L.; Zunarelli, E.; Cerasoli, S.; Gardini, G.; Lanza, G.; Silini, E.M.; Cavuto, S.; Baruzzi, A.; Baruzzi, A.; Albani, F.; Calbucci, F.; D’Alessandro, R.; Michelucci, R.; Brandes, A.; Eusebi, V.; Ceruti, S.; Fainardi, E.; Tamarozzi, R.; Emiliani, E.; Cavallo, M.; Franceschi, E.; Tosoni, A.; Cavallo, M.; Fiorica, F.; Valentini, A.; Depenni, R.; Mucciarini, C.; Crisi, G.; Sasso, E.; Biasini, C.; Cavanna, L.; Guidetti, D.; Marcello, N.; Pisanello, A.; Cremonini, A.M.; Guiducci, G.; de Pasqua, S.; Testoni, S.; Agati, R.; Ambrosetto, G.; Bacci, A.; Baldin, E.; Baldrati, A.; Barbieri, E.; Bartolini, S.; Bellavista, E.; Bisulli, F.; Bonora, E.; Bunkheila, F.; Carelli, V.; Crisci, M.; Dall’Occa, P.; de Biase, D.; Ferro, S.; Franceschi, C.; Frezza, G.; Grasso, V.; Leonardi, M.; Marucci, G.; Mazzocchi, V.; Morandi, L.; Mostacci, B.; Palandri, G.; Pasini, E.; Pastore Trossello, M.; Pession, A.; Ragazzi, M.; Riguzzi, P.; Rinaldi, R.; Rizzi, S.; Romeo, G.; Spagnolli, F.; Tinuper, P.; Trocino, C.; Cerasoli, S.; Dall’Agata, M.; Faedi, M.; Frattarelli, M.; Gentili, G.; Giovannini, A.; Iorio, P.; Pasquini, U.; Galletti, G.; Guidi, C.; Neri, W.; Patuelli, A.; Strumia, S.; Casmiro, M.; Gamboni, A.; Rasi, F.; Cruciani, G.; Cenni, P.; Dazzi, C.; Guidi, A.; Zumaglini, F.; Amadori, A.; Pasini, G.; Pasquinelli, M.; Pasquini, E.; Polselli, A.; Ravasio, A.; Viti, B.; Sintini, M.; Ariatti, A.; Bertolini, F.; Bigliardi, G.; Carpeggiani, P.; Cavalleri, F.; Meletti, S.; Nichelli, P.; Pettorelli, E.; Pinna, G.; Zunarelli, E.; Artioli, F.; Bernardini, I.; Costa, M.; Greco, G.; Guerzoni, R.; Stucchi, C.; Iaccarino, C.; Rizzi, R.; Zuccoli, G.; Api, P.; Cartei, F.; Fallica, E.; Granieri, E.; Latini, F.; Lelli, G.; Monetti, C.; Ramponi, V.; Saletti, A.; Schivalocchi, R.; Seraceni, S.; Tola, M.R.; Urbini, B.; Giorgi, C.; Montanari, E.; Cerasti, D.; Crafa, P.; Dascola, I.; Florindo, I.; Mazza, S.; Servadei, F.; Silini, E.; Torelli, P.; Immovilli, P.; Morelli, N.; Vanzo, C. Pattern of care and effectiveness of treatment for glioblastoma patients in the real world: Results from a prospective population-based registry. Could survival differ in a high-volume center? Neurooncol. Pract., 2014, 1(4), 166-171.
[http://dx.doi.org/10.1093/nop/npu021] [PMID: 26034628]
[20]
Henson, J.W.; Gaviani, P.; Gonzalez, R.G. MRI in treatment of adult gliomas. Lancet Oncol., 2005, 6(3), 167-175.
[http://dx.doi.org/10.1016/S1470-2045(05)01767-5] [PMID: 15737833]
[21]
Pierallini, A.; Bonamini, M.; Pantano, P.; Palmeggiani, F.; Raguso, M.; Osti, M.F.; Anaveri, G.; Bozzao, L. Radiological assessment of necrosis in glioblastoma: variability and prognostic value. Neuroradiology, 1998, 40(3), 150-153.
[http://dx.doi.org/10.1007/s002340050556] [PMID: 9561517]
[22]
Pope, W.B.; Sayre, J.; Perlina, A.; Villablanca, J.P.; Mischel, P.S.; Cloughesy, T.F. MR imaging correlates of survival in patients with high-grade gliomas. AJNR Am. J. Neuroradiol., 2005, 26(10), 2466-2474.
[PMID: 16286386]
[23]
Li, W-B.; Tang, K.; Chen, Q.; Li, S.; Qiu, X-G.; Li, S-W.; Jiang, T. MRI manifestions correlate with survival of glioblastoma multiforme patients. Cancer Biol. Med., 2012, 9(2), 120-123.
[PMID: 23691466]
[24]
Rees, J.H.; Smirniotopoulos, J.G.; Jones, R.V.; Wong, K. Glioblastoma multiforme: radiologic-pathologic correlation. Radiogr. Rev. Publ. Radiol. Soc. N. Am. Inc., 1996, 16(6), 1413-1438.
[http://dx.doi.org/10.1148/radiographics.16.6.8946545] [PMID: 8946545]
[25]
Diehn, M.; Nardini, C.; Wang, D.S.; McGovern, S.; Jayaraman, M.; Liang, Y.; Aldape, K.; Cha, S.; Kuo, M.D. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc. Natl. Acad. Sci. USA, 2008, 105(13), 5213-5218.
[http://dx.doi.org/10.1073/pnas.0801279105] [PMID: 18362333]
[26]
Yeung, T.P.C.; Wang, Y.; He, W.; Urbini, B.; Gafà, R.; Ulazzi, L.; Yartsev, S.; Bauman, G.; Lee, T.Y.; Fainardi, E. Project of Emilia-Romagna Region on Neuro-Oncology Study Group. Survival prediction in high-grade gliomas using CT perfusion imaging. J. Neurooncol., 2015, 123(1), 93-102.
[http://dx.doi.org/10.1007/s11060-015-1766-5] [PMID: 25862005]
[27]
Lopci, E.; Riva, M.; Olivari, L.; Raneri, F.; Soffietti, R.; Piccardo, A.; Bizzi, A.; Navarria, P.; Ascolese, A.M.; Rudà, R.; Fernandes, B.; Pessina, F.; Grimaldi, M.; Simonelli, M.; Rossi, M.; Alfieri, T.; Zucali, P.A.; Scorsetti, M.; Bello, L.; Chiti, A. Prognostic value of molecular and imaging biomarkers in patients with supratentorial glioma. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(7), 1155-1164.
[http://dx.doi.org/10.1007/s00259-017-3618-3] [PMID: 28110346]
[28]
Smits, A.; Westerberg, E.; Ribom, D. Adding 11C-methionine PET to the EORTC prognostic factors in grade 2 gliomas. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(1), 65-71.
[http://dx.doi.org/10.1007/s00259-007-0531-1] [PMID: 17710394]
[29]
Aldape, K.; Zadeh, G.; Mansouri, S.; Reifenberger, G.; von Deimling, A. Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol., 2015, 129(6), 829-848.
[http://dx.doi.org/10.1007/s00401-015-1432-1] [PMID: 25943888]
[30]
Hegi, M.E.; Diserens, A-C.; Gorlia, T.; Hamou, M-F.; de Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; Bromberg, J.E.; Hau, P.; Mirimanoff, R.O.; Cairncross, J.G.; Janzer, R.C.; Stupp, R. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med., 2005, 352(10), 997-1003.
[http://dx.doi.org/10.1056/NEJMoa043331] [PMID: 15758010]
[31]
Esteller, M.; Garcia-Foncillas, J.; Andion, E.; Goodman, S.N.; Hidalgo, O.F.; Vanaclocha, V.; Baylin, S.B.; Herman, J.G. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med., 2000, 343(19), 1350-1354.
[http://dx.doi.org/10.1056/NEJM200011093431901] [PMID: 11070098]
[32]
Wick, W.; Platten, M.; Meisner, C.; Felsberg, J.; Tabatabai, G.; Simon, M.; Nikkhah, G.; Papsdorf, K.; Steinbach, J.P.; Sabel, M.; Combs, S.E.; Vesper, J.; Braun, C.; Meixensberger, J.; Ketter, R.; Mayer-Steinacker, R.; Reifenberger, G.; Weller, M. NOA-08 Study Group of Neuro-oncology Working Group (NOA) of German Cancer Society. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol., 2012, 13(7), 707-715.
[http://dx.doi.org/10.1016/S1470-2045(12)70164-X] [PMID: 22578793]
[33]
Zhao, H.; Wang, S.; Song, C.; Zha, Y.; Li, L. The prognostic value of MGMT promoter status by pyrosequencing assay for glioblastoma patients’ survival: a meta-analysis. World J. Surg. Oncol., 2016, 14, 261.
[http://dx.doi.org/10.1186/s12957-016-1012-4] [PMID: 27733166]
[34]
Szopa, W.; Burley, T.A.; Kramer-Marek, G.; Kaspera, W. Diagnostic and therapeutic biomarkers in glioblastoma: current status and future perspectives. BioMed Res. Int., 2017, 2017 8013575
[http://dx.doi.org/10.1155/2017/8013575] [PMID: 28316990]
[35]
Korshunov, A.; Ryzhova, M.; Hovestadt, V.; Bender, S.; Sturm, D.; Capper, D.; Meyer, J.; Schrimpf, D.; Kool, M.; Northcott, P.A.; Zheludkova, O.; Milde, T.; Witt, O.; Kulozik, A.E.; Reifenberger, G.; Jabado, N.; Perry, A.; Lichter, P.; von Deimling, A.; Pfister, S.M.; Jones, D.T. Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol., 2015, 129(5), 669-678.
[http://dx.doi.org/10.1007/s00401-015-1405-4] [PMID: 25752754]
[36]
Brennan, C.; Momota, H.; Hambardzumyan, D.; Ozawa, T.; Tandon, A.; Pedraza, A.; Holland, E. Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One, 2009, 4(11) e7752
[http://dx.doi.org/10.1371/journal.pone.0007752] [PMID: 19915670]
[37]
Assanah, M.C.; Bruce, J.N.; Suzuki, S.O.; Chen, A.; Goldman, J.E.; Canoll, P. PDGF stimulates the massive expansion of glial progenitors in the neonatal forebrain. Glia, 2009, 57(16), 1835-1847.
[http://dx.doi.org/10.1002/glia.20895] [PMID: 19533602]
[38]
Lönn, S.; Rothman, N.; Shapiro, W.R.; Fine, H.A.; Selker, R.G.; Black, P.M.; Loeffler, J.S.; Hutchinson, A.A.; Inskip, P.D. Genetic variation in insulin-like growth factors and brain tumor risk. Neuro-oncol., 2008, 10(4), 553-559.
[http://dx.doi.org/10.1215/15228517-2008-026] [PMID: 18562769]
[39]
Maris, C.; D’Haene, N.; Trépant, A-L.; Le Mercier, M.; Sauvage, S.; Allard, J.; Rorive, S.; Demetter, P.; Decaestecker, C.; Salmon, I. IGF-IR: a new prognostic biomarker for human glioblastoma. Br. J. Cancer, 2015, 113(5), 729-737.
[http://dx.doi.org/10.1038/bjc.2015.242] [PMID: 26291053]
[40]
Zamykal, M.; Martens, T.; Matschke, J.; Günther, H.S.; Kathagen, A.; Schulte, A.; Peters, R.; Westphal, M.; Lamszus, K. Inhibition of intracerebral glioblastoma growth by targeting the insulin-like growth factor 1 receptor involves different context-dependent mechanisms. Neuro-oncol., 2015, 17(8), 1076-1085.
[http://dx.doi.org/10.1093/neuonc/nou344] [PMID: 25543125]
[41]
Haley, E.M.; Kim, Y. The role of basic fibroblast growth factor in glioblastoma multiforme and glioblastoma stem cells and in their in vitro culture. Cancer Lett., 2014, 346(1), 1-5.
[http://dx.doi.org/10.1016/j.canlet.2013.12.003] [PMID: 24333730]
[42]
Bleeker, F.E.; Atai, N.A.; Lamba, S.; Jonker, A.; Rijkeboer, D.; Bosch, K.S.; Tigchelaar, W.; Troost, D.; Vandertop, W.P.; Bardelli, A.; Van Noorden, C.J. The prognostic IDH1( R132 ) mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma. Acta Neuropathol., 2010, 119(4), 487-494.
[http://dx.doi.org/10.1007/s00401-010-0645-6] [PMID: 20127344]
[43]
Guo, C.; Pirozzi, C.J.; Lopez, G.Y.; Yan, H. Isocitrate dehydrogenase mutations in gliomas: mechanisms, biomarkers and therapeutic target. Curr. Opin. Neurol., 2011, 24(6), 648-652.
[http://dx.doi.org/10.1097/WCO.0b013e32834cd415] [PMID: 22002076]
[44]
Chen, J-R.; Yao, Y.; Xu, H-Z.; Qin, Z-Y. Isocitrate dehydrogenase (IDH)1/2 mutations as prognostic markers in patients with glioblastomas. Medicine (Baltimore), 2016, 95(9) e2583
[http://dx.doi.org/10.1097/MD.0000000000002583] [PMID: 26945349]
[45]
Ballester, L.Y.; Huse, J.T.; Tang, G.; Fuller, G.N. Molecular classification of adult diffuse gliomas: conflicting IDH1/IDH2, ATRX, and 1p/19q results. Hum. Pathol., 2017, 69, 15-22.
[http://dx.doi.org/10.1016/j.humpath.2017.05.005] [PMID: 28549927]
[46]
Darnell, J.E., Jr STATs and gene regulation. Science, 1997, 277(5332), 1630-1635.
[http://dx.doi.org/10.1126/science.277.5332.1630] [PMID: 9287210]
[47]
Yoshimatsu, T.; Kawaguchi, D.; Oishi, K.; Takeda, K.; Akira, S.; Masuyama, N.; Gotoh, Y. Non-cell-autonomous action of STAT3 in maintenance of neural precursor cells in the mouse neocortex. Development, 2006, 133(13), 2553-2563.
[http://dx.doi.org/10.1242/dev.02419] [PMID: 16728475]
[48]
de la Iglesia, N.; Puram, S.V.; Bonni, A. STAT3 regulation of glioblastoma pathogenesis. Curr. Mol. Med., 2009, 9(5), 580-590.
[http://dx.doi.org/10.2174/156652409788488739] [PMID: 19601808]
[49]
de la Iglesia, N.; Konopka, G.; Lim, K-L.; Nutt, C.L.; Bromberg, J.F.; Frank, D.A.; Mischel, P.S.; Louis, D.N.; Bonni, A. Deregulation of a STAT3-interleukin 8 signaling pathway promotes human glioblastoma cell proliferation and invasiveness. J. Neurosci., 2008, 28(23), 5870-5878.
[http://dx.doi.org/10.1523/JNEUROSCI.5385-07.2008] [PMID: 18524891]
[50]
Chang, N.; Ahn, S.H.; Kong, D.S.; Lee, H.W.; Nam, D.H. The role of STAT3 in glioblastoma progression through dual influences on tumor cells and the immune microenvironment. Mol. Cell. Endocrinol., 2017, 451, 53-65.
[http://dx.doi.org/10.1016/j.mce.2017.01.004] [PMID: 28089821]
[51]
Pelloski, C.E.; Lin, E.; Zhang, L.; Yung, W.K.A.; Colman, H.; Liu, J-L.; Woo, S.Y.; Heimberger, A.B.; Suki, D.; Prados, M.; Chang, S.; Barker, F.G., III; Fuller, G.N.; Aldape, K.D. Prognostic associations of activated mitogen-activated protein kinase and Akt pathways in glioblastoma. Clin. Cancer Res., 2006, 12(13), 3935-3941.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2202] [PMID: 16818690]
[52]
Cartee, L.; Vrana, J.A.; Wang, Z.; Park, J.S.; Birrer, M.; Fisher, P.B.; Grant, S.; Dent, P. Inhibition of the mitogen activated protein kinase pathway potentiates radiation-induced cell killing via cell cycle arrest at the G2/M transition and independently of increased signaling by the JNK/c-Jun pathway. Int. J. Oncol., 2000, 16(2), 413-422.
[http://dx.doi.org/10.3892/ijo.16.2.413] [PMID: 10639586]
[53]
Guha, A.; Feldkamp, M.M.; Lau, N.; Boss, G.; Pawson, A. Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene, 1997, 15(23), 2755-2765.
[http://dx.doi.org/10.1038/sj.onc.1201455] [PMID: 9419966]
[54]
Wirsching, H.G.; Galanis, E.; Weller, M. Glioblastoma. Handb. Clin. Neurol., 2016, 134, 381-397.
[http://dx.doi.org/10.1016/B978-0-12-802997-8.00023-2] [PMID: 26948367]
[55]
Wallace, M.R.; Marchuk, D.A.; Andersen, L.B.; Letcher, R.; Odeh, H.M.; Saulino, A.M.; Fountain, J.W.; Brereton, A.; Nicholson, J.; Mitchell, A.L. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science, 1990, 249(4965), 181-186.
[http://dx.doi.org/10.1126/science.2134734] [PMID: 2134734]
[56]
Vizcaíno, M.A.; Shah, S.; Eberhart, C.G.; Rodriguez, F.J. Clinicopathologic implications of NF1 gene alterations in diffuse gliomas. Hum. Pathol., 2015, 46(9), 1323-1330.
[http://dx.doi.org/10.1016/j.humpath.2015.05.014] [PMID: 26190195]
[57]
Gutmann, D.H.; Ferner, R.E.; Listernick, R.H.; Korf, B.R.; Wolters, P.L.; Johnson, K.J. Neurofibromatosis type 1. Nat. Rev. Dis. Primers, 2017, 3, 17004.
[http://dx.doi.org/10.1038/nrdp.2017.4] [PMID: 28230061]
[58]
Thiessen, B.; Maguire, J.A.; McNeil, K.; Huntsman, D.; Martin, M.A.; Horsman, D. Loss of heterozygosity for loci on chromosome arms 1p and 10q in oligodendroglial tumors: relationship to outcome and chemosensitivity. J. Neurooncol., 2003, 64(3), 271-278.
[http://dx.doi.org/10.1023/A:1025689004046] [PMID: 14558604]
[59]
Brandes, A.A.; Tosoni, A.; Cavallo, G.; Reni, M.; Franceschi, E.; Bonaldi, L.; Bertorelle, R.; Gardiman, M.; Ghimenton, C.; Iuzzolino, P.; Pession, A.; Blatt, V.; Ermani, M. GICNO. Correlations between O6-methylguanine DNA methyltransferase promoter methylation status, 1p and 19q deletions, and response to temozolomide in anaplastic and recurrent oligodendroglioma: a prospective GICNO study. J. Clin. Oncol., 2006, 24(29), 4746-4753.
[http://dx.doi.org/10.1200/JCO.2006.06.3891] [PMID: 16954518]
[60]
Bauman, G.S.; Ino, Y.; Ueki, K.; Zlatescu, M.C.; Fisher, B.J.; Macdonald, D.R.; Stitt, L.; Louis, D.N.; Cairncross, J.G. Allelic loss of chromosome 1p and radiotherapy plus chemotherapy in patients with oligodendrogliomas. Int. J. Radiat. Oncol. Biol. Phys., 2000, 48(3), 825-830.
[http://dx.doi.org/10.1016/S0360-3016(00)00703-3] [PMID: 11020580]
[61]
Gladitz, J.; Klink, B.; Seifert, M. Network-based analysis of oligodendrogliomas predicts novel cancer gene candidates within the region of the 1p/19q co-deletion. Acta Neuropathol. Commun., 2018, 6(1), 49.
[http://dx.doi.org/10.1186/s40478-018-0544-y] [PMID: 29890994]
[62]
Boots-Sprenger, S.H.E.; Sijben, A.; Rijntjes, J.; Tops, B.B.J.; Idema, A.J.; Rivera, A.L.; Bleeker, F.E.; Gijtenbeek, A.M.; Diefes, K.; Heathcock, L.; Aldape, K.D.; Jeuken, J.W.; Wesseling, P. Significance of complete 1p/19q co-deletion, IDH1 mutation and MGMT promoter methylation in gliomas: use with caution. Mod. Pathol., 2013, 26(7), 922-929.
[http://dx.doi.org/10.1038/modpathol.2012.166] [PMID: 23429602]
[63]
Visani, M.; de Biase, D.; Marucci, G.; Cerasoli, S.; Nigrisoli, E.; Bacchi Reggiani, M.L.; Albani, F.; Baruzzi, A.; Pession, A. PERNO study group. Expression of 19 microRNAs in glioblastoma and comparison with other brain neoplasia of grades I-III. Mol. Oncol., 2014, 8(2), 417-430.
[http://dx.doi.org/10.1016/j.molonc.2013.12.010] [PMID: 24412053]
[64]
Chan, J.A.; Krichevsky, A.M.; Kosik, K.S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res., 2005, 65(14), 6029-6033.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0137] [PMID: 16024602]
[65]
Chen, L.; Zhang, A.; Li, Y.; Zhang, K.; Han, L.; Du, W.; Yan, W.; Li, R.; Wang, Y.; Wang, K.; Pu, P.; Jiang, T.; Jiang, C.; Kang, C. MiR-24 regulates the proliferation and invasion of glioma by ST7L via β-catenin/Tcf-4 signaling. Cancer Lett., 2013, 329(2), 174-180.
[http://dx.doi.org/10.1016/j.canlet.2012.10.025] [PMID: 23142218]
[66]
Bhaskaran, V.; Peruzzi, P. Characterization of functionally associated miRNAs in glioblastoma and their engineering into artificial clusters for gene therapy. J. Vis. Exp., 2019, (152)
[http://dx.doi.org/10.3791/60215] [PMID: 31633695]
[67]
Yeung, Y.T.; McDonald, K.L.; Grewal, T.; Munoz, L. Interleukins in glioblastoma pathophysiology: implications for therapy. Br. J. Pharmacol., 2013, 168(3), 591-606.
[http://dx.doi.org/10.1111/bph.12008] [PMID: 23062197]
[68]
Albulescu, R.; Codrici, E.; Popescu, I.D.; Mihai, S.; Necula, L.G.; Petrescu, D.; Teodoru, M.; Tanase, C.P. Cytokine patterns in brain tumour progression. Mediators Inflamm., 2013, 2013 979748
[http://dx.doi.org/10.1155/2013/979748] [PMID: 23864770]
[69]
Basu, A.; Krady, J.K.; Levison, S.W. Interleukin-1: a master regulator of neuroinflammation. J. Neurosci. Res., 2004, 78(2), 151-156.
[http://dx.doi.org/10.1002/jnr.20266] [PMID: 15378607]
[70]
Paugh, B.S.; Bryan, L.; Paugh, S.W.; Wilczynska, K.M.; Alvarez, S.M.; Singh, S.K.; Kapitonov, D.; Rokita, H.; Wright, S.; Griswold-Prenner, I.; Milstien, S.; Spiegel, S.; Kordula, T. Interleukin-1 regulates the expression of sphingosine kinase 1 in glioblastoma cells. J. Biol. Chem., 2009, 284(6), 3408-3417.
[http://dx.doi.org/10.1074/jbc.M807170200] [PMID: 19074142]
[71]
Yeung, Y.T.; Bryce, N.S.; Adams, S.; Braidy, N.; Konayagi, M.; McDonald, K.L.; Teo, C.; Guillemin, G.J.; Grewal, T.; Munoz, L. p38 MAPK inhibitors attenuate pro-inflammatory cytokine production and the invasiveness of human U251 glioblastoma cells. J. Neurooncol., 2012, 109(1), 35-44.
[http://dx.doi.org/10.1007/s11060-012-0875-7] [PMID: 22528800]
[72]
Hamerlik, P.; Lathia, J.D.; Rasmussen, R.; Wu, Q.; Bartkova, J.; Lee, M.; Moudry, P.; Bartek, J., Jr; Fischer, W.; Lukas, J.; Rich, J.N.; Bartek, J. Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J. Exp. Med., 2012, 209(3), 507-520.
[http://dx.doi.org/10.1084/jem.20111424] [PMID: 22393126]
[73]
Azab, B.; Shah, N.; Radbel, J.; Tan, P.; Bhatt, V.; Vonfrolio, S.; Habeshy, A.; Picon, A.; Bloom, S. Pretreatment neutrophil/lymphocyte ratio is superior to platelet/lymphocyte ratio as a predictor of long-term mortality in breast cancer patients. Med. Oncol., 2013, 30(1), 432.
[http://dx.doi.org/10.1007/s12032-012-0432-4] [PMID: 23283648]
[74]
Goubran, H.A.; Stakiw, J.; Radosevic, M.; Burnouf, T. Platelets effects on tumor growth. Semin. Oncol., 2014, 41(3), 359-369.
[http://dx.doi.org/10.1053/j.seminoncol.2014.04.006] [PMID: 25023351]
[75]
Wang, P-F.; Song, H-W.; Cai, H-Q.; Kong, L-W.; Yao, K.; Jiang, T.; Li, S.W.; Yan, C.X. Preoperative inflammation markers and IDH mutation status predict glioblastoma patient survival. Oncotarget, 2017, 8(30), 50117-50123.
[http://dx.doi.org/10.18632/oncotarget.15235] [PMID: 28223536]
[76]
Bambury, R.M.; Teo, M.Y.; Power, D.G.; Yusuf, A.; Murray, S.; Battley, J.E.; Drake, C.; O’Dea, P.; Bermingham, N.; Keohane, C.; Grossman, S.A.; Moylan, E.J.; O’Reilly, S. The association of pre-treatment neutrophil to lymphocyte ratio with overall survival in patients with glioblastoma multiforme. J. Neurooncol., 2013, 114(1), 149-154.
[http://dx.doi.org/10.1007/s11060-013-1164-9] [PMID: 23780645]
[77]
Wiencke, J.K.; Koestler, D.C.; Salas, L.A.; Wiemels, J.L.; Roy, R.P.; Hansen, H.M. Immunomethylomic approach to explore the blood neutrophil lymphocyte ratio (NLR) in glioma survival. Clin. Epigenetics, 2017, 9, 10.
[http://dx.doi.org/10.1186/s13148-017-0316-8] [PMID: 28184256]
[78]
Liu, Y.; Carlsson, R.; Ambjørn, M.; Hasan, M.; Badn, W.; Darabi, A.; Siesjö, P.; Issazadeh-Navikas, S. PD-L1 expression by neurons nearby tumors indicates better prognosis in glioblastoma patients. J. Neurosci., 2013, 33(35), 14231-14245.
[http://dx.doi.org/10.1523/JNEUROSCI.5812-12.2013] [PMID: 23986257]
[79]
Baldewpersad Tewarie, N.M.; Burgers, I.A.; Dawood, Y.; den Boon, H.C.; den Brok, M.G.; Klunder, J.H.; Koopmans, K.B.; Rademaker, E.; van den Broek, H.B.; van den Bersselaar, S.M.; Witjes, J.J.; Van Noorden, C.J.; Atai, N.A. NADP+ -dependent IDH1 R132 mutation and its relevance for glioma patient survival. Med. Hypotheses, 2013, 80(6), 728-731.
[http://dx.doi.org/10.1016/j.mehy.2013.02.022] [PMID: 23541771]
[80]
Toraih, E.A.; El-Wazir, A.; Abdallah, H.Y.; Tantawy, M.A.; Fawzy, M.S. Deregulated MicroRNA signature following glioblastoma irradiation. Cancer Contr., 2019, 26(1) 1073274819847226
[PMID: 31046428]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy