Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Combinatorial Synthesis of A Series of Paeonol-based Phenylsulfonyl hydrazone Derivatives as Insecticidal Agents

Author(s): Zhi-Ping Che*, Jin-Ming Yang, Di Sun, Yue-E Tian, Sheng-Ming Liu, Xiao-Min Lin, Jia Jiang and Gen-Qiang Chen

Volume 23, Issue 3, 2020

Page: [232 - 238] Pages: 7

DOI: 10.2174/1386207323666200127121129

Price: $65

Abstract

Background: Plant secondary metabolites play an essential role in the discovery of novel insecticide due to their unique sources and potential target sites. Paeonol, the main phenolic components in Moutan Cortex, is recognized as a safe and potent botanical insecticide to many insects. The structural modification of paeonol in this study into phenylsulfonylhydrazone derivatives is proved an effective approach for the development of novel insecticides, those derivatives being more toxic than paeonol. However, there have been no reports on the insecticidal activity of paeonol-based phenylsulfonylhydrazone derivatives in controlling Mythimna separata.

Methods: We have been working to discover biorational natural products-based insecticides. Twelve novel paeonol-based phenylsulfonylhydrazone derivatives have been successfully prepared by structural modification of paeonol, and the insecticidal activity against M. separata by the leafdipping method at the concentration of 1 mg/mL has been evaluated.

Results: Insecticidal activity revealed that out of 12 title compounds, derivatives 5c and 5f displayed the best against M. separate with the FMR both of 53.6% than toosendanin (FMR = 50.0%).

Conclusion: The results suggested that for the paeonol-based phenylsulfonylhydrazone series derivatives, the proper substituent of arylsulfonyl R at the hydroxyl position of paeonol was very important for their insecticidal activity. These preliminary results will pave the way for further modification of paeonol in the development of potential new insecticides.

Keywords: Paeonol, combinatorial synthesis, phenylsulfonylhydrazone, insecticidal activity, biorational pesticides, insecticides.

[1]
Sharma, H.C.; Sullivan, D.J.; Bhatnagar, V.S. Population dynamics and natural mortality factors of the Oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae), in South-Central India. Crop Prot., 2002, 21, 721-732.
[http://dx.doi.org/10.1016/S0261-2194(02)00029-7]
[2]
Zhang, Z.; Zhang, Y.H.; Wang, J.; Liu, J.; Tang, Q.B.; Li, X.R.; Cheng, D.F.; Zhu, X. Analysis on the migration of first-generation Mythimna separata (Walker) in China in 2013. J. Integr. Agric., 2018, 17, 1527-1537.
[http://dx.doi.org/10.1016/S2095-3119(17)61885-9]
[3]
Heckel, D.G. Ecology. Insecticide resistance after Silent spring. Science, 2012, 337(6102), 1612-1614.
[http://dx.doi.org/10.1126/science.1226994] [PMID: 23019637]
[4]
Liu, S.M.; Che, Z.P.; Chen, G.Q. Multiple-fungicide resistance to carbendazim, diethofencarb, procymidone, and pyrimethanil in field isolates of Botrytis cinerea from tomato in Henan Province, China. Crop Prot., 2016, 84, 56-61.
[http://dx.doi.org/10.1016/j.cropro.2016.02.012]
[5]
Qiu, J.; Huang, T.; Xu, J.; Bi, C.; Chen, C.; Zhou, M. β-Tubulins in Gibberella zeae: their characterization and contribution to carbendazim resistance. Pest Manag. Sci., 2012, 68(8), 1191-1198.
[http://dx.doi.org/10.1002/ps.3283] [PMID: 22522694]
[6]
Tian, Y.E.; Che, Z.P.; Sun, D.; Yang, Y.Y.; Lin, X.M.; Liu, S.M.; Liu, X.Y.; Gao, J. Resistance identification of tree peony varieties of different flowering time to gray mold pathogen Botrytis cinerea. HortScience, 2019, 54, 328-330.
[http://dx.doi.org/10.21273/HORTSCI13626-18]
[7]
Isman, M.B. Botanical insecticides: A global perspective. ACS Symp. Ser., 2014, 1172, 21-30.
[http://dx.doi.org/10.1021/bk-2014-1172.ch002]
[8]
Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol., 2006, 51, 45-66.
[http://dx.doi.org/10.1146/annurev.ento.51.110104.151146] [PMID: 16332203]
[9]
Zhang, X.; Ma, Z.Q.; Feng, J.T.; Wu, H.; Han, L.R. Review on research and development of botanical pesticides. Zhongguo Shengwu Fangzhi Xuebao, 2015, 31, 685-698.
[10]
Bolzani, Vda.S.; Davies-Coleman, M.; Newman, D.J.; Singh, S.B.; Gordon, M. Gordon M. Cragg, D.Phil., D.Sc. (h.c.): a man for all natural products. J. Nat. Prod., 2012, 75(3), 309-310.
[http://dx.doi.org/10.1021/np201003c] [PMID: 22295942]
[11]
Copping, L.G.; Duke, S.O. Natural products that have been used commercially as crop protection agents. Pest Manag. Sci., 2007, 63(6), 524-554.
[http://dx.doi.org/10.1002/ps.1378] [PMID: 17487882]
[12]
Deng, R.X.; Yang, X.; Wang, Y.X.; Du, M.Z.; Hao, X.T.; Liu, P. Optimization of ultrasound-assisted extraction of monoterpene glycoside from oil peony seed cake. J. Food Sci., 2018, 83(12), 2943-2953.
[http://dx.doi.org/10.1111/1750-3841.14378] [PMID: 30415477]
[13]
Liu, P.; Zhang, L.N.; Wang, X.S.; Gao, J.Y.; Yi, J.P.; Deng, R.X. Characterization of Paeonia ostii seed and oil sourced from different cultivation areas in China. Ind. Crops Prod., 2019, 133, 63-71.
[http://dx.doi.org/10.1016/j.indcrop.2019.01.054]
[14]
Liu, P.; Zhang, Y.; Gao, J.Y.; Du, M.Z.; Zhang, K.; Zhang, J.L.; Xue, N.C.; Yan, M.; Qu, C.X.; Deng, R.X. HPLC-DAD analysis of 15 monoterpene glycosides in oil peony seed cakes sourced from different cultivation areas in China. Ind. Crops Prod., 2018, 118, 259-270.
[http://dx.doi.org/10.1016/j.indcrop.2018.03.033]
[15]
Liu, P.; Zhang, Y.; Xu, Y.F.; Zhu, X.Y.; Xu, X.F.; Chang, S.; Deng, R.X. Three new monoterpene glycosides from oil peony seed cake. Ind. Crops Prod., 2018, 111, 371-378.
[http://dx.doi.org/10.1016/j.indcrop.2017.10.043]
[16]
Liu, P.; Xu, Y.F.; Gao, X.D.; Zhu, X.Y.; Du, M.Z.; Wang, Y.X.; Deng, R.X.; Gao, J.Y. Optimization of ultrasonic-assisted extraction of oil from the seed kernels and isolation of monoterpene glycosides from the oil residue of Paeonia lactiflora Pall. Ind. Crops Prod., 2017, 107, 260-270.
[http://dx.doi.org/10.1016/j.indcrop.2017.04.013]
[17]
Zhang, Y.; Liu, P.; Gao, J.Y.; Wang, X.S.; Yan, M.; Xue, N.C.; Qu, C.X.; Deng, R.X. Paeonia veitchii seeds as a promising high potential by-product: Proximate composition, phytochemical components, bioactivity evaluation and potential applications. Ind. Crops Prod., 2018, 125, 248-260.
[http://dx.doi.org/10.1016/j.indcrop.2018.08.067]
[18]
Tsai, C.Y.; Kapoor, M.; Huang, Y.P.; Lin, H.H.; Liang, Y.C.; Lin, Y.L.; Huang, S.C.; Liao, W.N.; Chen, J.K.; Huang, J.S.; Hsu, M.H. Synthesis and evaluation of aminothiazole-paeonol derivatives as potential anticancer agents. Molecules, 2016, 21(2), 145.
[http://dx.doi.org/10.3390/molecules21020145] [PMID: 26821004]
[19]
Huang, L.; Zhang, B.; Yang, Y.; Gong, X.; Chen, Z.; Wang, Z.; Zhang, P.; Zhang, Q. Synthesis and anti-inflammatory activity of paeonol analogues in the murine model of complete Freund’s adjuvant induced arthritis. Bioorg. Med. Chem. Lett., 2016, 26(21), 5218-5221.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.060] [PMID: 27712938]
[20]
Huang, Y.P.; Shih, H.P.; Liang, Y.C.; Lin, H.H.; Lin, M.C.; Chen, C.W.; Huang, T.J.; Kuo, Y.C.; Han, C.C.; Hsu, M.H. Advanced generation of paeonol-phenylsufonyl derivatives as potential anti-HBV agents. RSC Advances, 2016, 6, 43556-43562.
[http://dx.doi.org/10.1039/C6RA06119B]
[21]
Huang, T.J.; Chuang, H.; Liang, Y.C.; Lin, H.H.; Horng, J.C.; Kuo, Y.C.; Chen, C.W.; Tsai, F.Y.; Yen, S.C.; Chou, S.C.; Hsu, M.H. Design, synthesis, and bioevaluation of paeonol derivatives as potential anti-HBV agents. Eur. J. Med. Chem., 2015, 90, 428-435.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.050] [PMID: 25461891]
[22]
Zhu, T.H.; Cao, S.W.; Yu, Y.Y. Synthesis, characterization and biological evaluation of paeonol thiosemicarbazone analogues as mushroom tyrosinase inhibitors. Int. J. Biol. Macromol., 2013, 62, 589-595.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.09.056] [PMID: 24120880]
[23]
Jiang, Y.Q.; Ren, B.Q.; Lv, X.M.; Zhang, W.W.; Li, W.; Xu, G.Q. Design, synthesis and antifungal activity of novel paeonol derivatives linked with 1,2,3-triazole moiety by the click reaction. J. Chem. Res., 2015, 39, 243-246.
[http://dx.doi.org/10.3184/174751915X14284938334623]
[24]
Xu, H.; Zhang, N.; Casida, J.E. Insecticides in Chinese medicinal plants: survey leading to jacaranone, a neurotoxicant and glutathione-reactive quinol. J. Agric. Food Chem., 2003, 51(9), 2544-2547.
[http://dx.doi.org/10.1021/jf021164x] [PMID: 12696934]
[25]
Tak, J.H.; Kim, H.K.; Lee, S.H.; Ahn, Y.J. Acaricidal activities of paeonol and benzoic acid from Paeonia suffruticosa root bark and monoterpenoids against Tyrophagus putrescentiae (Acari: Acaridae). Pest Manag. Sci., 2006, 62(6), 551-557.
[http://dx.doi.org/10.1002/ps.1212] [PMID: 16602084]
[26]
Gyawali, A.; Krol, S.; Kang, Y.S. Involvement of a novel organic cation transporter in paeonol transport across the blood-brain barrier. Biomol. Ther. (Seoul), 2019, 27(3), 290-301.
[http://dx.doi.org/10.4062/biomolther.2019.007] [PMID: 30971062]
[27]
Qu, H.; Lv, M.; Yu, X.; Lian, X.; Xu, H. Discovery of some piperine-based phenylsulfonylhydrazone derivatives as potent botanically narcotic agents. Sci. Rep., 2015, 5, 13077.
[http://dx.doi.org/10.1038/srep13077] [PMID: 26268805]
[28]
Xu, H.; Wang, J.J. Natural products-based insecticidal agents 5. Design, semisynthesis and insecticidal activity of novel 4′-substituted benzenesulfonate derivatives of 4-deoxypodophyllotoxin against Mythimna separata Walker in vivo. Bioorg. Med. Chem. Lett., 2010, 20(8), 2500-2502.
[http://dx.doi.org/10.1016/j.bmcl.2010.02.108] [PMID: 20346661]
[29]
Che, Z.P.; Tian, Y.E.; Yang, J.M.; Liu, S.M.; Jiang, J.; Hu, M.; Chen, G.Q. Screening of insecticidal activity of podophyllotoxin analogues against Athetis dissimilis. Nat. Prod. Commun., 2019, 14, 117-120.
[http://dx.doi.org/10.1177/1934578X1901400131]
[30]
Che, Z.P.; Yang, J.M.; Shan, X.J.; Tian, Y.E.; Liu, S.M.; Lin, X.M.; Jiang, J.; Hu, M.; Chen, G.Q. Synthesis and insecticidal activity of sulfonate derivatives of sesamol against Mythimna separata in vivo. J. Asian Nat. Prod. Res., 2019, 1-11.
[http://dx.doi.org/10.1080/10286020.2019.1616289] [PMID: 31120307]
[31]
Che, Z.P.; Tian, Y.E.; Liu, S.M.; Jiang, J.; Hu, M.; Chen, G.Q. Stereoselective synthesis of 4β-acyloxypodophyllotoxin derivatives as insecticidal agents. J. Asian Nat. Prod. Res., 2019, 21(10), 1028-1041.
[http://dx.doi.org/10.1080/10286020.2018.1490275] [PMID: 29974799]
[32]
Tian, Y.E.; Sun, D.; Yang, J.M.; Che, Z.P.; Liu, S.M.; Lin, X.M.; Jiang, J.; Chen, G.Q. Synthesis of sulfonate derivatives of maltol and their biological activity against Phytophthora capsici and Bursaphelenchus xylophilus in vitro. J. Asian Nat. Prod. Res., 2019, 21, 1-10.
[http://dx.doi.org/10.1080/10286020.2019.1608958] [PMID: 31046458]
[33]
Che, Z.; Yu, X.; Fan, L.; Xu, H. Insight into dihalogenation of E-ring of podophyllotoxins, and their acyloxyation derivatives at the C4 position as insecticidal agents. Bioorg. Med. Chem. Lett., 2013, 23(20), 5592-5598.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.044] [PMID: 24018192]
[34]
Che, Z.P.; Yu, X.; Zhi, X.Y.; Fan, L.L.; Yao, X.J.; Xu, H. Synthesis of novel 4α-(acyloxy)-2′(2′,6′)-(di)halogenopodo phyllotoxin derivatives as insecticidal agents. J. Agric. Food Chem., 2013, 61, 8148-8155.
[http://dx.doi.org/10.1021/jf4025079] [PMID: 23915199]
[35]
Zhang, J.; Qu, H.; Yu, X.; Zhi, X.; Chen, H.; Xu, H. Combinatorial synthesis of a series of alkyl/alkenylacyloxy derivatives at the C-28 position of toosendanin as insecticidal agents. Comb. Chem. High Throughput Screen., 2013, 16(5), 394-399.
[http://dx.doi.org/10.2174/1386207311316050004] [PMID: 23305141]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy