Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

The Structural Role of Gangliosides: Insights from X-ray Scattering on Model Membranes

Author(s): Konstantin Andreev *

Volume 27, Issue 38, 2020

Page: [6548 - 6570] Pages: 23

DOI: 10.2174/0929867327666200103093340

Price: $65

Abstract

Background: Gangliosides are an essential component of eukaryotic plasma membranes implicated in multiple physiological processes. Little is known about molecular mechanisms underlying the distribution and functions of membrane gangliosides. The overwhelmingly complex organization of glycocalyx impedes the structural analysis on cell surface and the interplay between the lipid components. Advanced X-ray analytical tools applicable to studying biological interfaces call for the simplistic models that mimic ganglioside-enriched cellular membranes.

Objective: To summarize the mechanistic evidences of ganglioside interactions with lipid environment and biologically active ligands using high-resolution synchrotron X-ray scattering.

Methods: A comprehensive review of studies published over the last decade was done to discuss recent accomplishments and future trends.

Results: Langmuir monolayers represent an adequate model system to assess the effect of gangliosides on membrane structure. Grazing incidence X-ray diffraction reveals a condensation effect by gangliosides on zwitterionic phospholipids with the cooperative packing of sialo- and phosphate groups. In turn, the arrangement of negatively charged lipids in ganglioside mixture remains unchanged due to the stretched conformation of carbohydrate moieties. Upon interaction with biological ligands, such as cholera toxin and galectins, the ganglioside redistribution within the ordered regions of monolayer follows distinct mechanistic patterns. The cholera toxin pentamer attached to the oligosaccharide core induces local transition from oblique to the hexagonal lattice resulting in phase coexistence. The incorporation of the A subunit responsible for endocytosis is further promoted by the acidic environment characteristic for endosomal space. X-ray reflectivity shows in-plane orientation of galectin dimers with the spatial mismatch between the lectin binding sites and ganglioside carbohydrates to perturb ceramide alkyl chains. Recent data also demonstrate sialic acid groups to be potential targets for novel peptide mimicking anticancer therapeutics.

Conclusion: Coupled with surface X-ray scattering, the membrane mimetic approach allows for better understanding the biological role of gangliosides and their potential applications.

Keywords: Gangliosides, Langmuir monolayers, X-ray scattering, lipid membrane, cholera toxin, sialic acid, cancer.

« Previous
[1]
Varki, A.; Cummings, R.D.; Esko, J.D.; Stanley, P.; Hart, G.H.; Aebi, M.; Darvill, A.G.; Kinoshita, T.; Packer, N.H.; Prestegard, J.H.; Schnaar, R.S.; Seeberger, P.H. Ed. 3rd edition. Cold Spring Harbor (NY), Cold Spring Harbor Laboratory 2015-2017.
[2]
Vartabedian, V.F.; Savage, P.B.; Teyton, L. The processing and presentation of lipids and glycolipids to the immune system. Immunol. Rev., 2016, 272(1), 109-119.
[http://dx.doi.org/10.1111/imr.12431] [PMID: 27319346]
[3]
Groux-Degroote, S.; Guérardel, Y.; Delannoy, P. Gangliosides: structures, biosynthesis, analysis, and roles in cancer. ChemBioChem, 2017, 18(13), 1146-1154.
[http://dx.doi.org/10.1002/cbic.201600705] [PMID: 28295942]
[4]
Schauer, R.; Kamerling, J.P. Exploration of the sialic acid world. Adv. Carbohydr. Chem. Biochem., 2018, 75, 1-213.
[http://dx.doi.org/10.1016/bs.accb.2018.09.001] [PMID: 30509400]
[5]
Lewis, A.L.; Desa, N.; Hansen, E.E.; Knirel, Y.A.; Gordon, J.I.; Gagneux, P.; Nizet, V.; Varki, A. Innovations in host and microbial sialic acid biosynthesis revealed by phylogenomic prediction of nonulosonic acid structure. Proc. Natl. Acad. Sci. USA, 2009, 106(32), 13552-13557.
[http://dx.doi.org/10.1073/pnas.0902431106] [PMID: 19666579]
[6]
Kolter, T. Ganglioside biochemistry. ISRN Biochem., 2012.506160
[http://dx.doi.org/10.5402/2012/506160] [PMID: 25969757]
[7]
Cavdarli, S.; Dewald, J.H.; Yamakawa, N.; Guérardel, Y.; Terme, M.; Le Doussal, J.M.; Delannoy, P.; Groux-Degroote, S. Identification of 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac2) as main O-acetylated sialic acid species of GD2 in breast cancer cells. Glycoconj. J., 2019, 36(1), 79-90.
[http://dx.doi.org/10.1007/s10719-018-09856-w] [PMID: 30612272]
[8]
Angata, T.; Varki, A. Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem. Rev., 2002, 102(2), 439-469.
[http://dx.doi.org/10.1021/cr000407m] [PMID: 11841250]
[9]
Hood, D.W.; Cox, A.D.; Gilbert, M.; Makepeace, K.; Walsh, S.; Deadman, M.E.; Cody, A.; Martin, A.; Månsson, M.; Schweda, E.K.H.; Brisson, J.R.; Richards, J.C.; Moxon, E.R.; Wakarchuk, W.W. Identification of a lipopolysaccharide alpha-2,3-sialyltransferase from Haemophilus influenzae. Mol. Microbiol., 2001, 39(2), 341-350.
[http://dx.doi.org/10.1046/j.1365-2958.2001.02204.x] [PMID: 11136455]
[10]
Saito, M.; Kitamura, H.; Sugiyama, K. Occurrence of gangliosides in the common squid and pacific octopus among protostomia. Biochim. Biophys. Acta, 2001, 1511(2), 271-280.
[http://dx.doi.org/10.1016/S0005-2736(01)00282-6] [PMID: 11286970]
[11]
Roth, J.; Kempf, A.; Reuter, G.; Schauer, R.; Gehring, W.J. Occurrence of sialic acids in Drosophila melanogaster. Science, 1992, 256(5057), 673-675.
[http://dx.doi.org/10.1126/science.1585182] [PMID: 1585182]
[12]
Inoue, S.; Sato, C.; Kitajima, K. Extensive enrichment of N-glycolylneuraminic acid in extracellular sialoglycoproteins abundantly synthesized and secreted by human cancer cells. Glycobiology, 2010, 20(6), 752-762.
[http://dx.doi.org/10.1093/glycob/cwq030] [PMID: 20197272]
[13]
Samraj, A.N.; Läubli, H.; Varki, N.; Varki, A. Involvement of a non-human sialic Acid in human cancer. Front. Oncol., 2014, 4, 33.
[http://dx.doi.org/10.3389/fonc.2014.00033] [PMID: 24600589]
[14]
Samraj, A.N.; Pearce, O.M.; Läubli, H.; Crittenden, A.N.; Bergfeld, A.K.; Banda, K.; Gregg, C.J.; Bingman, A.E.; Secrest, P.; Diaz, S.L.; Varki, N.M.; Varki, A. A red meat-derived glycan promotes inflammation and cancer progression. Proc. Natl. Acad. Sci. USA, 2015, 112(2), 542-547.
[http://dx.doi.org/10.1073/pnas.1417508112] [PMID: 25548184]
[15]
Jahan, M.; Wynn, P.C.; Wang, B. Molecular characterization of the level of sialic acids N-acetylneuraminic acid, N-glycolylneuraminic acid, and ketodeoxynonulosonic acid in porcine milk during lactation. J. Dairy Sci., 2016, 99(10), 8431-8442.
[http://dx.doi.org/10.3168/jds.2016-11187] [PMID: 27423948]
[16]
Alviano, C.S.; Travassos, L.R.; Schauer, R. Sialic acids in fungi: a minireview. Glycoconj. J., 1999, 16(9), 545-554.
[http://dx.doi.org/10.1023/A:1007078106280] [PMID: 10815991]
[17]
Soares, R.M.A. de A Soares, R.M.; Alviano, D.S.; Angluster, J.; Alviano, C.S.; Travassos, L.R. Identification of sialic acids on the cell surface of Candida albicans. Biochim. Biophys. Acta, 2000, 1474(2), 262-268.
[http://dx.doi.org/10.1016/S0304-4165(00)00003-9] [PMID: 10742607]
[18]
Watarai, S.; Sugimoto, C.; Hosotani-Kaihara, K.; Kobayashi, K.; Onuma, M.; Lee, J.T.; Kushi, Y.; Handa, S.; Yasuda, T. Isolation and characterization of gangliosides from Theileria sergenti. J. Vet. Med. Sci., 1996, 58(11), 1099-1105.
[http://dx.doi.org/10.1292/jvms.58.11_1099] [PMID: 8959658]
[19]
Altman, M.O.; Gagneux, P. Absence of Neu5Gc and Presence of Anti-Neu5Gc antibodies in humans-an evolutionary perspective. Front. Immunol., 2019, 10, 789.
[http://dx.doi.org/10.3389/fimmu.2019.00789] [PMID: 31134048]
[20]
Irie, A.; Koyama, S.; Kozutsumi, Y.; Kawasaki, T.; Suzuki, A. The molecular basis for the absence of N-glycolylneuraminic acid in humans. J. Biol. Chem., 1998, 273(25), 15866-15871.
[http://dx.doi.org/10.1074/jbc.273.25.15866] [PMID: 9624188]
[21]
Chou, H.H.; Takematsu, H.; Diaz, S.; Iber, J.; Nickerson, E.; Wright, K.L.; Muchmore, E.A.; Nelson, D.L.; Warren, S.T.; Varki, A. A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc. Natl. Acad. Sci. USA, 1998, 95(20), 11751-11756.
[http://dx.doi.org/10.1073/pnas.95.20.11751] [PMID: 9751737]
[22]
Byres, E.; Paton, A.W.; Paton, J.C.; Löfling, J.C.; Smith, D.F.; Wilce, M.C.; Talbot, U.M.; Chong, D.C.; Yu, H.; Huang, S.; Chen, X.; Varki, N.M.; Varki, A.; Rossjohn, J.; Beddoe, T. Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin. Nature, 2008, 456(7222), 648-652.
[http://dx.doi.org/10.1038/nature07428] [PMID: 18971931]
[23]
Maccioni, H.J.; Quiroga, R.; Spessott, W. Organization of the synthesis of glycolipid oligosaccharides in the Golgi complex. FEBS Lett., 2011, 585(11), 1691-1698.
[http://dx.doi.org/10.1016/j.febslet.2011.03.030] [PMID: 21420403]
[24]
Halter, D.; Neumann, S.; van Dijk, S.M.; Wolthoorn, J.; de Mazière, A.M.; Vieira, O.V.; Mattjus, P.; Klumperman, J.; van Meer, G.; Sprong, H. Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J. Cell Biol., 2007, 179(1), 101-115.
[http://dx.doi.org/10.1083/jcb.200704091] [PMID: 17923531]
[25]
Masson, E.A.Y.; Sibille, E.; Martine, L.; Chaux-Picquet, F.; Bretillon, L.; Berdeaux, O. Apprehending ganglioside diversity: a comprehensive methodological approach. J. Lipid Res., 2015, 56(9), 1821-1835.
[http://dx.doi.org/10.1194/jlr.D060764] [PMID: 26142958]
[26]
Moussavou, G.; Kwak, D.H.; Lim, M.U.; Kim, J.S.; Kim, S.U.; Chang, K.T.; Choo, Y.K. Role of gangliosides in the differentiation of human mesenchymal-derived stem cells into osteoblasts and neuronal cells. BMB Rep., 2013, 46(11), 527-532.
[http://dx.doi.org/10.5483/BMBRep.2013.46.11.179] [PMID: 24152915]
[27]
Bergante, S.; Torretta, E.; Creo, P.; Sessarego, N.; Papini, N.; Piccoli, M.; Fania, C.; Cirillo, F.; Conforti, E.; Ghiroldi, A.; Tringali, C.; Venerando, B.; Ibatici, A.; Gelfi, C.; Tettamanti, G.; Anastasia, L. Gangliosides as a potential new class of stem cell markers: the case of GD1a in human bone marrow mesenchymal stem cells. J. Lipid Res., 2014, 55(3), 549-560.
[http://dx.doi.org/10.1194/jlr.M046672] [PMID: 24449473]
[28]
Schnaar, R.L.; Gerardy-Schahn, R.; Hildebrandt, H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol. Rev., 2014, 94(2), 461-518.
[http://dx.doi.org/10.1152/physrev.00033.2013] [PMID: 24692354]
[29]
Palmano, K.; Rowan, A.; Guillermo, R.; Guan, J.; McJarrow, P. The role of gangliosides in neurodevelopment. Nutrients, 2015, 7(5), 3891-3913.
[http://dx.doi.org/10.3390/nu7053891] [PMID: 26007338]
[30]
Juhola, H.; Postila, P.A.; Rissanen, S.; Lolicato, F.; Vattulainen, I.; Róg, T. Negatively charged gangliosides promote membrane association of amphipathic neurotransmitters. negatively charged gangliosides promote membrane association of amphipathic neurotransmitters. Neuroscience, 2018, 384, 214-223.
[http://dx.doi.org/10.1016/j.neuroscience.2018.05.035] [PMID: 29859975]
[31]
Ledeen, R.W.; Wu, G. Ganglioside function in calcium homeostasis and signaling. Neurochem. Res., 2002, 27(7-8), 637-647.
[http://dx.doi.org/10.1023/A:1020224016830] [PMID: 12374199]
[32]
Jiang, L.; Bechtel, M.D.; Bean, J.L.; Winefield, R.; Williams, T.D.; Zaidi, A.; Michaelis, E.K.; Michaelis, M.L. Effects of gangliosides on the activity of the plasma membrane Ca2+-ATPase. Biochim. Biophys. Acta, 2014, 1838(5), 1255-1265.
[http://dx.doi.org/10.1016/j.bbamem.2014.01.003] [PMID: 24434060]
[33]
Wang, B. Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv. Nutr., 2012, 3(3), 465S-472S.
[http://dx.doi.org/10.3945/an.112.001875] [PMID: 22585926]
[34]
Tanaka, Y.; Waki, H.; Kon, K.; Ando, S. Gangliosides enhance KCl-induced Ca2+ influx and acetylcholine release in brain synaptosomes. Neuroreport, 1997, 8(9-10), 2203-2207.
[http://dx.doi.org/10.1097/00001756-199707070-00023] [PMID: 9243612]
[35]
Ledeen, R.W.; Kopitz, J.; Abad-Rodríguez, J.; Gabius, H.J. Glycan chains of gangliosides: functional ligands for tissue lectins (Siglecs/Galectins). Prog. Mol. Biol. Transl. Sci., 2018, 156, 289-324.
[http://dx.doi.org/10.1016/bs.pmbts.2017.12.004] [PMID: 29747818]
[36]
Sasaki, N.; Itakura, Y.; Toyoda, M. Ganglioside GM1 Contributes to the state of insulin resistance in senescent human arterial endothelial cells. J. Biol. Chem., 2015, 290(42), 25475-25486.
[http://dx.doi.org/10.1074/jbc.M115.684274] [PMID: 26338710]
[37]
Lipina, C.; Hundal, H.S. Ganglioside GM3 as a gatekeeper of obesity-associated insulin resistance: evidence and mechanisms. FEBS Lett., 2015, 589(21), 3221-3227.
[http://dx.doi.org/10.1016/j.febslet.2015.09.018] [PMID: 26434718]
[38]
Ji, S.; Ohkawa, Y.; Tokizane, K.; Ohmi, Y.; Banno, R.; Furukawa, K.; Kiyama, H.; Furukawa, K. B-Series gangliosides crucially regulate leptin secretion in adipose tissues. Biochem. Biophys. Res. Commun., 2015, 459(2), 189-195.
[http://dx.doi.org/10.1016/j.bbrc.2015.01.143] [PMID: 25677621]
[39]
Ji, S.; Tokizane, K.; Ohkawa, Y.; Ohmi, Y.; Banno, R.; Okajima, T.; Kiyama, H.; Furukawa, K.; Furukawa, K. Increased a-series gangliosides positively regulate leptin/Ob receptor-mediated signals in hypothalamus of GD3 synthase-deficient mice. Biochem. Biophys. Res. Commun., 2016, 479(3), 453-460.
[http://dx.doi.org/10.1016/j.bbrc.2016.09.077] [PMID: 27644882]
[40]
Inamori, K.I.; Ito, H.; Tamura, Y.; Nitta, T.; Yang, X.; Nihei, W.; Shishido, F.; Imazu, S.; Tsukita, S.; Yamada, T.; Katagiri, H.; Inokuchi, J.I. Deficient ganglioside synthesis restores responsiveness to leptin and melanocortin signaling in obese KKAy mice. J. Lipid Res., 2018, 59(8), 1472-1481.
[http://dx.doi.org/10.1194/jlr.M085753] [PMID: 29880531]
[41]
Prendergast, J.; Umanah, G.K.E.; Yoo, S.W.; Lagerlöf, O.; Motari, M.G.; Cole, R.N.; Huganir, R.L.; Dawson, T.M.; Dawson, V.L.; Schnaar, R.L. Ganglioside regulation of AMPA receptor trafficking. J. Neurosci., 2014, 34(39), 13246-13258.
[http://dx.doi.org/10.1523/JNEUROSCI.1149-14.2014] [PMID: 25253868]
[42]
Palomo, A.G.; Santana, R.B.; Pérez, X.E.; Santana, D.B.; Gabri, M.R.; Monzon, K.L.; Pérez, A.C. Frequent co-expression of EGFR and NeuGcGM3 ganglioside in cancer: it’s potential therapeutic implications. Clin. Exp. Metastasis, 2016, 33(7), 717-725.
[http://dx.doi.org/10.1007/s10585-016-9811-0] [PMID: 27449755]
[43]
Takahashi, M.; Hasegawa, Y.; Gao, C.; Kuroki, Y.; Taniguchi, N. N-glycans of growth factor receptors: their role in receptor function and disease implications. Clin. Sci. (Lond.), 2016, 130(20), 1781-1792.
[http://dx.doi.org/10.1042/CS20160273] [PMID: 27612953]
[44]
Pham, N.D.; Pang, P.C.; Krishnamurthy, S.; Wands, A.M.; Grassi, P.; Dell, A.; Haslam, S.M.; Kohler, J.J. Effects of altered sialic acid biosynthesis on N-linked glycan branching and cell surface interactions. J. Biol. Chem., 2017, 292(23), 9637-9651.
[http://dx.doi.org/10.1074/jbc.M116.764597] [PMID: 28424265]
[45]
Manna, M.; Javanainen, M.; Monne, H.M.; Gabius, H.J.; Rog, T.; Vattulainen, I. Long-chain GM1 gangliosides alter transmembrane domain registration through interdigitation. Biochim. Biophys. Acta Biomembr., 2017, 1859(5), 870-878.
[http://dx.doi.org/10.1016/j.bbamem.2017.01.033] [PMID: 28143757]
[46]
van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol., 2008, 9(2), 112-124.
[http://dx.doi.org/10.1038/nrm2330] [PMID: 18216768]
[47]
Ingólfsson, H.I.; Carpenter, T.S.; Bhatia, H.; Bremer, P.T.; Marrink, S.J.; Lightstone, F.C. Computational lipidomics of the neuronal plasma membrane. Biophys. J., 2017, 113(10), 2271-2280.
[http://dx.doi.org/10.1016/j.bpj.2017.10.017] [PMID: 29113676]
[48]
Schnaar, R.L. Gangliosides of the vertebrate nervous system. J. Mol. Biol., 2016, 428(16), 3325-3336.
[http://dx.doi.org/10.1016/j.jmb.2016.05.020] [PMID: 27261254]
[49]
Levy, M.; Futerman, A.H. Mammalian ceramide synthases. IUBMB Life, 2010, 62(5), 347-356.
[http://dx.doi.org/10.1002/iub.319] [PMID: 20222015]
[50]
Kwak, D.H.; Seo, B.B.; Chang, K.T.; Choo, Y.K. Roles of gangliosides in mouse embryogenesis and embryonic stem cell differentiation. Exp. Mol. Med., 2011, 43(7), 379-388.
[http://dx.doi.org/10.3858/emm.2011.43.7.048] [PMID: 21654188]
[51]
Mlinac, K.; Bognar, S.K. Role of Gangliosides in brain aging and neurodegeneration. Transl. Neurosci., 2010, 1(4), 300-307.
[http://dx.doi.org/10.2478/v10134-010-0043-6]
[52]
Kwak, D.H.; Yu, K.; Kim, S.M.; Lee, D.H.; Kim, S.M.; Jung, J.U.; Seo, J.W.; Kim, N.; Lee, S.; Jung, K.Y.; You, H.K.; Kim, H.A.; Choo, Y.K. Dynamic changes of gangliosides expression during the differentiation of embryonic and mesenchymal stem cells into neural cells. Exp. Mol. Med., 2006, 38(6), 668-676.
[http://dx.doi.org/10.1038/emm.2006.79] [PMID: 17202843]
[53]
Mitchell, M.D.; Henare, K.; Balakrishnan, B.; Lowe, E.; Fong, B.Y.; McJarrow, P. Transfer of gangliosides across the human placenta. Placenta, 2012, 33(4), 312-316.
[http://dx.doi.org/10.1016/j.placenta.2011.12.018] [PMID: 22225907]
[54]
Hungund, B.L.; Morishima, H.O.; Gokhale, V.S.; Cooper, T.B. Placental transfer of (3H)-GM1 and its distribution to maternal and fetal tissues of the rat. Life Sci., 1993, 53(2), 113-119.
[http://dx.doi.org/10.1016/0024-3205(93)90658-P] [PMID: 8515685]
[55]
Rueda, R.; Garcia-Salmerón, J.L.; Maldonado, J.; Gil, A. Changes during lactation in ganglioside distribution in human milk from mothers delivering preterm and term infants. Biol. Chem., 1996, 377(9), 599-601.
[PMID: 9067259]
[56]
Caughlin, S.; Maheshwari, S.; Weishaupt, N.; Yeung, K.K.C.; Cechetto, D.F.; Whitehead, S.N. Age-dependent and regional heterogeneity in the long-chain base of A-series gangliosides observed in the rat brain using MALDI Imaging; Sci Rep-Uk, 2017, p. 7.
[http://dx.doi.org/10.1038/s41598-017-16389-z]
[57]
Sibille, E.; Berdeaux, O.; Martine, L.; Bron, A.M.; Creuzot-Garcher, C.P.; He, Z.; Thuret, G.; Bretillon, L.; Masson, E.A.Y. Ganglioside profiling of the human retina: comparison with other ocular structures, brain and plasma reveals tissue specificities. PLoS One, 2016, 11(12)e0168794
[http://dx.doi.org/10.1371/journal.pone.0168794] [PMID: 27997589]
[58]
Inokuchi, J.I.; Go, S.; Yoshikawa, M.; Strauss, K. Gangliosides and hearing. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(10), 2485-2493.
[http://dx.doi.org/10.1016/j.bbagen.2017.05.025] [PMID: 28571946]
[59]
Bisel, B.; Calamai, M.; Vanzi, F.; Pavone, F.S. Decoupling polarization of the Golgi apparatus and GM1 in the plasma membrane. PLoS One, 2013, 8(12)e80446
[http://dx.doi.org/10.1371/journal.pone.0080446] [PMID: 24312472]
[60]
Roth, J. Polarized distribution of GM1-ganglioside in human duodenal absorptive enterocytes as visualized with cholera toxin-gold complex. Glycoconj. J., 1985, 2(3), 315-321.
[http://dx.doi.org/10.1007/BF01049277]
[61]
Crespo, P.M.; von Muhlinen, N.; Iglesias-Bartolomé, R.; Daniotti, J.L. Complex gangliosides are apically sorted in polarized MDCK cells and internalized by clathrin-independent endocytosis. FEBS J., 2008, 275(23), 6043-6056.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06732.x] [PMID: 19021775]
[62]
van Meer, G.; Simons, K. Lipid polarity and sorting in epithelial cells. J. Cell. Biochem., 1988, 36(1), 51-58.
[http://dx.doi.org/10.1002/jcb.240360106] [PMID: 3277985]
[63]
Rodriguez-Boulan, E.; Kreitzer, G.; Müsch, A. Organization of vesicular trafficking in epithelia. Nat. Rev. Mol. Cell Biol., 2005, 6(3), 233-247.
[http://dx.doi.org/10.1038/nrm1593] [PMID: 15738988]
[64]
Chinnapen, D.J.F.; Hsieh, W.T.; te Welscher, Y.M.; Saslowsky, D.E.; Kaoutzani, L.; Brandsma, E.; D’Auria, L.; Park, H.; Wagner, J.S.; Drake, K.R.; Kang, M.; Benjamin, T.; Ullman, M.D.; Costello, C.E.; Kenworthy, A.K.; Baumgart, T.; Massol, R.H.; Lencer, W.I. Lipid sorting by ceramide structure from plasma membrane to ER for the cholera toxin receptor ganglioside GM1. Dev. Cell, 2012, 23(3), 573-586.
[http://dx.doi.org/10.1016/j.devcel.2012.08.002] [PMID: 22975326]
[65]
Saslowsky, D.E.; te Welscher, Y.M.; Chinnapen, D.J.F.; Wagner, J.S.; Wan, J.; Kern, E.; Lencer, W.I. Ganglioside GM1-mediated transcytosis of cholera toxin bypasses the retrograde pathway and depends on the structure of the ceramide domain. J. Biol. Chem., 2013, 288(36), 25804-25809.
[http://dx.doi.org/10.1074/jbc.M113.474957] [PMID: 23884419]
[66]
Gómez-Móuton, C.; Abad, J.L.; Mira, E.; Lacalle, R.A.; Gallardo, E.; Jiménez-Baranda, S.; Illa, I.; Bernad, A.; Mañes, S.; Martínez-A, C. Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc. Natl. Acad. Sci. USA, 2001, 98(17), 9642-9647.
[http://dx.doi.org/10.1073/pnas.171160298] [PMID: 11493690]
[67]
Daniotti, J.L.; Iglesias-Bartolomé, R. Metabolic pathways and intracellular trafficking of gangliosides. IUBMB Life, 2011, 63(7), 513-520.
[http://dx.doi.org/10.1002/iub.477] [PMID: 21698755]
[68]
Iglesias-Bartolomé, R.; Trenchi, A.; Comín, R.; Moyano, A.L.; Nores, G.A.; Daniotti, J.L. Differential endocytic trafficking of neuropathy-associated antibodies to GM1 ganglioside and cholera toxin in epithelial and neural cells. Biochim. Biophys. Acta, 2009, 1788(12), 2526-2540.
[http://dx.doi.org/10.1016/j.bbamem.2009.09.018] [PMID: 19800863]
[69]
Iglesias-Bartolomé, R.; Crespo, P.M.; Gomez, G.A.; Daniotti, J.L. The antibody to GD3 ganglioside, R24, is rapidly endocytosed and recycled to the plasma membrane via the endocytic recycling compartment. Inhibitory effect of brefeldin A and monensin. FEBS J., 2006, 273(8), 1744-1758.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05194.x] [PMID: 16623710]
[70]
Tettamanti, G. Ganglioside/glycosphingolipid turnover: new concepts. Glycoconj. J., 2004, 20(5), 301-317.
[http://dx.doi.org/10.1023/B:GLYC.0000033627.02765.cc] [PMID: 15229395]
[71]
Sandhoff, K.; Kolter, T. Biosynthesis and degradation of mammalian glycosphingolipids. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2003, 358(1433), 847-861.
[http://dx.doi.org/10.1098/rstb.2003.1265] [PMID: 12803917]
[72]
Birklé, S.; Zeng, G.; Gao, L.; Yu, R.K.; Aubry, J. Role of tumor-associated gangliosides in cancer progression. Biochimie, 2003, 85(3-4), 455-463.
[http://dx.doi.org/10.1016/S0300-9084(03)00006-3] [PMID: 12770784]
[73]
Yu, R.K.; Usuki, S.; Ariga, T. Ganglioside molecular mimicry and its pathological roles in Guillain-Barré syndrome and related diseases. Infect. Immun., 2006, 74(12), 6517-6527.
[http://dx.doi.org/10.1128/IAI.00967-06] [PMID: 16966405]
[74]
Ariga, T.; Wakade, C.; Yu, R.K. The pathological roles of ganglioside metabolism in Alzheimer’s disease: effects of gangliosides on neurogenesis. Int. J. Alzheimers Dis., 2011.2011193618
[http://dx.doi.org/10.4061/2011/193618] [PMID: 21274438]
[75]
Dobrenkov, K.; Ostrovnaya, I.; Gu, J.; Cheung, I.Y.; Cheung, N.K. Oncotargets GD2 and GD3 are highly expressed in sarcomas of children, adolescents, and young adults. Pediatr. Blood Cancer, 2016, 63(10), 1780-1785.
[http://dx.doi.org/10.1002/pbc.26097] [PMID: 27304202]
[76]
Cheresh, D.A.; Pierschbacher, M.D.; Herzig, M.A.; Mujoo, K. Disialogangliosides GD2 and GD3 are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix proteins. J. Cell Biol., 1986, 102(3), 688-696.
[http://dx.doi.org/10.1083/jcb.102.3.688] [PMID: 3005335]
[77]
Furukawa, K.; Hamamura, K.; Ohkawa, Y.; Ohmi, Y.; Furukawa, K. Disialyl gangliosides enhance tumor phenotypes with differential modalities. Glycoconj. J., 2012, 29(8-9), 579-584.
[http://dx.doi.org/10.1007/s10719-012-9423-0] [PMID: 22763744]
[78]
Hettmer, S.; Ladisch, S.; Kaucic, K. Low complex ganglioside expression characterizes human neuroblastoma cell lines. Cancer Lett., 2005, 225(1), 141-149.
[http://dx.doi.org/10.1016/j.canlet.2004.11.036] [PMID: 15922866]
[79]
Liu, Y.; McCarthy, J.; Ladisch, S. Membrane ganglioside enrichment lowers the threshold for vascular endothelial cell angiogenic signaling. Cancer Res., 2006, 66(21), 10408-10414.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1572] [PMID: 17079461]
[80]
Mukherjee, P.; Faber, A.C.; Shelton, L.M.; Baek, R.C.; Chiles, T.C.; Seyfried, T.N. Thematic review series: sphingolipids. Ganglioside GM3 suppresses the proangiogenic effects of vascular endothelial growth factor and ganglioside GD1a. J. Lipid Res., 2008, 49(5), 929-938.
[http://dx.doi.org/10.1194/jlr.R800006-JLR200] [PMID: 18287616]
[81]
Ahmed, M.; Cheung, N.K. Engineering anti-GD2 monoclonal antibodies for cancer immunotherapy. FEBS Lett., 2014, 588(2), 288-297.
[http://dx.doi.org/10.1016/j.febslet.2013.11.030] [PMID: 24295643]
[82]
Ponath, P.; Menezes, D.; Pan, C.; Chen, B.; Oyasu, M.; Strachan, D.; LeBlanc, H.; Sun, H.; Wang, X.T.; Rangan, V.S.; Deshpande, S.; Cristea, S.; Park, K.S.; Sage, J.; Cardarelli, P.M.; Novel, A.A. A novel, fully human anti-fucosyl-gm1 antibody demonstrates potent in vitro and in vivo antitumor activity in preclinical models of small cell lung cancer. Clin. Cancer Res., 2018, 24(20), 5178-5189.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0018] [PMID: 30021910]
[83]
Dhillon, S. Dinutuximab: first global approval. Drugs, 2015, 75(8), 923-927.
[http://dx.doi.org/10.1007/s40265-015-0399-5] [PMID: 25940913]
[84]
Mora, J. Dinutuximab for the treatment of pediatric patients with high-risk neuroblastoma. Expert Rev. Clin. Pharmacol., 2016, 9(5), 647-653.
[http://dx.doi.org/10.1586/17512433.2016.1160775] [PMID: 26934530]
[85]
Keyel, M.E.; Reynolds, C.P. Spotlight on dinutuximab in the treatment of high-risk neuroblastoma: development and place in therapy. Biologics, 2018, 13, 1-12.
[http://dx.doi.org/10.2147/BTT.S114530] [PMID: 30613134]
[86]
Ruggiero, F.M.; Vilcaes, A.A.; Yuki, N.; Daniotti, J.L. Membrane binding, endocytic trafficking and intracellular fate of high-affinity antibodies to gangliosides GD1a and GM1. Biochim. Biophys. Acta Biomembr., 2017, 1859(1), 80-93.
[http://dx.doi.org/10.1016/j.bbamem.2016.10.020] [PMID: 27806911]
[87]
Hitoshi, S.; Kusunoki, S.; Kon, K.; Chiba, A.; Waki, H.; Ando, S.; Kanazawa, I. A novel ganglioside, 9-O-acetyl GD1b, is recognized by serum antibodies in Guillain-Barré syndrome. J. Neuroimmunol., 1996, 66(1-2), 95-101.
[http://dx.doi.org/10.1016/0165-5728(96)00024-0] [PMID: 8964919]
[88]
Kaida, K.; Ariga, T.; Yu, R.K. Antiganglioside antibodies and their pathophysiological effects on Guillain-Barré syndrome and related disorders--a review. Glycobiology, 2009, 19(7), 676-692.
[http://dx.doi.org/10.1093/glycob/cwp027] [PMID: 19240270]
[89]
Anaya, J.M.; Ramirez-Santana, C.; Salgado-Castaneda, I.; Chang, C.; Ansari, A.; Gershwin, M.E. Zika virus and neurologic autoimmunity: the putative role of gangliosides. BMC Med., 2016, 14, 49.
[http://dx.doi.org/10.1186/s12916-016-0601-y] [PMID: 27001187]
[90]
Kaida, K.; Morita, D.; Kanzaki, M.; Kamakura, K.; Motoyoshi, K.; Hirakawa, M.; Kusunoki, S. Ganglioside complexes as new target antigens in Guillain-Barré syndrome. Ann. Neurol., 2004, 56(4), 567-571.
[http://dx.doi.org/10.1002/ana.20222] [PMID: 15389898]
[91]
Viswanathan, K.; Chandrasekaran, A.; Srinivasan, A.; Raman, R.; Sasisekharan, V.; Sasisekharan, R. Glycans as receptors for influenza pathogenesis. Glycoconj. J., 2010, 27(6), 561-570.
[http://dx.doi.org/10.1007/s10719-010-9303-4] [PMID: 20734133]
[92]
Stencel-Baerenwald, J.E.; Reiss, K.; Reiter, D.M.; Stehle, T.; Dermody, T.S. The sweet spot: defining virus-sialic acid interactions. Nat. Rev. Microbiol., 2014, 12(11), 739-749.
[http://dx.doi.org/10.1038/nrmicro3346] [PMID: 25263223]
[93]
Mayr, J.; Lau, K.; Lai, J.C.C.; Gagarinov, I.A.; Shi, Y.; McAtamney, S.; Chan, R.W.Y.; Nicholls, J.; von Itzstein, M.; Haselhorst, T. Unravelling the Role of O-glycans in Influenza A Virus Infection; Sci Rep-Uk, 2018, p. 8.
[94]
Byrd-Leotis, L.; Jia, N.; Dutta, S.; Trost, J.F.; Gao, C.; Cummings, S.F.; Braulke, T.; Müller-Loennies, S.; Heimburg-Molinaro, J.; Steinhauer, D.A.; Cummings, R.D. Influenza binds phosphorylated glycans from human lung. Sci. Adv., 2019, 5(2)eaav2554
[http://dx.doi.org/10.1126/sciadv.aav2554] [PMID: 30788437]
[95]
Byrd-Leotis, L.; Gao, C.; Jia, N.; Mehta, A.Y.; Trost, J.; Cummings, S.F.; Heimburg-Molinaro, J.; Cummings, R.D.; Steinhauer, D.A. Antigenic Pressure on H3N2 Influenza Virus Drift Strains Imposes Constraints on Binding to Sialylated Receptors but Not Phosphorylated Glycans. J. Virol., 2019, 93(22), e01178-e19.
[http://dx.doi.org/10.1128/JVI.01178-19] [PMID: 31484755]
[96]
Vrijens, P.; Noppen, S.; Boogaerts, T.; Vanstreels, E.; Ronca, R.; Chiodelli, P.; Laporte, M.; Vanderlinden, E.; Liekens, S.; Stevaert, A.; Naesens, L. Influenza virus entry via the GM3 ganglioside-mediated platelet-derived growth factor receptor β signalling pathway. J. Gen. Virol., 2019, 100(4), 583-601.
[http://dx.doi.org/10.1099/jgv.0.001235] [PMID: 30762518]
[97]
Martínez, M.A.; López, S.; Arias, C.F.; Isa, P. Gangliosides have a functional role during rotavirus cell entry. J. Virol., 2013, 87(2), 1115-1122.
[http://dx.doi.org/10.1128/JVI.01964-12] [PMID: 23135722]
[98]
Han, L.; Tan, M.; Xia, M.; Kitova, E.N.; Jiang, X.; Klassen, J.S. Gangliosides are ligands for human noroviruses. J. Am. Chem. Soc., 2014, 136(36), 12631-12637.
[http://dx.doi.org/10.1021/ja505272n] [PMID: 25105447]
[99]
Tsai, B.; Gilbert, J.M.; Stehle, T.; Lencer, W.; Benjamin, T.L.; Rapoport, T.A. Gangliosides are receptors for murine polyoma virus and SV40. EMBO J., 2003, 22(17), 4346-4355.
[http://dx.doi.org/10.1093/emboj/cdg439] [PMID: 12941687]
[100]
Low, J.A.; Magnuson, B.; Tsai, B.; Imperiale, M.J. Identification of gangliosides GD1b and GT1b as receptors for BK virus. J. Virol., 2006, 80(3), 1361-1366.
[http://dx.doi.org/10.1128/JVI.80.3.1361-1366.2006] [PMID: 16415013]
[101]
Neu, U.; Woellner, K.; Gauglitz, G.; Stehle, T. Structural basis of GM1 ganglioside recognition by simian virus 40. Proc. Natl. Acad. Sci. USA, 2008, 105(13), 5219-5224.
[http://dx.doi.org/10.1073/pnas.0710301105] [PMID: 18353982]
[102]
Ferreira, L.; Villar, E.; Muñoz-Barroso, I. Gangliosides and N-glycoproteins function as Newcastle disease virus receptors. Int. J. Biochem. Cell Biol., 2004, 36(11), 2344-2356.
[http://dx.doi.org/10.1016/j.biocel.2004.05.011] [PMID: 15313478]
[103]
Cachon-Gonzalez, M.B.; Zaccariotto, E.; Cox, T.M. Genetics and therapies for GM2 gangliosidosis. Curr. Gene Ther., 2018, 18(2), 68-89.
[http://dx.doi.org/10.2174/1566523218666180404162622] [PMID: 29618308]
[104]
Simpson, M.A.; Cross, H.; Proukakis, C.; Priestman, D.A.; Neville, D.C.A.; Reinkensmeier, G.; Wang, H.; Wiznitzer, M.; Gurtz, K.; Verganelaki, A.; Pryde, A.; Patton, M.A.; Dwek, R.A.; Butters, T.D.; Platt, F.M.; Crosby, A.H. Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat. Genet., 2004, 36(11), 1225-1229.
[http://dx.doi.org/10.1038/ng1460] [PMID: 15502825]
[105]
Fragaki, K.; Ait-El-Mkadem, S.; Chaussenot, A.; Gire, C.; Mengual, R.; Bonesso, L.; Bénéteau, M.; Ricci, J.E.; Desquiret-Dumas, V.; Procaccio, V.; Rötig, A.; Paquis-Flucklinger, V. Refractory epilepsy and mitochondrial dysfunction due to GM3 synthase deficiency. Eur. J. Hum. Genet., 2013, 21(5), 528-534.
[http://dx.doi.org/10.1038/ejhg.2012.202] [PMID: 22990144]
[106]
Yamashita, T.; Hashiramoto, A.; Haluzik, M.; Mizukami, H.; Beck, S.; Norton, A.; Kono, M.; Tsuji, S.; Daniotti, J.L.; Werth, N.; Sandhoff, R.; Sandhoff, K.; Proia, R.L. Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc. Natl. Acad. Sci. USA, 2003, 100(6), 3445-3449.
[http://dx.doi.org/10.1073/pnas.0635898100] [PMID: 12629211]
[107]
Matsuzaki, K.; Kato, K.; Yanagisawa, K. Abeta polymerization through interaction with membrane gangliosides. Biochim. Biophys. Acta, 2010, 1801(8), 868-877.
[http://dx.doi.org/10.1016/j.bbalip.2010.01.008] [PMID: 20117237]
[108]
Yanagisawa, K. GM1 ganglioside and Alzheimer’s disease. Glycoconj. J., 2015, 32(3-4), 87-91.
[http://dx.doi.org/10.1007/s10719-015-9579-5] [PMID: 25903682]
[109]
Fukami, Y.; Ariga, T.; Yamada, M.; Yuki, N. Brain gangliosides in Alzheimer’s disease: increased expression of cholinergic neuron-specific gangliosides. Curr. Alzheimer Res., 2017, 14(6), 586-591.
[http://dx.doi.org/10.2174/1567205014666170117094038] [PMID: 28124591]
[110]
Sonnino, S.; Cantu, L.; Corti, M.; Acquotti, D.; Kirschner, G.; Tettamanti, G. Aggregation properties of semisynthetic GM1 ganglioside (II3Neu5AcGgOse4Cer) containing an acetyl group as acyl moiety. Chem. Phys. Lipids, 1990, 56(1), 49-57.
[http://dx.doi.org/10.1016/0009-3084(90)90087-8] [PMID: 2091836]
[111]
Sonnino, S.; Cantu, L.; Acquotti, D.; Corti, M.; Tettamanti, G. Aggregation properties of GM3 ganglioside (II3Neu5AcLacCer) in aqueous solutions. Chem. Phys. Lipids, 1990, 52(3-4), 231-241.
[http://dx.doi.org/10.1016/0009-3084(90)90119-C] [PMID: 2340600]
[112]
Howard, R.E.; Burton, R.M. Studies on the ganglioside micelle. Biochim. Biophys. Acta, 1964, 84, 435-440.
[http://dx.doi.org/10.1016/0926-6542(64)90007-1] [PMID: 14230817]
[113]
Rauvala, H. Monomer-micelle transition of the ganglioside GM1 and the hydrolysis by Clostridium perfringens neuraminidase. Eur. J. Biochem., 1979, 97(2), 555-564.
[http://dx.doi.org/10.1111/j.1432-1033.1979.tb13144.x] [PMID: 467431]
[114]
Gammack, D.B. Physicochemical properties of Ox-Brain gangliosides. Biochem. J., 1963, 88, 373-383.
[http://dx.doi.org/10.1042/bj0880373] [PMID: 14063878]
[115]
Schwarzmann, G. Uptake and metabolism of exogenous glycosphingolipids by cultured cells. Semin. Cell Dev. Biol., 2001, 12(2), 163-171.
[http://dx.doi.org/10.1006/scdb.2000.0233] [PMID: 11292382]
[116]
Formisano, S.; Johnson, M.L.; Lee, G.; Aloj, S.M.; Edelhoch, H. Critical micelle concentrations of gangliosides. Biochemistry, 1979, 18(6), 1119-1124.
[http://dx.doi.org/10.1021/bi00573a028] [PMID: 570850]
[117]
Corti, M.; Degiorgio, V.; Ghidoni, R.; Sonnino, S.; Tettamanti, G. Laser-light scattering investigation of the micellar properties of gangliosides. Chem. Phys. Lipids, 1980, 26(3), 225-238.
[http://dx.doi.org/10.1016/0009-3084(80)90053-5] [PMID: 7371117]
[118]
Smith, R.; Tanford, C. The critical micelle concentration of L- -dipalmitoylphosphatidylcholine in water and water-methanol solutions. J. Mol. Biol., 1972, 67(1), 75-83.
[http://dx.doi.org/10.1016/0022-2836(72)90387-7] [PMID: 5042465]
[119]
Maggio, B. Favorable and unfavorable lateral interactions of ceramide, neutral glycosphingolipids and gangliosides in mixed monolayers. Chem. Phys. Lipids, 2004, 132(2), 209-224.
[http://dx.doi.org/10.1016/j.chemphyslip.2004.07.002] [PMID: 15555606]
[120]
Maggio, B.; Cumar, F.A.; Caputto, R. Surface behaviour of gangliosides and related glycosphingolipids. Biochem. J., 1978, 171(3), 559-565.
[http://dx.doi.org/10.1042/bj1710559] [PMID: 666727]
[121]
Fanani, M.L.; Maggio, B. The many faces (and phases) of ceramide and sphingomyelin II - binary mixtures. Biophys. Rev., 2017, 9(5), 601-616.
[http://dx.doi.org/10.1007/s12551-017-0298-y] [PMID: 28823080]
[122]
Bach, D.; Sela, B.; Miller, I.R. Compositional aspects of lipid hydration. Chem. Phys. Lipids, 1982, 31(4), 381-394.
[http://dx.doi.org/10.1016/0009-3084(82)90073-1] [PMID: 6897624]
[123]
Maggio, B.; Ariga, T.; Sturtevant, J.M.; Yu, R.K. Thermotropic behavior of glycosphingolipids in aqueous dispersions. Biochemistry, 1985, 24(5), 1084-1092.
[http://dx.doi.org/10.1021/bi00326a003] [PMID: 4096890]
[124]
Carrer, D.C.; Maggio, B. Transduction to self-assembly of molecular geometry and local interactions in mixtures of ceramides and ganglioside GM1. Biochim. Biophys. Acta, 2001, 1514(1), 87-99.
[http://dx.doi.org/10.1016/S0005-2736(01)00366-2] [PMID: 11513807]
[125]
Maggio, B.; Ariga, T.; Calderón, R.O.; Yu, R.K. Ganglioside GD3 and GD3-lactone mediated regulation of the intermolecular organization in mixed monolayers with dipalmitoylphosphatidylcholine. Chem. Phys. Lipids, 1997, 90(1-2), 1-10.
[http://dx.doi.org/10.1016/S0009-3084(97)00090-X] [PMID: 9450321]
[126]
Rosetti, C.M.; Oliveira, R.G.; Maggio, B. Reflectance and topography of glycosphingolipid monolayers at the air-water interface. Langmuir, 2003, 19(2), 377-384.
[http://dx.doi.org/10.1021/la026370d]
[127]
Rosetti, C.M.; Oliveira, R.G.; Maggio, B. The Folch-Lees proteolipid induces phase coexistence and transverse reorganization of lateral domains in myelin monolayers. Biochim. Biophys. Acta, 2005, 1668(1), 75-86.
[http://dx.doi.org/10.1016/j.bbamem.2004.11.009] [PMID: 15670733]
[128]
Oliveira, R.G.; Maggio, B. Epifluorescence microscopy of surface domain microheterogeneity in myelin monolayers at the air-water interface. Neurochem. Res., 2000, 25(1), 77-86.
[http://dx.doi.org/10.1023/A:1007591516539] [PMID: 10685607]
[129]
Oliveira, R.G.; Maggio, B. Compositional domain immiscibility in whole myelin monolayers at the air-water interface and Langmuir-Blodgett films. Biochim. Biophys. Acta, 2002, 1561(2), 238-250.
[http://dx.doi.org/10.1016/S0005-2736(02)00350-4] [PMID: 11997124]
[130]
Kahya, N.; Scherfeld, D.; Schwille, P. Differential lipid packing abilities and dynamics in giant unilamellar vesicles composed of short-chain saturated glycerol-phospholipids, sphingomyelin and cholesterol. Chem. Phys. Lipids, 2005, 135(2), 169-180.
[http://dx.doi.org/10.1016/j.chemphyslip.2005.02.013] [PMID: 15869751]
[131]
Mombelli, E.; Morris, R.; Taylor, W.; Fraternali, F. Hydrogen-bonding propensities of sphingomyelin in solution and in a bilayer assembly: a molecular dynamics study. Biophys. J., 2003, 84(3), 1507-1517.
[http://dx.doi.org/10.1016/S0006-3495(03)74963-7] [PMID: 12609857]
[132]
Pascher, I. Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim. Biophys. Acta, 1976, 455(2), 433-451.
[http://dx.doi.org/10.1016/0005-2736(76)90316-3] [PMID: 999922]
[133]
Sonnino, S.; Chiricozzi, E.; Grassi, S.; Mauri, L.; Prioni, S.; Prinetti, A. Gangliosides in membrane organization. Prog. Mol. Biol. Transl. Sci., 2018, 156, 83-120.
[http://dx.doi.org/10.1016/bs.pmbts.2017.12.007] [PMID: 29747825]
[134]
Simons, K.; Ikonen, E. Functional rafts in cell membranes. Nature, 1997, 387(6633), 569-572.
[http://dx.doi.org/10.1038/42408] [PMID: 9177342]
[135]
Yuan, C.; Furlong, J.; Burgos, P.; Johnston, L.J. The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes. Biophys. J., 2002, 82(5), 2526-2535.
[http://dx.doi.org/10.1016/S0006-3495(02)75596-3] [PMID: 11964241]
[136]
Lingwood, D.; Ries, J.; Schwille, P.; Simons, K. Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc. Natl. Acad. Sci. USA, 2008, 105(29), 10005-10010.
[http://dx.doi.org/10.1073/pnas.0804374105] [PMID: 18621689]
[137]
Bi, J.; Wang, R.; Zeng, X. Lipid rafts regulate the lamellipodia formation of melanoma A375 cells via actin cytoskeleton-mediated recruitment of β1 and β3 integrin. Oncol. Lett., 2018, 16(5), 6540-6546.
[http://dx.doi.org/10.3892/ol.2018.9466] [PMID: 30405793]
[138]
Nagafuku, M.; Okuyama, K.; Onimaru, Y.; Suzuki, A.; Odagiri, Y.; Yamashita, T.; Iwasaki, K.; Fujiwara, M.; Takayanagi, M.; Ohno, I.; Inokuchi, J. CD4 and CD8 T cells require different membrane gangliosides for activation. Proc. Natl. Acad. Sci. USA, 2012, 109(6), E336-E342.
[http://dx.doi.org/10.1073/pnas.1114965109] [PMID: 22308377]
[139]
Iwabuchi, K. Gangliosides in the immune system: role of glycosphingolipids and glycosphingolipid-enriched lipid rafts in immunological functions. Methods Mol. Biol., 2018, 1804, 83-95.
[http://dx.doi.org/10.1007/978-1-4939-8552-4_4] [PMID: 29926405]
[140]
Suzuki, K.G.N.; Ando, H.; Komura, N.; Fujiwara, T.; Kiso, M.; Kusumi, A. Unraveling of lipid raft organization in cell plasma membranes by single-molecule imaging of ganglioside probes. unraveling of lipid raft organization in cell plasma membranes by single-molecule imaging of ganglioside probes. Adv. Exp. Med. Biol., 2018, 1104, 41-58.
[http://dx.doi.org/10.1007/978-981-13-2158-0_3] [PMID: 30484243]
[141]
Kakio, A.; Nishimoto, S.; Yanagisawa, K.; Kozutsumi, Y.; Matsuzaki, K. Interactions of amyloid beta-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry, 2002, 41(23), 7385-7390.
[http://dx.doi.org/10.1021/bi0255874] [PMID: 12044171]
[142]
Liu, L.; Zhang, K.; Tan, L.; Chen, Y.H.; Cao, Y.P. Alterations in cholesterol and ganglioside GM1 content of lipid rafts in platelets from patients with Alzheimer disease. Alzheimer Dis. Assoc. Disord., 2015, 29(1), 63-69.
[http://dx.doi.org/10.1097/WAD.0000000000000041] [PMID: 24759545]
[143]
Botto, L.; Cunati, D.; Coco, S.; Sesana, S.; Bulbarelli, A.; Biasini, E.; Colombo, L.; Negro, A.; Chiesa, R.; Masserini, M.; Palestini, P. Role of lipid rafts and GM1 in the segregation and processing of prion protein. PLoS One, 2014, 9(5)e98344
[http://dx.doi.org/10.1371/journal.pone.0098344] [PMID: 24859148]
[144]
Lin, B.J.; Tsao, S.H.; Chen, A.; Hu, S.K.; Chao, L.; Chao, P.G. Lipid rafts sense and direct electric field-induced migration. Proc. Natl. Acad. Sci. USA, 2017, 114(32), 8568-8573.
[http://dx.doi.org/10.1073/pnas.1702526114] [PMID: 28739955]
[145]
Nores, G.A.; Dohi, T.; Taniguchi, M.; Hakomori, S. Density-dependent recognition of cell surface GM3 by a certain anti-melanoma antibody, and GM3 lactone as a possible immunogen: requirements for tumor-associated antigen and immunogen. J. Immunol., 1987, 139(9), 3171-3176.
[PMID: 3668254]
[146]
Simons, K.; Sampaio, J.L. Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol., 2011, 3(10)a004697
[http://dx.doi.org/10.1101/cshperspect.a004697] [PMID: 21628426]
[147]
Chan, Y.H.M.; Boxer, S.G. Model membrane systems and their applications. Curr. Opin. Chem. Biol., 2007, 11(6), 581-587.
[http://dx.doi.org/10.1016/j.cbpa.2007.09.020] [PMID: 17976391]
[148]
Brockman, H. Lipid monolayers: why use half a membrane to characterize protein-membrane interactions? Curr. Opin. Struct. Biol., 1999, 9(4), 438-443.
[http://dx.doi.org/10.1016/S0959-440X(99)80061-X] [PMID: 10449364]
[149]
Richter, R.P.; Bérat, R.; Brisson, A.R. Formation of solid-supported lipid bilayers: an integrated view. Langmuir, 2006, 22(8), 3497-3505.
[http://dx.doi.org/10.1021/la052687c] [PMID: 16584220]
[150]
Majewski, J.; Wong, J.Y.; Park, C.K.; Seitz, M.; Israelachvili, J.N.; Smith, G.S. Structural studies of polymer-cushioned lipid bilayers. Biophys. J., 1998, 75(5), 2363-2367.
[http://dx.doi.org/10.1016/S0006-3495(98)77680-5] [PMID: 9788931]
[151]
Wagner, M.L.; Tamm, L.K. Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophys. J., 2000, 79(3), 1400-1414.
[http://dx.doi.org/10.1016/S0006-3495(00)76392-2] [PMID: 10969002]
[152]
Borch, J.; Torta, F.; Sligar, S.G.; Roepstorff, P. Nanodiscs for immobilization of lipid bilayers and membrane receptors: kinetic analysis of cholera toxin binding to a glycolipid receptor. Anal. Chem., 2008, 80(16), 6245-6252.
[http://dx.doi.org/10.1021/ac8000644] [PMID: 18616345]
[153]
Tark, S.H.; Das, A.; Sligar, S.; Dravid, V.P. Nanomechanical detection of cholera toxin using microcantilevers functionalized with ganglioside nanodiscs. Nanotechnology, 2010, 21(43)435502
[http://dx.doi.org/10.1088/0957-4484/21/43/435502] [PMID: 20890017]
[154]
Hirai, M.; Iwase, H.; Hayakawa, T.; Koizumi, M.; Takahashi, H. Determination of asymmetric structure of ganglioside-DPPC mixed vesicle using SANS, SAXS, and DLS. Biophys. J., 2003, 85(3), 1600-1610.
[http://dx.doi.org/10.1016/S0006-3495(03)74591-3] [PMID: 12944276]
[155]
McIntosh, T.J.; Simon, S.A. Long- and short-range interactions between phospholipid/ganglioside GM1 bilayers. Biochemistry, 1994, 33(34), 10477-10486.
[http://dx.doi.org/10.1021/bi00200a032] [PMID: 8068686]
[156]
Cantu, L.; Corti, M.; Del Favero, E.; Dubois, M.; Zemb, T.N. Combined small-angle X-ray and neutron scattering experiments for thickness characterization of ganglioside bilayers. J. Phys. Chem. B, 1998, 102(30), 5737-5743.
[http://dx.doi.org/10.1021/jp972341d]
[157]
Langmuir, I. The constitution and fundamental properties of solids and liquids. II. liquids.1. J. Am. Chem. Soc., 1917, 39(9), 1848-1906.
[http://dx.doi.org/10.1021/ja02254a006]
[158]
Maget-Dana, R. The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. Biochim. Biophys. Acta, 1999, 1462(1-2), 109-140.
[http://dx.doi.org/10.1016/S0005-2736(99)00203-5] [PMID: 10590305]
[159]
Gaines, G.L. Thermodynamic relationships for mixed insoluble monolayers. J. Colloid Interface Sci., 1966, 21(3), 315.
[http://dx.doi.org/10.1016/0095-8522(66)90015-8]
[160]
Marsh, D. Lateral pressure in membranes. Biochim. Biophys. Acta, 1996, 1286(3), 183-223.
[http://dx.doi.org/10.1016/S0304-4157(96)00009-3] [PMID: 8982283]
[161]
Maggio, B.; Cumar, F.A.; Caputto, R. Molecular behaviour of glycosphingolipids in interfaces. Possible participation in some properties of nerve membranes. Biochim. Biophys. Acta, 1981, 650(2-3), 69-87.
[http://dx.doi.org/10.1016/0304-4157(81)90001-0] [PMID: 7037053]
[162]
Maggio, B. The surface behavior of glycosphingolipids in biomembranes: a new frontier of molecular ecology. Prog. Biophys. Mol. Biol., 1994, 62(1), 55-117.
[http://dx.doi.org/10.1016/0079-6107(94)90006-X] [PMID: 8085016]
[163]
Kjaer, K.; Alsnielsen, J.; Helm, C.A.; Tippmankrayer, P.; Mohwald, H. Synchrotron X-ray-diffraction and reflection studies of arachidic acid monolayers at the air-water-interface. J Phys Chem-Us, 1989, 93(8), 3200-3206.
[http://dx.doi.org/10.1021/j100345a063]
[164]
Alsnielsen, J.; Jacquemain, D.; Kjaer, K.; Leveiller, F.; Lahav, M.; Leiserowitz, L. Principles and applications of grazing-incidence X-ray and neutron-scattering from ordered molecular monolayers at the air-water-interface. Phys. Rep., 1994, 246(5), 252-313.
[165]
Kjaer, K.; Als-Nielsen, J.; Helm, C.A.; Laxhuber, L.A.; Möhwald, H. Ordering in lipid monolayers studied by synchrotron x-ray diffraction and fluorescence microscopy. Phys. Rev. Lett., 1987, 58(21), 2224-2227.
[http://dx.doi.org/10.1103/PhysRevLett.58.2224] [PMID: 10034685]
[166]
Brezesinski, G.; Möhwald, H. Langmuir monolayers to study interactions at model membrane surfaces. Adv. Colloid Interface Sci., 2003, 100-102, 563-584.
[http://dx.doi.org/10.1016/S0001-8686(02)00071-4] [PMID: 12668338]
[167]
Koch, M.H.J.; Bordas, J. X-ray diffraction and scattering on disordered systems using synchrotron radiation. Nucl. Instrum. Methods Phys. Res., 1983, 208(1), 461-469.
[http://dx.doi.org/10.1016/0167-5087(83)91169-9]
[168]
Andreev, K.; Martynowycz, M.W.; Gidalevitz, D. Peptoid drug discovery and optimization via surface X-ray scattering. Biopolymers, 2019, 110(6)e23274
[http://dx.doi.org/10.1002/bip.23274] [PMID: 30892696]
[169]
Eisenberger, P.; Marra, W.C. X-Ray-Diffraction Study of the Ge(001) Reconstructed Surface. Phys. Rev. Lett., 1981, 46(16), 1081-1084.
[http://dx.doi.org/10.1103/PhysRevLett.46.1081]
[170]
Kaganer, V.M.; Mohwald, H.; Dutta, P. Structure and phase transitions in Langmuir monolayers. Rev. Mod. Phys., 1999, 71(3), 779-819.
[http://dx.doi.org/10.1103/RevModPhys.71.779]
[171]
Miller, C.E.; Majewski, J.; Watkins, E.B.; Kuhl, T.L.; Part, I. Part I: an x-ray scattering study of cholera toxin penetration and induced phase transformations in lipid membranes. Biophys. J., 2008, 95(2), 629-640.
[http://dx.doi.org/10.1529/biophysj.107.120725] [PMID: 18359802]
[172]
Lundquist, M. Molecular arrangement in condensed monolayer phases. Prog. Chem. Fats Other Lipids, 1978, 16, 101-124.
[http://dx.doi.org/10.1016/0079-6832(78)90038-1] [PMID: 358259]
[173]
Tippmannkrayer, P.; Mohwald, H. Precise determination of tilt angles by X-ray-diffraction and reflection with arachidic acid monolayers. Langmuir, 1991, 7(10), 2303-2306.
[http://dx.doi.org/10.1021/la00058a054]
[174]
Nobre, T.M.; Martynowycz, M.W.; Andreev, K.; Kuzmenko, I.; Nikaido, H.; Gidalevitz, D. Modification of salmonella lipopolysaccharides prevents the outer membrane penetration of Novobiocin. Biophys. J., 2015, 109(12), 2537-2545.
[http://dx.doi.org/10.1016/j.bpj.2015.10.013] [PMID: 26682812]
[175]
Martynowycz, M.W.; Rice, A.; Andreev, K.; Nobre, T.M.; Kuzmenko, I.; Wereszczynski, J.; Gidalevitz, D. Salmonella membrane structural remodeling increases resistance to antimicrobial peptide LL-37. ACS Infect. Dis., 2019, 5(7), 1214-1222.
[http://dx.doi.org/10.1021/acsinfecdis.9b00066] [PMID: 31083918]
[176]
Ivankin, A.; Apellániz, B.; Gidalevitz, D.; Nieva, J.L. Mechanism of membrane perturbation by the HIV-1 gp41 membrane-proximal external region and its modulation by cholesterol. Biochim. Biophys. Acta, 2012, 1818(11), 2521-2528.
[http://dx.doi.org/10.1016/j.bbamem.2012.06.002] [PMID: 22692008]
[177]
Andreev, K.; Bianchi, C.; Laursen, J.S.; Citterio, L.; Hein-Kristensen, L.; Gram, L.; Kuzmenko, I.; Olsen, C.A.; Gidalevitz, D. Guanidino groups greatly enhance the action of antimicrobial peptidomimetics against bacterial cytoplasmic membranes. Biochim. Biophys. Acta, 2014, 1838(10), 2492-2502.
[http://dx.doi.org/10.1016/j.bbamem.2014.05.022] [PMID: 24878450]
[178]
Andreev, K.; Martynowycz, M.W.; Ivankin, A.; Huang, M.L.; Kuzmenko, I.; Meron, M.; Lin, B.; Kirshenbaum, K.; Gidalevitz, D. Cyclization improves membrane permeation by antimicrobial peptoids. Langmuir, 2016, 32(48), 12905-12913.
[http://dx.doi.org/10.1021/acs.langmuir.6b03477] [PMID: 27793068]
[179]
Andreev, K.; Martynowycz, M.W.; Huang, M.L.; Kuzmenko, I.; Bu, W.; Kirshenbaum, K.; Gidalevitz, D. Hydrophobic interactions modulate antimicrobial peptoid selectivity towards anionic lipid membranes. Biochim. Biophys. Acta Biomembr., 2018, 1860(6), 1414-1423.
[http://dx.doi.org/10.1016/j.bbamem.2018.03.021] [PMID: 29621496]
[180]
Vineyard, G.H. Grazing-incidence diffraction and the distorted-wave approximation for the study of surfaces. Phys. Rev. B Condens. Matter, 1982, 26(8), 4146-4159.
[http://dx.doi.org/10.1103/PhysRevB.26.4146]
[181]
Majewski, J.; Kuhl, T.L.; Kjaer, K.; Smith, G.S. Packing of ganglioside-phospholipid monolayers: an x-ray diffraction and reflectivity study. Biophys. J., 2001, 81(5), 2707-2715.
[http://dx.doi.org/10.1016/S0006-3495(01)75913-9] [PMID: 11606283]
[182]
Scheffer, L.; Solomonov, I.; Weygand, M.J.; Kjaer, K.; Leiserowitz, L.; Addadi, L. Structure of cholesterol/ceramide monolayer mixtures: implications to the molecular organization of lipid rafts. Biophys. J., 2005, 88(5), 3381-3391.
[http://dx.doi.org/10.1529/biophysj.104.051870] [PMID: 15722431]
[183]
Frey, S.L.; Chi, E.Y.; Arratia, C.; Majewski, J.; Kjaer, K.; Lee, K.Y. Condensing and fluidizing effects of ganglioside GM1 on phospholipid films. Biophys. J., 2008, 94(8), 3047-3064.
[http://dx.doi.org/10.1529/biophysj.107.119990] [PMID: 18192361]
[184]
Miller, C.E.; Busath, D.D.; Strongin, B.; Majewski, J. Integration of ganglioside GT1b receptor into DPPE and DPPC phospholipid monolayers: an X-ray reflectivity and grazing-incidence diffraction study. Biophys. J., 2008, 95(7), 3278-3286.
[http://dx.doi.org/10.1529/biophysj.107.128538] [PMID: 18599631]
[185]
Watkins, E.B.; Gao, H.; Dennison, A.J.C.; Chopin, N.; Struth, B.; Arnold, T.; Florent, J.C.; Johannes, L. Carbohydrate conformation and lipid condensation in monolayers containing glycosphingolipid Gb3: influence of acyl chain structure. Biophys. J., 2014, 107(5), 1146-1155.
[http://dx.doi.org/10.1016/j.bpj.2014.07.023] [PMID: 25185550]
[186]
Watkins, E.B.; Frey, S.L.; Chi, E.Y.; Cao, K.D.; Pacuszka, T.; Majewski, J.; Lee, K.Y.C. Enhanced ordering in monolayers containing glycosphingolipids: impact of carbohydrate structure. Biophys. J., 2018, 114(5), 1103-1115.
[http://dx.doi.org/10.1016/j.bpj.2017.12.044] [PMID: 29539397]
[187]
Sánchez, J.; Holmgren, J. Cholera toxin structure, gene regulation and pathophysiological and immunological aspects. Cell. Mol. Life Sci., 2008, 65(9), 1347-1360.
[http://dx.doi.org/10.1007/s00018-008-7496-5] [PMID: 18278577]
[188]
Cuatrecasas, P. Gangliosides and membrane receptors for cholera toxin. Biochemistry, 1973, 12(18), 3558-3566.
[http://dx.doi.org/10.1021/bi00742a032]
[189]
De Haan, L.; Hirst, T.R. Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms. (Review) Mol. Membr. Biol., 2004, 21(2), 77-92.
[http://dx.doi.org/10.1080/09687680410001663267] [PMID: 15204437]
[190]
Holmgren, J.; Lönnroth, I.; Månsson, J.; Svennerholm, L. Interaction of cholera toxin and membrane GM1 ganglioside of small intestine. Proc. Natl. Acad. Sci. USA, 1975, 72(7), 2520-2524.
[http://dx.doi.org/10.1073/pnas.72.7.2520] [PMID: 1058471]
[191]
Yu, R.K.; Usuki, S.; Itokazu, Y.; Wu, H.C. Novel GM1 ganglioside-like peptide mimics prevent the association of cholera toxin to human intestinal epithelial cells in vitro. Glycobiology, 2016, 26(1), 63-73.
[http://dx.doi.org/10.1093/glycob/cwv080] [PMID: 26405107 ]
[192]
Jobling, M.G.; Yang, Z.; Kam, W.R.; Lencer, W.I.; Holmes, R.K. A single native ganglioside GM1-binding site is sufficient for cholera toxin to bind to cells and complete the intoxication pathway. MBio, 2012, 3(6), e00401-e00412.
[http://dx.doi.org/10.1128/mBio.00401-12] [PMID: 23111873]
[193]
Basu, I.; Mukhopadhyay, C. Insights into binding of cholera toxin to GM1 containing membrane. Langmuir, 2014, 30(50), 15244-15252.
[http://dx.doi.org/10.1021/la5036618] [PMID: 25425333]
[194]
Aman, A.T.; Fraser, S.; Merritt, E.A.; Rodigherio, C.; Kenny, M.; Ahn, M.; Hol, W.G.J.; Williams, N.A.; Lencer, W.I.; Hirst, T.R. A mutant cholera toxin B subunit that binds GM1- ganglioside but lacks immunomodulatory or toxic activity. Proc. Natl. Acad. Sci. USA, 2001, 98(15), 8536-8541.
[http://dx.doi.org/10.1073/pnas.161273098] [PMID: 11447291]
[195]
Miller, C.E.; Majewski, J.; Kjaer, K.; Weygand, M.; Faller, R.; Satija, S.; Kuhl, T.L. Neutron and X-ray scattering studies of cholera toxin interactions with lipid monolayers at the air-liquid interface. Colloids Surf. B Biointerfaces, 2005, 40(3-4), 159-163.
[http://dx.doi.org/10.1016/j.colsurfb.2004.10.009] [PMID: 15708506]
[196]
Miller, C.E.; Majewski, J.; Faller, R.; Satija, S.; Kuhl, T.L. Cholera toxin assault on lipid monolayers containing ganglioside GM1. Biophys. J., 2004, 86(6), 3700-3708.
[http://dx.doi.org/10.1529/biophysj.103.032508] [PMID: 15189866]
[197]
Miller, C.E.; Majewski, J.; Watkins, E.B.; Weygand, M.; Kuhl, T.L.; Part, I.I. Part II: diffraction from two-dimensional cholera toxin crystals bound to their receptors in a lipid monolayer. Biophys. J., 2008, 95(2), 641-647.
[http://dx.doi.org/10.1529/biophysj.107.120808] [PMID: 18359801]
[198]
Maggio, B.; Bianco, I.D.; Montich, G.G.; Fidelio, G.D.; Yu, R.K. Regulation by gangliosides and sulfatides of phospholipase A2 activity against dipalmitoyl- and dilauroylphosphatidylcholine in small unilamellar bilayer vesicles and mixed monolayers. Biochim. Biophys. Acta, 1994, 1190(1), 137-148.
[http://dx.doi.org/10.1016/0005-2736(94)90043-4] [PMID: 8110807]
[199]
Perillo, M.A.; Guidotti, A.; Costa, E.; Yu, R.K.; Maggio, B. Modulation of phospholipases A2 and C activities against dilauroylphosphorylcholine in mixed monolayers with semisynthetic derivatives of ganglioside and sphingosine. Mol. Membr. Biol., 1994, 11(2), 119-126.
[http://dx.doi.org/10.3109/09687689409162229] [PMID: 7920864]
[200]
Perillo, M.A.; Yu, R.K.; Maggio, B. Modulation of the activity of Clostridium perfringens neuraminidase by the molecular organization of gangliosides in monolayers. Biochim. Biophys. Acta, 1994, 1193(1), 155-164.
[http://dx.doi.org/10.1016/0005-2736(94)90345-X] [PMID: 8038186]
[201]
Camby, I.; Le Mercier, M.; Lefranc, F.; Kiss, R. Galectin-1: a small protein with major functions. Glycobiology, 2006, 16(11), 137R-157R.
[http://dx.doi.org/10.1093/glycob/cwl025] [PMID: 16840800]
[202]
Majewski, J.; André, S.; Jones, E.; Chi, E.; Gabius, H.J. X-ray reflectivity and grazing incidence diffraction studies of interaction between human adhesion/growth-regulatory galectin-1 and DPPE-GM1 lipid monolayer at an air/water interface. Biochemistry (Mosc.), 2015, 80(7), 943-956.
[http://dx.doi.org/10.1134/S0006297915070135] [PMID: 26542007]
[203]
Kopitz, J.; Ballikaya, S.; André, S.; Gabius, H.J. Ganglioside GM1/galectin-dependent growth regulation in human neuroblastoma cells: special properties of bivalent galectin-4 and significance of linker length for ligand selection. Neurochem. Res., 2012, 37(6), 1267-1276.
[http://dx.doi.org/10.1007/s11064-011-0693-x] [PMID: 22234579]
[204]
Ludwig, A.K.; Michalak, M.; Xiao, Q.; Gilles, U.; Medrano, F.J.; Ma, H.; FitzGerald, F.G.; Hasley, W.D.; Melendez-Davila, A.; Liu, M.; Rahimi, K.; Kostina, N.Y.; Rodriguez-Emmenegger, C.; Möller, M.; Lindner, I.; Kaltner, H.; Cudic, M.; Reusch, D.; Kopitz, J.; Romero, A.; Oscarson, S.; Klein, M.L.; Gabius, H.J.; Percec, V. Design-functionality relationships for adhesion/growth-regulatory galectins. Proc. Natl. Acad. Sci. USA, 2019, 116(8), 2837-2842.
[http://dx.doi.org/10.1073/pnas.1813515116] [PMID: 30718416]
[205]
Kopitz, J.; von Reitzenstein, C.; Burchert, M.; Cantz, M.; Gabius, H.J. Galectin-1 is a major receptor for ganglioside GM1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture. J. Biol. Chem., 1998, 273(18), 11205-11211.
[http://dx.doi.org/10.1074/jbc.273.18.11205] [PMID: 9556610]
[206]
Gabius, H.J.; Manning, J.C.; Kopitz, J.; André, S.; Kaltner, H. Sweet complementarity: the functional pairing of glycans with lectins. Cell. Mol. Life Sci., 2016, 73(10), 1989-2016.
[http://dx.doi.org/10.1007/s00018-016-2163-8] [PMID: 26956894]
[207]
Rodi, P.M.; Maggio, B.; Bagatolli, L.A. Direct visualization of the lateral structure of giant vesicles composed of pseudo-binary mixtures of sulfatide, asialo-GM1 and GM1 with POPC. Biochim. Biophys. Acta Biomembr., 2018, 1860(2), 544-555.
[http://dx.doi.org/10.1016/j.bbamem.2017.10.022] [PMID: 29106974]
[208]
Dasgupta, R.; Miettinen, M.S.; Fricke, N.; Lipowsky, R.; Dimova, R. The glycolipid GM1 reshapes asymmetric biomembranes and giant vesicles by curvature generation. Proc. Natl. Acad. Sci. USA, 2018, 115(22), 5756-5761.
[http://dx.doi.org/10.1073/pnas.1722320115] [PMID: 29760097]
[209]
Patel, D.S.; Park, S.; Wu, E.L.; Yeom, M.S.; Widmalm, G.; Klauda, J.B. Im, W. Influence of ganglioside GM1 concentration on lipid clustering and membrane Properties and Curvature. Biophys. J., 2016, 111(9), 1987-1999.
[http://dx.doi.org/10.1016/j.bpj.2016.09.021] [PMID: 27806280]
[210]
Kopitz, J.; Bergmann, M.; Gabius, H.J. How adhesion/growth-regulatory galectins-1 and -3 attain cell specificity: case study defining their target on neuroblastoma cells (SK-N-MC) and marked affinity regulation by affecting microdomain organization of the membrane. IUBMB Life, 2010, 62(8), 624-628.
[http://dx.doi.org/10.1002/iub.358] [PMID: 20665623]
[211]
Mori, K.; Mahmood, M.I.; Neya, S.; Matsuzaki, K.; Hoshino, T. Formation of GM1 ganglioside clusters on the lipid membrane containing sphingomyeline and cholesterol. J. Phys. Chem. B, 2012, 116(17), 5111-5121.
[http://dx.doi.org/10.1021/jp207881k] [PMID: 22494278]
[212]
Ingólfsson, H.I.; Melo, M.N.; van Eerden, F.J.; Arnarez, C.; Lopez, C.A.; Wassenaar, T.A.; Periole, X.; de Vries, A.H.; Tieleman, D.P.; Marrink, S.J. Lipid organization of the plasma membrane. J. Am. Chem. Soc., 2014, 136(41), 14554-14559.
[http://dx.doi.org/10.1021/ja507832e] [PMID: 25229711]
[213]
Lukyanov, P.; Furtak, V.; Ochieng, J. Galectin-3 interacts with membrane lipids and penetrates the lipid bilayer. Biochem. Biophys. Res. Commun., 2005, 338(2), 1031-1036.
[http://dx.doi.org/10.1016/j.bbrc.2005.10.033] [PMID: 16248982]
[214]
Andreev, K.; Martynowycz, M.W.; Lingaraju, M.; Bianchi, C.; Mor, A.; Gidalevitz, D. Antimicrobial peptidomimetics with activity towards cancer cells. Biophys. J., 2019, 116(3)(Suppl. 1), 86a.
[http://dx.doi.org/10.1016/j.bpj.2018.11.505]
[215]
Held-Kuznetsov, V.; Rotem, S.; Assaraf, Y.G.; Mor, A. Host-defense peptide mimicry for novel antitumor agents. FASEB J., 2009, 23(12), 4299-4307.
[http://dx.doi.org/10.1096/fj.09-136358] [PMID: 19706728]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy