Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

不同的Aβ聚集体作为抗原对IVIG中天然存在的针对淀粉样β40/ 42的自身抗体测定的影响

卷 16, 期 14, 2019

页: [1290 - 1299] 页: 10

弟呕挨: 10.2174/1567205017666200102151731

价格: $65

摘要

背景:针对阿尔茨海默氏病(AD)的特定静脉免疫球蛋白(IVIG)正在开发中,其中包含高水平的天然抗淀粉样蛋白(nAbs-Aβ)自身抗体,因此测量nAbs-Aβ含量非常重要。尽管酶联免疫吸附测定(ELISA)已被广泛用于检测nAbs-Aβ含量,但尚未评估ELISA中被选作抗原的Aβ聚集物对该方法的影响。 目的:阐明ELISA过程中不同Aβ40/ 42聚集体作为抗原对IVIG中nAbs-Aβ40/ 42含量的影响。 方法:通过不同的聚集液和不同的时间长度,制备各种Aβ40/ 42聚集体,并通过蛋白质印迹进行分析。采用不同的Aβ40/ 42聚集体作为抗原,通过ELISA测定IVIG中nAbs-Aβ40/ 42的含量,并进行对照以减少对非特异性结合的干扰。 Bonferroni和Dunnett的T3用于统计分析。 结果:形成Aβ40/ 42聚集体的持续时间对IVIG中nAbs-Aβ40/ 42含量的检测比聚集溶液具有更大的影响。在第3天(而不是在第0.5天和7.0天)用Aβ40/ 42聚集体进行测量时,在同一IVIG中显示出更高的nAbs-Aβ40/ 42含量。在不同溶液中制备的Aβ40/ 42聚集体测定的同一IVIG中,nAbs-Aβ40/ 42含量存在明显差异,但之间没有明显的规律性。结论:用不同条件下聚集的Aβ40/ 42测定同一IVIG中nAbs-Aβ40/ 42的含量有显着差异。通过抗原依赖性测定(如ELISA),IVIG中nAbs-Aβ40/ 42的含量尚不确定。

关键词: 天然存在的针对淀粉样β抗体,静脉注射免疫球蛋白,阿尔茨海默氏病,测量,淀粉样β蛋白聚集。

[1]
Cummings J, Lee G, Mortsdorf T, Ritter A, Zhong K. Alzheimer’s disease drug development pipeline. 2017. Alzheimers Dement (N Y) 3(3): 367-84. (2017)
[http://dx.doi.org/10.1016/j.trci.2017.05.002] [PMID: 29067343]
[2]
2018 Alzheimer’s disease facts and figures. Alzheimers Dement 14: 367-429. (2018)
[http://dx.doi.org/10.1016/j.jalz.2018.02.001]
[3]
Ma TJ, Gao J, Liu Y, Zhuang JH, Yin C, Li P, et al. nanomedicine strategies for sustained, controlled and targeted treatment of Alzheimer’s disease. Mini Rev Med Chem 18(12): 1035-46. (2018)
[http://dx.doi.org/10.2174/1389557518666171215150024] [PMID: 29243575]
[4]
Cummings J, Lee G, Ritter A, Zhong K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement 4: 195-214. (2018)
[http://dx.doi.org/10.1016/j.trci.2018.03.009] [PMID: 29955663]
[5]
Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3): 186-91. (2007)
[http://dx.doi.org/10.1016/j.jalz.2007.04.381] [PMID: 19595937]
[6]
Dodel R, Neff F, Noelker C, Pul R, Du Y, Bacher M, et al. Intravenous immunoglobulins as a treatment for Alzheimer’s disease: rationale and current evidence. Drugs 70(5): 513-28. (2010)
[http://dx.doi.org/10.2165/11533070-000000000-00000] [PMID: 20329802]
[7]
Perez EE, Orange JS, Bonilla F, Chinen J, Chinn IK, Dorsey M, et al. Update on the use of immunoglobulin in human disease: a review of evidence. J Allergy Clin Immunol 139(3S): S1-S46. (2017)
[http://dx.doi.org/10.1016/j.jaci.2016.09.023] [PMID: 28041678]
[8]
Relkin NR, Thomas RG, Rissman RA. A phase 3 trial of IV immunoglobulin for Alzheimer disease. Neurology 88(18): 1768-75. (2017)
[http://dx.doi.org/10.1212/WNL.0000000000003904] [PMID: 28381506]
[9]
Relkin N. Clinical trials of intravenous immunoglobulin for Alzheimer’s disease. J Clin Immunol 34(1): S74-9. (2014)
[http://dx.doi.org/10.1007/s10875-014-0041-4] [PMID: 24760112]
[10]
Counts SE, Lahiri DK. Overview of immunotherapy in Alzheimer’s disease (AD) and mechanisms of IVIG neuroprotection in preclinical models of AD. Curr Alzheimer Res 11(7): 623-5. (2014)
[http://dx.doi.org/10.2174/156720501107140815102453] [PMID: 25156573]
[11]
Loeffler DA. Should development of Alzheimer’s disease-specific intravenous immunoglobulin be considered? J Neuroinflammation 11: 198. (2014)
[http://dx.doi.org/10.1186/s12974-014-0198-z] [PMID: 25476011]
[12]
Lardenoije R, van den Hove DLA, Jung SE, Havermans M, Blackburn P, Liu B, et al. Active amyloid-β vaccination results in epigenetic changes in the hippocampus of an Alzheimer’s disease-like mouse model. Curr Alzheimer Res 16(9): 861-70. (2019)
[http://dx.doi.org/10.2174/1567205016666190827122009] [PMID: 31453788]
[13]
Magga J, Puli L, Pihlaja R, Kanninen K, Neulamaa S, Malm T, et al. Human intravenous immunoglobulin provides protection against Aβ toxicity by multiple mechanisms in a mouse model of Alzheimer’s disease. J Neuroinflammation 7: 90. (2010)
[http://dx.doi.org/10.1186/1742-2094-7-90] [PMID: 21138577]
[14]
Koenigsknecht-Talboo J, Landreth GE. Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci 25(36): 8240-9. (2005)
[http://dx.doi.org/10.1523/JNEUROSCI.1808-05.2005] [PMID: 16148231]
[15]
Puli L, Pomeshchik Y, Olas K, Malm T, Koistinaho J, Tanila H. Effects of human intravenous immunoglobulin on amyloid pathology and neuroinflammation in a mouse model of Alzheimer’s disease. J Neuroinflammation 9: 105. (2012)
[http://dx.doi.org/10.1186/1742-2094-9-105] [PMID: 22642812]
[16]
Onodera H, Nakagawa R, Nakagawa H, Urayama T, Haino K, Yunoki M. Long-term monitoring of virus antibody titers in human intravenous immunoglobulin lots derived from donors in Japan. Transfusion 58(11): 2617-26. (2018)
[http://dx.doi.org/10.1111/trf.14908] [PMID: 30284288]
[17]
Ye S, Lei M, Jiang P, Liu F, Wang Z, Cao H, et al. Demonstration of the IgG antibody repertoire against the bacteria Escherichia coli in Chinese intravenous immunoglobulins. J Pharm Biomed Anal 133: 8-14. (2017)
[http://dx.doi.org/10.1016/j.jpba.2016.10.018] [PMID: 27792896]
[18]
Lahiri DK, Ray B. Intravenous immunoglobulin treatment preserves and protects primary rat hippocampal neurons and primary human brain cultures against oxidative insults. Curr Alzheimer Res 11(7): 645-54. (2014)
[http://dx.doi.org/10.2174/1567205011666140812113851] [PMID: 25115544]
[19]
Counts SE, Ray B, Mufson EJ, Perez SE, He B, Lahiri DK. Intravenous immunoglobulin (IVIG) treatment exerts antioxidant and neuropreservatory effects in preclinical models of Alzheimer’s disease. J Clin Immunol 34(1): S80-5. (2014)
[http://dx.doi.org/10.1007/s10875-014-0020-9] [PMID: 24760109]
[20]
Dodel R, Hampel H, Depboylu C, Lin S, Gao F, Schock S, et al. Human antibodies against amyloid beta peptide: a potential treatment for Alzheimer’s disease. Ann Neurol 52(2): 253-6. (2002)
[http://dx.doi.org/10.1002/ana.10253] [PMID: 12210803]
[21]
Wang T, Xie XX, Ji M, Wang SW, Zha J, Zhou WW, et al. Naturally occurring autoantibodies against Aβ oligomers exhibited more beneficial effects in the treatment of mouse model of Alzheimer’s disease than intravenous immunoglobulin. Neuropharmacology 105: 561-76. (2016)
[http://dx.doi.org/10.1016/j.neuropharm.2016.02.015] [PMID: 26907803]
[22]
Ye S, Zeng R, Jiang P, Hou M, Liu F, Wang Z, et al. Concentrations of antibodies against β-amyloid 40/42 monomer and oligomers in Chinese intravenous immunoglobulins. J Pharm Biomed Anal 138: 277-82. (2017)
[http://dx.doi.org/10.1016/j.jpba.2017.02.024] [PMID: 28231531]
[23]
Barghorn S, Nimmrich V, Striebinger A, Krantz C, Keller P, Janson B, et al. Globular amyloid beta-peptide oligomer - a homogenous and stable neuropathological protein in Alzheimer’s disease. J Neurochem 95(3): 834-47. (2005)
[http://dx.doi.org/10.1111/j.1471-4159.2005.03407.x] [PMID: 16135089]
[24]
Ryan DA, Narrow WC, Federoff HJ, Bowers WJ. An improved method for generating consistent soluble amyloid-beta oligomer preparations for in vitro neurotoxicity studies. J Neurosci Methods 190(2): 171-9. (2010)
[http://dx.doi.org/10.1016/j.jneumeth.2010.05.001] [PMID: 20452375]
[25]
Dodel RC, Du Y, Depboylu C, Hampel H, Frölich L, Haag A, et al. Intravenous immunoglobulins containing antibodies against beta-amyloid for the treatment of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 75(10): 1472-4. (2004)
[http://dx.doi.org/10.1136/jnnp.2003.033399] [PMID: 15377700]
[26]
Relkin NR, Szabo P, Adamiak B, Burgut T, Monthe C, Lent RW, et al. 18-Month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol Aging 30(11): 1728-36. (2009)
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.12.021] [PMID: 18294736]
[27]
Dodel R, Rominger A, Bartenstein P, Barkhof F, Blennow K, Förster S, et al. Intravenous immunoglobulin for treatment of mild-to-moderate Alzheimer’s disease: a phase 2, randomised, double-blind, placebo-controlled, dose-finding trial. Lancet Neurol 12(3): 233-43. (2013)
[http://dx.doi.org/10.1016/S1474-4422(13)70014-0] [PMID: 23375965]
[28]
Kile S, Au W, Parise C. IVIG treatment of mild cognitive impairment due to Alzheimer’s disease: a randomised double-blinded exploratory study of the effect on brain atrophy, cognition and conversion to dementia. J Neurol Neurosurg Psychiatry 88(2): 106-12. (2017)
[http://dx.doi.org/10.1136/jnnp-2015-311486] [PMID: 26420886]
[29]
Moreth J, Mavoungou C, Schindowski K. Passive anti-amyloid immunotherapy in Alzheimer’s disease: what are the most promising targets? Immun Ageing 10(1): 18. (2013)
[http://dx.doi.org/10.1186/1742-4933-10-18] [PMID: 23663286]
[30]
Knight EM, Gandy S. Immunomodulation and AD-down but not out. J Clin Immunol 34(1): S70-3. (2014)
[http://dx.doi.org/10.1007/s10875-014-0039-y] [PMID: 24781637]
[31]
Relkin NR, Mujalli DM, Shenoy SA, Adamiak B, Weksler ME, Kayed R, et al. IVIG contains antibodies against oligomers and fibrils of beta amyloid. Alzheimers Dement 3: S196. (2007)
[http://dx.doi.org/10.1016/j.jalz.2007.04.021]
[32]
Klaver AC, Patrias LM, Coffey MP, Finke JM, Loeffler DA. Measurement of anti-Abeta1-42 antibodies in intravenous immunoglobulin with indirect ELISA: the problem of nonspecific binding. J Neurosci Methods 187(2): 263-9. (2010)
[http://dx.doi.org/10.1016/j.jneumeth.2010.01.018] [PMID: 20097229]
[33]
Balakrishnan K, Andrei-Selmer LC, Selmer T, Bacher M, Dodel R. Comparison of intravenous immunoglobulins for naturally occurring autoantibodies against amyloid-beta. J Alzheimers Dis 20(1): 135-43. (2010)
[http://dx.doi.org/10.3233/JAD-2010-1353] [PMID: 20164596]
[34]
Klaver AC, Finke JM, Digambaranath J, Balasubramaniam M, Loeffler DA. Antibody concentrations to Abeta1-42 monomer and soluble oligomers in untreated and antibody-antigen-dissociated intravenous immunoglobulin preparations. Int Immunopharmacol 10(1): 115-9. (2010)
[http://dx.doi.org/10.1016/j.intimp.2009.10.005] [PMID: 19840873]
[35]
Klaver AC, Coffey MP, Smith LM, Loeffler DA. Comparison of ELISA measurements of anti-Aβ concentrations and percentages of specific binding to Aβ between unfractionated intravenous immunoglobulin products and their purified anti-Aβ antibodies. Immunol Lett 154(1-2): 7-11. (2013)
[http://dx.doi.org/10.1016/j.imlet.2013.07.008] [PMID: 23928186 ]
[36]
Benilova I, Karran E, De Strooper B. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15(3): 349-57. (2012)
[http://dx.doi.org/10.1038/nn.3028] [PMID: 22286176]
[37]
Stine WB Jr, Dahlgren KN, Krafft GA, LaDu MJ. In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J Biol Chem 278(13): 11612-22. (2003)
[http://dx.doi.org/10.1074/jbc.M210207200] [PMID: 12499373 ]
[38]
Sokolow S, Henkins KM, Bilousova T, Miller CA, Vinters HV, Poon W, et al. AD synapses contain abundant Aβ monomer and multiple soluble oligomers, including a 56-kDa assembly. Neurobiol Aging 33(8): 1545-55. (2012)
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.05.011] [PMID: 21741125]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy