Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

MiR-143HG Gene Polymorphisms as Risk Factors for Gastric Cancer in Chinese Han Population

Author(s): Jianfeng Liu, Haiyue Li, Yuanwei Liu, Yao Sun, Jiamin Wu, Zichao Xiong, Bin Li* and Tianbo Jin*

Volume 20, Issue 7, 2020

Page: [536 - 547] Pages: 12

DOI: 10.2174/1566524020666191227103144

Price: $65

Abstract

Background: MicroRNA (miRNA) is a pivotal regulator of the occurrence and development of various cancers. And gastric cancer (GC) is one of the most common and deadly cancers in the world. The aim of this study is to explore whether the microRNA-143 host gene (miR-143HG) polymorphisms are correlated with the risk of GC.

Methods: 5 single-nucleotide polymorphisms (SNPs) were genotyped among 506 patients and 500 healthy controls in Han Chinese population. Multiple genetic models, stratification analysis and haplotype analysis were used to evaluate the association between miR-143HG polymorphisms and GC risk by calculating odds ratios (ORs), 95% confidence intervals (CIs).

Results: Our results indicated that rs11168100 was associated with decreased risk of GC under the Codominant model (OR = 0.67, 95%CI = 0.52-0.88, p = 0.003), and under the Dominant model (OR = 0.72, 95%CI = 0.56-0.92, p = 0.009). Rs353300 was associated with increased risk of GC under the Recessive model (OR = 1.41, 95%CI = 1.06-1.87, p = 0.017). Further, rs11168100 and rs353300 were correlated with the susceptibility of GC (age > 60 years), and three SNPs (rs12654195, rs353303, and rs353300) were related with the risk of GC (age ≤ 60 years). In addition, two SNPs (rs12654195 and rs11168100) were found to be associated with decrease in the susceptibility of GC in the female subgroup. Rs353300 represented two-sided roles in the occurrence and development of GC in female. Finally, rs3533003 was associated with decreased risk of GC in stratified analysis of lymph node metastasis.

Conclusion: For the first time, our results provide some evidence on the polymorphisms of miR-143HG associated with GC risk in the Chinese Han population.

Keywords: A case-control study, Chinese Han population, single nucleotide polymorphisms, gastric cancer, miR- 143 host gene.

[1]
Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127(12): 2893-917.
[http://dx.doi.org/10.1002/ijc.25516] [PMID: 21351269]
[2]
Zhu X, Li J. Gastric carcinoma in China: Current status and future perspectives. (Review) Oncol Lett 2010; 1(3): 407-12.
[http://dx.doi.org/10.3892/ol_00000071] [PMID: 22966316]
[3]
Song Z, Wu Y, Yang J, Yang D, Fang X. Progress in the treatment of advanced gastric cancer. Tumour Biol 2017; 39(7)1010428317714626
[http://dx.doi.org/10.1177/1010428317714626] [PMID: 28671042]
[4]
Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomarkers Prev 2014; 23(5): 700-13.
[http://dx.doi.org/10.1158/1055-9965.EPI-13-1057] [PMID: 24618998]
[5]
Lin S, Liu J, Jiang W, et al. METTL3 promotes the proliferation and mobility of gastric cancer cells. Open Med (Wars) 2019; 14: 25-31.
[http://dx.doi.org/10.1515/med-2019-0005] [PMID: 30886897]
[6]
Sheh A, Ge Z, Parry NM, et al. 17β-estradiol and tamoxifen prevent gastric cancer by modulating leukocyte recruitment and oncogenic pathways in Helicobacter pylori-infected INS-GAS male mice. Cancer Prev Res (Phila) 2011; 4(9): 1426-35.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0219] [PMID: 21680705]
[7]
Derakhshan MH, Liptrot S, Paul J, Brown IL, Morrison D, McColl KE. Oesophageal and gastric intestinal-type adenocarcinomas show the same male predominance due to a 17 year delayed development in females. Gut 2009; 58(1): 16-23.
[http://dx.doi.org/10.1136/gut.2008.161331] [PMID: 18838486]
[8]
Ladeiras-Lopes R, Pereira AK, Nogueira A, et al. Smoking and gastric cancer: systematic review and meta-analysis of cohort studies. Cancer Causes Control 2008; 19(7): 689-701.
[http://dx.doi.org/10.1007/s10552-008-9132-y] [PMID: 18293090]
[9]
Cook MB, Kamangar F, Whiteman DC, et al. Cigarette smoking and adenocarcinomas of the esophagus and esophagogastric junction: a pooled analysis from the international BEACON consortium. J Natl Cancer Inst 2010; 102(17): 1344-53.
[http://dx.doi.org/10.1093/jnci/djq289] [PMID: 20716718]
[10]
Freedman ND, Abnet CC, Leitzmann MF, et al. A prospective study of tobacco, alcohol, and the risk of esophageal and gastric cancer subtypes. Am J Epidemiol 2007; 165(12): 1424-33.
[http://dx.doi.org/10.1093/aje/kwm051] [PMID: 17420181]
[11]
Kim J, Park S, Nam BH. Gastric cancer and salt preference: a population-based cohort study in Korea. Am J Clin Nutr 2010; 91(5): 1289-93.
[http://dx.doi.org/10.3945/ajcn.2009.28732] [PMID: 20219954]
[12]
Hoyo C, Cook MB, Kamangar F, et al. Body mass index in relation to oesophageal and oesophagogastric junction adenocarcinomas: a pooled analysis from the International BEACON Consortium. Int J Epidemiol 2012; 41(6): 1706-18.
[http://dx.doi.org/10.1093/ije/dys176] [PMID: 23148106]
[13]
Lagergren J, Bergström R, Lindgren A, Nyrén O. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N Engl J Med 1999; 340(11): 825-31.
[http://dx.doi.org/10.1056/NEJM199903183401101] [PMID: 10080844]
[14]
Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 2011; 377(9759): 31-41.
[http://dx.doi.org/10.1016/S0140-6736(10)62110-1] [PMID: 21144578]
[15]
Sakamoto H, Yoshimura K, Saeki N, et al. Study Group of Millennium Genome Project for Cancer. Genetic variation in PSCA is associated with susceptibility to diffuse-type gastric cancer. Nat Genet 2008; 40(6): 730-40.
[http://dx.doi.org/10.1038/ng.152] [PMID: 18488030]
[16]
Shi Y, Hu Z, Wu C, et al. A genome-wide association study identifies new susceptibility loci for non-cardia gastric cancer at 3q13.31 and 5p13.1. Nat Genet 2011; 43(12): 1215-8.
[http://dx.doi.org/10.1038/ng.978] [PMID: 22037551]
[17]
Shekari N, Baradaran B, Shanehbandi D, Kazemi T. Circulating MicroRNAs: Valuable Biomarkers for the Diagnosis and Prognosis of Gastric Cancer. Curr Med Chem 2018; 25(6): 698-714.
[PMID: 28971758]
[18]
Li C, Dong J, Han Z, Zhang K. MicroRNA-219-5p Represses the Proliferation, Migration, and Invasion of Gastric Cancer Cells by Targeting the LRH-1/Wnt/β-Catenin Signaling Pathway. Oncol Res 2017; 25(4): 617-27.
[http://dx.doi.org/10.3727/096504016X14768374457986] [PMID: 27983934]
[19]
Ren J, Kuang TH, Chen J, Yang JW, Liu YX. The diagnostic and prognostic values of microRNA-21 in patients with gastric cancer: a meta-analysis. Eur Rev Med Pharmacol Sci 2017; 21(1): 120-30.
[PMID: 28121346]
[20]
Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010; 466(7308): 835-40.
[http://dx.doi.org/10.1038/nature09267] [PMID: 20703300]
[21]
He C, Yu T, Shi Y, et al. MicroRNA 301A Promotes Intestinal Inflammation and Colitis-Associated Cancer Development by Inhibiting BTG1. Gastroenterol 2017; 152(6): 1434-1448.e15.
[http://dx.doi.org/10.1053/j.gastro.2017.01.049] [PMID: 28193514]
[22]
Sun HL, Cui R, Zhou J, et al. ERK Activation Globally Downregulates miRNAs through Phosphorylating Exportin-5. Cancer Cell 2016; 30(5): 723-36.
[http://dx.doi.org/10.1016/j.ccell.2016.10.001] [PMID: 27846390]
[23]
Shin VY, Chu KM. MiRNA as potential biomarkers and therapeutic targets for gastric cancer. World J Gastroenterol 2014; 20(30): 10432-9.
[http://dx.doi.org/10.3748/wjg.v20.i30.10432] [PMID: 25132759]
[24]
Guan H, Li W, Li Y, et al. MicroRNA-93 promotes proliferation and metastasis of gastric cancer via targeting TIMP2. PLoS One 2017; 12(12)e0189490
[http://dx.doi.org/10.1371/journal.pone.0189490] [PMID: 29220395]
[25]
Song J, Guan Z, Li M, et al. MicroRNA-154 inhibits the growth and invasion of gastric cancer cells by targeting DIXDC1/WNT signaling. Oncol Res 2018; 26(6): 847-56.
[http://dx.doi.org/10.3727/096504017X15016337254632] [PMID: 28800791]
[26]
Chen HB, Zheng HT. MicroRNA-200c represses migration and invasion of gastric cancer SGC-7901 cells by inhibiting expression of fibronectin 1. Eur Rev Med Pharmacol Sci 2017; 21(8): 1753-8.
[PMID: 28485806]
[27]
Noguchi S, Yasui Y, Iwasaki J, et al. Replacement treatment with microRNA-143 and -145 induces synergistic inhibition of the growth of human bladder cancer cells by regulating PI3K/Akt and MAPK signaling pathways. Cancer Lett 2013; 328(2): 353-61.
[http://dx.doi.org/10.1016/j.canlet.2012.10.017] [PMID: 23104321]
[28]
Yan X, Chen X, Liang H, et al. miR-143 and miR-145 synergistically regulate ERBB3 to suppress cell proliferation and invasion in breast cancer. Mol Cancer 2014; 13(220): 220.
[http://dx.doi.org/10.1186/1476-4598-13-220] [PMID: 25248370]
[29]
Borralho PM, Kren BT, Castro RE, da Silva IB, Steer CJ, Rodrigues CMP. MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells. FEBS J 2009; 276(22): 6689-700.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07383.x] [PMID: 19843160]
[30]
Wu XL, Cheng B, Li PY, et al. MicroRNA-143 suppresses gastric cancer cell growth and induces apoptosis by targeting COX-2. World J Gastroenterol 2013; 19(43): 7758-65.
[http://dx.doi.org/10.3748/wjg.v19.i43.7758] [PMID: 24616567]
[31]
Chen JJ, Cai WY, Liu XW, et al. Reverse Correlation between MicroRNA-145 and FSCN1 Affecting Gastric Cancer Migration and Invasion. PLoS One 2015; 10(5)e0126890
[http://dx.doi.org/10.1371/journal.pone.0126890] [PMID: 26010149]
[32]
Wang J, Sun Z, Yan S, Gao F. Effect of miR 145 on gastric cancer cells. Mol Med Rep 2019; 19(5): 3403-10.
[http://dx.doi.org/10.3892/mmr.2019.10015] [PMID: 30864704]
[33]
Zeng JF, Ma XQ, Wang LP, Wang W. MicroRNA-145 exerts tumor-suppressive and chemo-resistance lowering effects by targeting CD44 in gastric cancer. World J Gastroenterol 2017; 23(13): 2337-45.
[http://dx.doi.org/10.3748/wjg.v23.i13.2337] [PMID: 28428713]
[34]
Iio A, Takagi T, Miki K, Naoe T, Nakayama A, Akao Y. DDX6 post-transcriptionally down-regulates miR-143/145 expression through host gene NCR143/145 in cancer cells. Biochim Biophys Acta 2013; 1829(10): 1102-10.
[http://dx.doi.org/10.1016/j.bbagrm.2013.07.010] [PMID: 23932921]
[35]
Gabriel S, Ziaugra L, Tabbaa D. SNP genotyping using the Sequenom MassARRAY iPLEX platform.In: Current protocols in human genetics. 2009.
[http://dx.doi.org/10.1002/0471142905.hg0212s60]
[36]
Gabriel S, Ziaugra L, Tabbaa D. SNP genotyping using the Sequenom MassARRAY iPLEX platform.In: Curr Protoc Hum Genet. 2009; 2009.
[http://dx.doi.org/10.1002/0471142905.hg0212s60]
[37]
Thomas RK, Baker AC, Debiasi RM, et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet 2007; 39(3): 347-51.
[http://dx.doi.org/10.1038/ng1975] [PMID: 17293865]
[38]
Adamec C. [Example of the use of the nonparametric test. Test x2 for comparison of 2 independent examples] Cesk Zdrav 1964; 12: 613-9.
[PMID: 14246305]
[39]
Yang B, Heng L, Du S, et al. Association between RTEL1, PHLDB1, and TREH polymorphisms and glioblastoma risk: a case-control study. Med Sci Monit 2015; 21: 1983-8.
[http://dx.doi.org/10.12659/MSM.893723] [PMID: 26156397]
[40]
Solé X, Guinó E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics 2006; 22(15): 1928-9.
[http://dx.doi.org/10.1093/bioinformatics/btl268] [PMID: 16720584]
[41]
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017; 16(3): 203-22.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[42]
Jin P, Alisch RS, Warren ST. RNA and microRNAs in fragile X mental retardation. Nat Cell Biol 2004; 6(11): 1048-53.
[http://dx.doi.org/10.1038/ncb1104-1048] [PMID: 15516998]
[43]
Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 2012; 110(3): 483-95.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.247452] [PMID: 22302755]
[44]
Wu WK, Lee CW, Cho CH, et al. MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene 2010; 29(43): 5761-71.
[http://dx.doi.org/10.1038/onc.2010.352] [PMID: 20802530]
[45]
Du C, Shen Z, Zang R, et al. Negative feedback circuitry between MIR143HG and RBM24 in Hirschsprung disease. Biochim Biophys Acta 2016; 1862(11): 2127-36.
[http://dx.doi.org/10.1016/j.bbadis.2016.08.017] [PMID: 27565737]
[46]
Kontaraki JE, Marketou ME, Kochiadakis GE, et al. The long non-coding RNAs MHRT, FENDRR and CARMEN, their expression levels in peripheral blood mononuclear cells in patients with essential hypertension and their relation to heart hypertrophy. Clin Exp Pharmacol Physiol 2018; 45(11): 1213-7.
[http://dx.doi.org/10.1111/1440-1681.12997] [PMID: 29917257]
[47]
Lin X, Xiaoqin H, Jiayu C, Li F, Yue L, Ximing X. Long non-coding RNA miR143HG predicts good prognosis and inhibits tumor multiplication and metastasis by suppressing mitogen-activated protein kinase and Wnt signaling pathways in hepatocellular carcinoma. Hepatol Res 2019; 49(8): 902-18.
[http://dx.doi.org/10.1111/hepr.13344] [PMID: 30945380]
[48]
Zhao Q, Sun X, Liu C, Li T, Cui J, Qin C. Expression of the microRNA-143/145 cluster is decreased in hepatitis B virus-associated hepatocellular carcinoma and may serve as a biomarker for tumorigenesis in patients with chronic hepatitis B. Oncol Lett 2018; 15(5): 6115-22.
[http://dx.doi.org/10.3892/ol.2018.8117] [PMID: 29616093]
[49]
Xie H, Huang H, Huang W, Xie Z, Yang Y, Wang F. LncRNA miR143HG suppresses bladder cancer development through inactivating Wnt/β-catenin pathway by modulating miR-1275/AXIN2 axis. J Cell Physiol 2019; 234(7): 11156-64.
[http://dx.doi.org/10.1002/jcp.27764] [PMID: 30471109]
[50]
Zhang X, Zhuang J, Liu L, et al. Integrative transcriptome data mining for identification of core lncRNAs in breast cancer. PeerJ 2019; 7e7821

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy