Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

乳腺癌相关的肺转移中癌细胞衍生的分泌因子:其机制和未来前景。

卷 20, 期 3, 2020

页: [168 - 186] 页: 19

弟呕挨: 10.2174/1568009620666191220151856

价格: $65

摘要

在乳腺癌中,肺是仅次于骨骼的第二个最常见的转移部位。多种因素可导致继发于乳腺癌的肺转移。癌细胞衍生的分泌因子通常称为“癌症分泌素”。它们在乳腺癌肺转移的机制中显示出迅速的作用。它们也是与宿主相关的肿瘤微环境的主要成分。通过癌细胞与细胞外基质成分之间的串扰,透明质酸,胶原蛋白,层粘连蛋白和纤连蛋白等癌细胞衍生的细胞外基质成分(CCEC)在癌症的主要部位(乳房)引起ECM重塑。但是,在次要部位(肺),腱生蛋白C,骨膜素和赖氨酰氧化酶,与转移前分子Coco和GALNT14一起,通过促进ECM重塑和肺转移细胞定植,促进了转移前的生态位(PMN)的形成。癌细胞衍生的分泌因子通过诱导癌细胞在原发部位的增殖,其通过组织和血管的侵袭以及PMN中转移细胞的早期定植来增强乳腺癌的肺转移机制。根据生化结构,这些分泌因子大致分为蛋白质和非蛋白质。这是首次强调癌细胞来源的分泌因子在乳腺癌肺转移(BCLM)中的作用的综述。它还列举了迄今为止在乳腺癌细胞系和动物模型中进行的各种研究,这些研究描述了各种类型的源自癌细胞的分泌因子在乳腺癌肺转移过程中的迅速作用。将来,通过治疗性靶向这些癌症驱动分子,可以成功治疗乳腺癌中这种特定类型的器官向性转移。

关键词: 乳腺癌肺转移,分泌因子,转移前的生态位,肿瘤微环境,细胞系和动物模型。

图形摘要

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[2]
Wei, S.; Siegal, G.P. Surviving at a distant site: The organotropism of metastatic breast cancer.Seminars in diagnostic pathology; Elsevier, 2018, Vol. 35, pp. 108-111.
[http://dx.doi.org/10.1053/j.semdp.2017.11.008]
[3]
Lyden, D.; Hoshino, A.; Matei, I. Organtropic Metastatic Secretomes and Exosomes in Breast Cancer; Joan and Sanford I Weill Medical College of Cornell University New York United States, 2016.
[4]
Mills, R.C. III Breast cancer survivors, common markers of inflammation, and exercise: A narrative review. Breast Cancer (Auckl.), 2017, 111178223417743976
[http://dx.doi.org/10.1177/1178223417743976] [PMID: 29434469]
[5]
Rugo, H.S. The importance of distant metastases in hormone-sensitive breast cancer. Breast, 2008, 17(Suppl. 1), S3-S8.
[http://dx.doi.org/10.1016/S0960-9776(08)70002-X] [PMID: 18279764]
[6]
Solomayer, E-F.; Diel, I.J.; Meyberg, G.C.; Gollan, C.; Bastert, G. Metastatic breast cancer: Clinical course, prognosis and therapy related to the first site of metastasis. Breast Cancer Res. Treat., 2000, 59(3), 271-278.
[http://dx.doi.org/10.1023/A:1006308619659] [PMID: 10832597]
[7]
Patanaphan, V.; Salazar, O.M.; Risco, R. Breast cancer: Metastatic patterns and their prognosis. South. Med. J., 1988, 81(9), 1109-1112.
[http://dx.doi.org/10.1097/00007611-198809000-00011] [PMID: 3420442]
[8]
Leone, B.A.; Romero, A.; Rabinovich, M.G.; Vallejo, C.T.; Bianco, A.; Perez, J.E.; Machiavelli, M.; Rodriguez, R.; Alvarez, L.A. Stage IV breast cancer: Clinical course and survival of patients with osseous versus extraosseous metastases at initial diagnosis. The GOCS (Grupo Oncológico Cooperativo del Sur) experience. Am. J. Clin. Oncol., 1988, 11(6), 618-622.
[http://dx.doi.org/10.1097/00000421-198812000-00004] [PMID: 3055932]
[9]
Waning, D.L.; Guise, T.A. Molecular mechanisms of bone metastasis and associated muscle weakness. Clin. Cancer Res., 2014, 20(12), 3071-3077.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1590] [PMID: 24677373]
[10]
Gao, D.; Du, J.; Cong, L.; Liu, Q. Risk factors for initial lung metastasis from breast invasive ductal carcinoma in stages I-III of operable patients. Jpn. J. Clin. Oncol., 2009, 39(2), 97-104.
[http://dx.doi.org/10.1093/jjco/hyn133] [PMID: 19052036]
[11]
Smid, M.; Wang, Y.; Zhang, Y.; Sieuwerts, A.M.; Yu, J.; Klijn, J.G.; Foekens, J.A.; Martens, J.W. Subtypes of breast cancer show preferential site of relapse. Cancer Res., 2008, 68(9), 3108-3114.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5644] [PMID: 18451135]
[12]
Roodman, G.D. Mechanisms of bone metastasis. N. Engl. J. Med., 2004, 350(16), 1655-1664.
[http://dx.doi.org/10.1056/NEJMra030831] [PMID: 15084698]
[13]
Weilbaecher, K.N.; Guise, T.A.; McCauley, L.K. Cancer to bone: A fatal attraction. Nat. Rev. Cancer, 2011, 11(6), 411-425.
[http://dx.doi.org/10.1038/nrc3055] [PMID: 21593787]
[14]
Jin, L.; Han, B.; Siegel, E.; Cui, Y.; Giuliano, A.; Cui, X. Breast cancer lung metastasis: Molecular biology and therapeutic implications. Cancer Biol. Ther., 2018, 19(10), 858-868.
[http://dx.doi.org/10.1080/15384047.2018.1456599] [PMID: 29580128]
[15]
Minn, A.J.; Gupta, G.P.; Siegel, P.M.; Bos, P.D.; Shu, W.; Giri, D.D.; Viale, A.; Olshen, A.B.; Gerald, W.L.; Massagué, J. Genes that mediate breast cancer metastasis to lung. Nature, 2005, 436(7050), 518-524.https://www.nature.com/articles/nature03799#supplementary-information
[http://dx.doi.org/10.1038/nature03799] [PMID: 16049480]
[16]
Buck, M.B.; Knabbe, C. TGF-beta signaling in breast cancer. Ann. N. Y. Acad. Sci., 2006, 1089(1), 119-126.
[http://dx.doi.org/10.1196/annals.1386.024] [PMID: 17261761]
[17]
Christen, S.; Lorendeau, D.; Schmieder, R.; Broekaert, D.; Metzger, K.; Veys, K.; Elia, I.; Buescher, J.M.; Orth, M.F.; Davidson, S.M.; Grünewald, T.G.; De Bock, K.; Fendt, S.M. Breast cancer-derived lung metastases show increased pyruvate carboxylase-dependent anaplerosis. Cell Rep., 2016, 17(3), 837-848.
[http://dx.doi.org/10.1016/j.celrep.2016.09.042] [PMID: 27732858]
[18]
Kwakwa, K.A.; Sterling, J.A. Integrin αvβ3 signaling in tumor-induced bone disease. Cancers (Basel), 2017, 9(7), 84.
[http://dx.doi.org/10.3390/cancers9070084] [PMID: 28698458]
[19]
Kang, Y.; Siegel, P.M.; Shu, W.; Drobnjak, M.; Kakonen, S.M.; Cordón-Cardo, C.; Guise, T.A.; Massagué, J. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 2003, 3(6), 537-549.
[http://dx.doi.org/10.1016/S1535-6108(03)00132-6] [PMID: 12842083]
[20]
Savci-Heijink, C.D.; Halfwerk, H.; Koster, J.; van de Vijver, M.J. A novel gene expression signature for bone metastasis in breast carcinomas. Breast Cancer Res. Treat., 2016, 156(2), 249-259.
[http://dx.doi.org/10.1007/s10549-016-3741-z] [PMID: 26965286]
[21]
van der Weyden, L.; Arends, M.J.; Campbell, A.D.; Bald, T.; Wardle-Jones, H.; Griggs, N.; Velasco-Herrera, M.D.; Tüting, T.; Sansom, O.J.; Karp, N.A.; Clare, S.; Gleeson, D.; Ryder, E.; Galli, A.; Tuck, E.; Cambridge, E.L.; Voet, T.; Macaulay, I.C.; Wong, K.; Spiegel, S.; Speak, A.O.; Adams, D.J. Sanger Mouse Genetics Project. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature, 2017, 541(7636), 233-236.
[http://dx.doi.org/10.1038/nature20792] [PMID: 28052056]
[22]
Liang, Y.; Xu, X.; Wang, T.; Li, Y.; You, W.; Fu, J.; Liu, Y.; Jin, S.; Ji, Q.; Zhao, W.; Song, Q.; Li, L.; Hong, T.; Huang, J.; Lyu, Z.; Ye, Q. The EGFR/miR-338-3p/EYA2 axis controls breast tumor growth and lung metastasis. Cell Death Dis., 2017, 8(7), e2928
[http://dx.doi.org/10.1038/cddis.2017.325] [PMID: 28703807]
[23]
McGuire, A.; Brown, J.A.; Malone, C.; McLaughlin, R.; Kerin, M.J. Effects of age on the detection and management of breast cancer. Cancers (Basel), 2015, 7(2), 908-929.
[http://dx.doi.org/10.3390/cancers7020815] [PMID: 26010605]
[24]
Chen, W.; Hoffmann, A. D.; Liu, H.; Liu, X. Organotropism: New insights into molecular mechanisms of breast cancer metastasis NPJ precision oncol., 2018, 2(1), 4.
[25]
Papaleo, E.; Gromova, I.; Gromov, P. Gaining insights into cancer biology through exploration of the cancer secretome using proteomic and bioinformatic tools. Expert Rev. Proteomics, 2017, 14(11), 1021-1035.
[http://dx.doi.org/10.1080/14789450.2017.1387053] [PMID: 28967788]
[26]
Schlappack, O.K.; Baur, M.; Steger, G.; Dittrich, C.; Moser, K. The clinical course of lung metastases from breast cancer. Klin. Wochenschr., 1988, 66(17), 790-795.
[http://dx.doi.org/10.1007/BF01726581] [PMID: 3184763]
[27]
Lu, X.; Kang, Y. Organotropism of breast cancer metastasis. J. Mammary Gland Biol. Neoplasia, 2007, 12(2-3), 153-162.
[http://dx.doi.org/10.1007/s10911-007-9047-3] [PMID: 17566854]
[28]
Voduc, K.D.; Cheang, M.C.; Tyldesley, S.; Gelmon, K.; Nielsen, T.O.; Kennecke, H. Breast cancer subtypes and the risk of local and regional relapse. J. Clin. Oncol., 2010, 28(10), 1684-1691.
[http://dx.doi.org/10.1200/JCO.2009.24.9284] [PMID: 20194857]
[29]
Kennecke, H.; Yerushalmi, R.; Woods, R.; Cheang, M.C.U.; Voduc, D.; Speers, C.H.; Nielsen, T.O.; Gelmon, K. Metastatic behavior of breast cancer subtypes. J. Clin. Oncol., 2010, 28(20), 3271-3277.
[http://dx.doi.org/10.1200/JCO.2009.25.9820] [PMID: 20498394]
[30]
Dent, R.; Hanna, W.M.; Trudeau, M.; Rawlinson, E.; Sun, P.; Narod, S.A. Pattern of metastatic spread in triple-negative breast cancer. Breast Cancer Res. Treat., 2009, 115(2), 423-428.
[http://dx.doi.org/10.1007/s10549-008-0086-2] [PMID: 18543098]
[31]
Arpino, G.; Bardou, V.J.; Clark, G.M.; Elledge, R.M. Infiltrating lobular carcinoma of the breast: Tumor characteristics and clinical outcome. Breast Cancer Res., 2004, 6(3), R149-R156.
[http://dx.doi.org/10.1186/bcr767] [PMID: 15084238]
[32]
Cao, H.; Zhang, Z.; Zhao, S.; He, X.; Yu, H.; Yin, Q.; Zhang, Z.; Gu, W.; Chen, L.; Li, Y. Hydrophobic interaction mediating self-assembled nanoparticles of succinobucol suppress lung metastasis of breast cancer by inhibition of VCAM-1 expression. J. Control. Release, 2015, 205, 162-171.
[http://dx.doi.org/10.1016/j.jconrel.2015.01.015] [PMID: 25598420]
[33]
Xiong, G-F.; Xu, R. Function of cancer cell-derived extracellular matrix in tumor progression. J. Cancer Metastasis Treat., 2016, 2, 358.
[http://dx.doi.org/10.20517/2394-4722.2016.08]
[34]
Peinado, H.; Lavotshkin, S.; Lyden, D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin. Cancer Biol., 2011, 21(2), 139-146.
[http://dx.doi.org/10.1016/j.semcancer.2011.01.002] [PMID: 21251983]
[35]
Gao, H.; Chakraborty, G.; Lee-Lim, A. P.; Mo, Q.; Decker, M.; Vonica, A. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. cell, 2012, 150(4), 764-779.
[36]
Song, K-H.; Park, M.S.; Nandu, T.S.; Gadad, S.; Kim, S-C.; Kim, M-Y. GALNT14 promotes lung-specific breast cancer metastasis by modulating self-renewal and interaction with the lung microenvironment. Nat. Commun., 2016, 7, 13796.
[http://dx.doi.org/10.1038/ncomms13796] [PMID: 27982029]
[37]
Tjalsma, H.; Bolhuis, A.; Jongbloed, J.D.; Bron, S.; van Dijl, J.M. Signal peptide-dependent protein transport in Bacillus subtilis: A genome-based survey of the secretome. Microbiol. Mol. Biol. Rev., 2000, 64(3), 515-547.
[http://dx.doi.org/10.1128/MMBR.64.3.515-547.2000] [PMID: 10974125]
[38]
Hathout, Y. Approaches to the study of the cell secretome. Expert Rev. Proteomics, 2007, 4(2), 239-248.
[http://dx.doi.org/10.1586/14789450.4.2.239] [PMID: 17425459]
[39]
Ludwig, J.A.; Weinstein, J.N. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer, 2005, 5(11), 845-856.
[http://dx.doi.org/10.1038/nrc1739] [PMID: 16239904]
[40]
Rifai, N.; Gillette, M.A.; Carr, S.A. Protein biomarker discovery and validation: The long and uncertain path to clinical utility. Nat. Biotechnol., 2006, 24(8), 971-983.
[http://dx.doi.org/10.1038/nbt1235] [PMID: 16900146]
[41]
Stastna, M.; Van Eyk, J.E. Secreted proteins as a fundamental source for biomarker discovery. Proteomics, 2012, 12(4-5), 722-735.
[http://dx.doi.org/10.1002/pmic.201100346] [PMID: 22247067]
[42]
Cox, T.R.; Schoof, E.M.; Gartland, A.; Erler, J.T.; Linding, R. Dataset for the proteomic inventory and quantitative analysis of the breast cancer hypoxic secretome associated with osteotropism. Data Brief, 2015, 5, 621-625.
[http://dx.doi.org/10.1016/j.dib.2015.09.039] [PMID: 26649326]
[43]
Paltridge, J.L.; Belle, L.; Khew-Goodall, Y. The secretome in cancer progression. Biochim. Biophys. Acta, 2013, 1834(11), 2233-2241.
[http://dx.doi.org/10.1016/j.bbapap.2013.03.014]
[44]
Wu, C-C.; Hsu, C-W.; Chen, C-D.; Yu, C-J.; Chang, K-P.; Tai, D-I.; Liu, H.P.; Su, W.H.; Chang, Y.S.; Yu, J.S. Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas. Mol. Cell. Proteomics, 2010, 9(6), 1100-1117.
[http://dx.doi.org/10.1074/mcp.M900398-MCP200] [PMID: 20124221]
[45]
Yang, L.; Lin, P.C. Mechanisms that drive inflammatory tumor microenvironment, tumor heterogeneity, and metastatic progression. Semin Cancer Biol; Elsevier, 2017, Vol. 47, pp. 185-195.
[http://dx.doi.org/10.1016/j.semcancer.2017.08.001]
[46]
Makridakis, M.; Vlahou, A. Secretome proteomics for discovery of cancer biomarkers. J. Proteomics, 2010, 73(12), 2291-2305.
[http://dx.doi.org/10.1016/j.jprot.2010.07.001] [PMID: 20637910]
[47]
Shin, J.; Kim, G.; Lee, J.W.; Lee, J.E.; Kim, Y.S.; Yu, J.H.; Lee, S.T.; Ahn, S.H.; Kim, H.; Lee, C. Identification of ganglioside GM2 activator playing a role in cancer cell migration through proteomic analysis of breast cancer secretomes. Cancer Sci., 2016, 107(6), 828-835.
[http://dx.doi.org/10.1111/cas.12935] [PMID: 27002480]
[48]
Severino, V.; Farina, A.; Chambery, A. Analysis of secreted proteins. Proteomics for Biomarker Discovery; Springer, 2013, pp. 37-60.
[http://dx.doi.org/10.1007/978-1-62703-360-2_4]
[49]
Xue, H.; Lu, B.; Lai, M. The cancer secretome: A reservoir of biomarkers. J. Transl. Med., 2008, 6(1), 52.
[http://dx.doi.org/10.1186/1479-5876-6-52] [PMID: 18796163]
[50]
Mellman, I.; Warren, G. The road taken: Past and future foundations of membrane traffic. Cell, 2000, 1000(1), 99-112.
[51]
Chua, C.E.L.; Lim, Y.S.; Lee, M.G.; Tang, B.L. Non-classical membrane trafficking processes galore. J. Cell. Physiol., 2012, 227(12), 3722-3730.
[http://dx.doi.org/10.1002/jcp.24082] [PMID: 22378347]
[52]
Lee, T.H.; D’Asti, E.; Magnus, N.; Al-Nedawi, K.; Meehan, B.; Rak, J. Microvesicles as mediators of intercellular communication in cancer-the emerging science of cellular ‘debris. Seminars in immunopathology; Springer, 2011, Vol. 33, pp. 455-467.
[http://dx.doi.org/10.1007/s00281-011-0250-3]
[53]
Kim, Y.; Ko, H.; Kwon, I.K.; Shin, K. Extracellular matrix revisited: roles in tissue engineering. Int. Neurourol. J., 2016, 20(Suppl. 1), S23-S29.
[http://dx.doi.org/10.5213/inj.1632600.318] [PMID: 27230457]
[54]
Alečković, M.; Wei, Y.; LeRoy, G.; Sidoli, S.; Liu, D.D.; Garcia, B.A.; Kang, Y. Identification of nidogen 1 as a lung metastasis protein through secretome analysis. Genes Dev., 2017, 31(14), 1439-1455.
[http://dx.doi.org/10.1101/gad.301937.117] [PMID: 28827399]
[55]
Kii, I.; Nishiyama, T.; Li, M.; Matsumoto, K.; Saito, M.; Amizuka, N.; Kudo, A. Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture. J. Biol. Chem., 2010, 285(3), 2028-2039.
[http://dx.doi.org/10.1074/jbc.M109.051961] [PMID: 19887451]
[56]
Oskarsson, T.; Acharyya, S.; Zhang, X.H.; Vanharanta, S.; Tavazoie, S.F.; Morris, P.G.; Downey, R.J.; Manova-Todorova, K.; Brogi, E.; Massagué, J. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat. Med., 2011, 17(7), 867-874.
[http://dx.doi.org/10.1038/nm.2379] [PMID: 21706029]
[57]
Hynes, R.O.; Naba, A. Overview of the matrisome-an inventory of extracellular matrix constituents and functions. Cold Spring Harb. Perspect. Biol., 2012, 4(1), a004903
[http://dx.doi.org/10.1101/cshperspect.a004903] [PMID: 21937732]
[58]
Iozzo, R.V.; Murdoch, A.D. Proteoglycans of the extracellular environment: Clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J., 1996, 10(5), 598-614.
[http://dx.doi.org/10.1096/fasebj.10.5.8621059] [PMID: 8621059]
[59]
Roy, A.; Femel, J.; Huijbers, E.J.; Spillmann, D.; Larsson, E.; Ringvall, M.; Olsson, A.K.; Åbrink, M. Targeting serglycin prevents metastasis in murine mammary carcinoma. PLoS One, 2016, 11(5), e0156151
[http://dx.doi.org/10.1371/journal.pone.0156151] [PMID: 27223472]
[60]
Xie, H.Y.; Shao, Z.M.; Li, D.Q. Tumor microenvironment: Driving forces and potential therapeutic targets for breast cancer metastasis. Chin. J. Cancer, 2017, 36(1), 36.
[http://dx.doi.org/10.1186/s40880-017-0202-y] [PMID: 28356139]
[61]
Hrabec, E.; Naduk, J.; Strek, M.; Hrabec, Z. Type IV collagenases (MMP-2 and MMP-9) and their substrates--intracellular proteins, hormones, cytokines, chemokines and their receptors. Postepy Biochem., 2007, 53(1), 37-45.
[PMID: 17718386]
[62]
Jabłońska-Trypuć, A.; Matejczyk, M.; Rosochacki, S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J. Enzyme Inhib. Med. Chem., 2016, 31(1), 177-183.
[63]
Gilkes, D.M.; Semenza, G.L.; Wirtz, D. Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat. Rev. Cancer, 2014, 14(6), 430-439.
[http://dx.doi.org/10.1038/nrc3726] [PMID: 24827502]
[64]
Pei, S.; Yang, X.; Wang, H.; Zhang, H.; Zhou, B.; Zhang, D.; Lin, D. Plantamajoside, a potential anti-tumor herbal medicine inhibits breast cancer growth and pulmonary metastasis by decreasing the activity of matrix metalloproteinase-9 and -2. BMC Cancer, 2015, 15(1), 965.
[http://dx.doi.org/10.1186/s12885-015-1960-z] [PMID: 26674531]
[65]
Karin, M.; Greten, F.R. NF-kappaB: Linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol., 2005, 5(10), 749-759.
[http://dx.doi.org/10.1038/nri1703] [PMID: 16175180]
[66]
Purohit, A.; Newman, S.P.; Reed, M.J. The role of cytokines in regulating estrogen synthesis: Implications for the etiology of breast cancer. Breast Cancer Res., 2002, 4(2), 65-69.
[http://dx.doi.org/10.1186/bcr425] [PMID: 11879566]
[67]
Bierie, B.; Moses, H.L. Tumour microenvironment: TGFbeta: The molecular Jekyll and Hyde of cancer. Nat. Rev. Cancer, 2006, 6(7), 506-520.
[http://dx.doi.org/10.1038/nrc1926] [PMID: 16794634]
[68]
Padua, D.; Zhang, X. H.-F.; Wang, Q.; Nadal, C.; Gerald, W.L.; Gomis, R.R. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. cell, 2008, 133(1), 66-77.
[69]
Massagué, J.; Obenauf, A.C. Metastatic colonization by circulating tumour cells. Nature, 2016, 529(7586), 298-306.
[http://dx.doi.org/10.1038/nature17038] [PMID: 26791720]
[70]
Riese, D.J., II; Cullum, R.L. Epiregulin: Roles in normal physiology and cancer. In: Seminars in cell & developmental biology; Elsevier, 2014; 28, p. 49-56.
[http://dx.doi.org/10.1016/j.semcdb.2014.03.005]
[71]
Singh, B.; Carpenter, G.; Coffey, R.J. EGF receptor ligands: Recent advances. F1000 Res., 2016, 5, 5.
[http://dx.doi.org/10.12688/f1000research.9025.1] [PMID: 27635238]
[72]
Zeng, F.; Harris, R.C. Epidermal growth factor, from gene organization to bedside. Seminars in cell & developmental biology; Elsevier, 2014, Vol. 28, pp. 2-11.
[http://dx.doi.org/10.1016/j.semcdb.2014.01.011]
[73]
Huang, S.; Ingber, D.E. The structural and mechanical complexity of cell-growth control. Nat. Cell Biol., 1999, 1(5), E131-E138.
[http://dx.doi.org/10.1038/13043] [PMID: 10559956]
[74]
Khalili, A.A.; Ahmad, M.R. A review of cell adhesion studies for biomedical and biological applications. Int. J. Mol. Sci., 2015, 16(8), 18149-18184.
[http://dx.doi.org/10.3390/ijms160818149] [PMID: 26251901]
[75]
Chen, Q.; Zhang, X.H-F.; Massagué, J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell, 2011, 20(4), 538-549.
[http://dx.doi.org/10.1016/j.ccr.2011.08.025] [PMID: 22014578]
[76]
Seguin, L.; Desgrosellier, J.S.; Weis, S.M.; Cheresh, D.A. Integrins and cancer: Regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol., 2015, 25(4), 234-240.
[http://dx.doi.org/10.1016/j.tcb.2014.12.006] [PMID: 25572304]
[77]
Zhang, H.; Wong, C.C.; Wei, H.; Gilkes, D.M.; Korangath, P.; Chaturvedi, P.; Schito, L.; Chen, J.; Krishnamachary, B.; Winnard, P.T., Jr; Raman, V.; Zhen, L.; Mitzner, W.A.; Sukumar, S.; Semenza, G.L. HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene, 2012, 31(14), 1757-1770.
[http://dx.doi.org/10.1038/onc.2011.365] [PMID: 21860410]
[78]
Gelse, K.; Pöschl, E.; Aigner, T. Collagens-structure, function, and biosynthesis. Adv. Drug Deliv. Rev., 2003, 55(12), 1531-1546.
[http://dx.doi.org/10.1016/j.addr.2003.08.002] [PMID: 14623400]
[79]
Molnar, J.; Fong, K.S.; He, Q.P.; Hayashi, K.; Kim, Y.; Fong, S.F.; Fogelgren, B.; Szauter, K.M.; Mink, M.; Csiszar, K. Structural and functional diversity of lysyl oxidase and the LOX-like proteins. Biochim. Biophys. Acta, 2003, 1647(1-2), 220-224.
[http://dx.doi.org/10.1016/S1570-9639(03)00053-0] [PMID: 12686136]
[80]
Salvador, F.; Martin, A.; López-Menéndez, C.; Moreno-Bueno, G.; Santos, V.; Vázquez-Naharro, A. Lysyl oxidase-like protein LOXL2 promotes lung metastasis of breast cáncer. Cancer res., 2017, 3152.2016.
[81]
Akhshi, T.K.; Wernike, D.; Piekny, A. Microtubules and actin crosstalk in cell migration and division. Cytoskeleton (Hoboken), 2014, 71(1), 1-23.
[http://dx.doi.org/10.1002/cm.21150] [PMID: 24127246]
[82]
Bezanilla, M.; Gladfelter, A.S.; Kovar, D.R.; Lee, W-L. Cytoskeletal dynamics: A view from the membrane. J. Cell Biol., 2015, 209(3), 329-337.
[http://dx.doi.org/10.1083/jcb.201502062] [PMID: 25963816]
[83]
Bourguignon, L.Y.; Zhu, H.; Shao, L.; Zhu, D.; Chen, Y.W. Rho-kinase (ROK) promotes CD44v (3,8-10)-ankyrin interaction and tumor cell migration in metastatic breast cancer cells. Cell Motil. Cytoskeleton, 1999, 43(4), 269-287.
[http://dx.doi.org/10.1002/(SICI)1097-0169(1999)43:4<269:AID-CM1>3.0.CO;2-5] [PMID: 10423269]
[84]
Lane, J.; Martin, T.A.; Watkins, G.; Mansel, R.E.; Jiang, W.G. The expression and prognostic value of ROCK I and ROCK II and their role in human breast cancer. Int. J. Oncol., 2008, 33(3), 585-593.
[PMID: 18695890]
[85]
Liu, S.; Goldstein, R.H.; Scepansky, E.M.; Rosenblatt, M. Inhibition of rho-associated kinase signaling prevents breast cancer metastasis to human bone. Cancer Res., 2009, 69(22), 8742-8751.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1541] [PMID: 19887617]
[86]
Borin, T.F.; Arbab, A.S.; Gelaleti, G.B.; Ferreira, L.C.; Moschetta, M.G.; Jardim-Perassi, B.V.; Iskander, A.S.; Varma, N.R.; Shankar, A.; Coimbra, V.B.; Fabri, V.A.; de Oliveira, J.G.; Zuccari, D.A. Melatonin decreases breast cancer metastasis by modulating Rho-associated kinase protein-1 expression. J. Pineal Res., 2016, 60(1), 3-15.
[http://dx.doi.org/10.1111/jpi.12270] [PMID: 26292662]
[87]
Latchman, D.S. Transcription factors: An overview. Int. J. Biochem. Cell Biol., 1997, 29(12), 1305-1312.
[http://dx.doi.org/10.1016/S1357-2725(97)00085-X] [PMID: 9570129]
[88]
Ye, X.; Brabletz, T.; Kang, Y.; Longmore, G.D.; Nieto, M.A.; Stanger, B.Z.; Yang, J.; Weinberg, R.A. Upholding a role for EMT in breast cancer metastasis. Nature, 2017, 547(7661), E1-E3.
[http://dx.doi.org/10.1038/nature22816] [PMID: 28682326]
[89]
Ni, T.; Li, X-Y.; Lu, N.; An, T.; Liu, Z-P.; Fu, R.; Lv, W.C.; Zhang, Y.W.; Xu, X.J.; Grant Rowe, R.; Lin, Y.S.; Scherer, A.; Feinberg, T.; Zheng, X.Q.; Chen, B.A.; Liu, X.S.; Guo, Q.L.; Wu, Z.Q.; Weiss, S.J. Snail1-dependent p53 repression regulates expansion and activity of tumour-initiating cells in breast cancer. Nat. Cell Biol., 2016, 18(11), 1221-1232.
[http://dx.doi.org/10.1038/ncb3425] [PMID: 27749822]
[90]
Brenot, A.; Knolhoff, B.L.; DeNardo, D.G.; Longmore, G.D. SNAIL1 action in tumor cells influences macrophage polarization and metastasis in breast cancer through altered GM-CSF secretion. Oncogenesis, 2018, 7(3), 32.
[http://dx.doi.org/10.1038/s41389-018-0042-x] [PMID: 29593211]
[91]
Tran, H.D. Luitel, K.; Kim, M.; Zhang, K.; Longmore, G. D.; Tran, D. D. Transient SNAIL1 expression is necessary for metastatic competence in breast cancer. Cancer Res, Canre., 2014, 0923.2014.
[92]
Pan, H.; Peng, Z.; Lin, J.; Ren, X.; Zhang, G.; Cui, Y. Forkhead box C1 boosts triple-negative breast cancer metastasis through activating the transcription of chemokine receptor-4. Cancer Sci., 2018, 109(12), 3794-3804.
[http://dx.doi.org/10.1111/cas.13823] [PMID: 30290049]
[93]
Lan, J.; Lu, H.; Samanta, D.; Salman, S.; Lu, Y.; Semenza, G.L. Hypoxia-inducible factor 1-dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment. Proc. Natl. Acad. Sci. USA, 2018, 115(41), E9640-E9648.
[http://dx.doi.org/10.1073/pnas.1809695115] [PMID: 30242135]
[94]
Gilkes, D.; Bajpai, S.; Wong, C. C.-L.; Chaturvedi, P.; Hubbi, M. E.; Wirtz, D. Procollagen lysyl hydroxylase 2 is essential for breast cancer metástasis. Mol. Cancer. Res, 2013, 0629.
[95]
Erler, J.T.; Bennewith, K.L.; Cox, T.R.; Lang, G.; Bird, D.; Koong, A.; Le, Q.T.; Giaccia, A.J. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 2009, 15(1), 35-44.
[http://dx.doi.org/10.1016/j.ccr.2008.11.012] [PMID: 19111879]
[96]
Balaj, L.; Lessard, R.; Dai, L.; Cho, Y-J.; Pomeroy, S.L.; Breakefield, X.O.; Skog, J. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun., 2011, 2, 180.
[http://dx.doi.org/10.1038/ncomms1180] [PMID: 21285958]
[97]
Théry, C.; Zitvogel, L.; Amigorena, S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol., 2002, 2(8), 569-579.
[http://dx.doi.org/10.1038/nri855] [PMID: 12154376]
[98]
Kalluri, R. The biology and function of exosomes in cancer. J. Clin. Invest., 2016, 126(4), 1208-1215.
[http://dx.doi.org/10.1172/JCI81135] [PMID: 27035812]
[99]
Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol., 2019, 21(1), 9-17.
[http://dx.doi.org/10.1038/s41556-018-0250-9] [PMID: 30602770]
[100]
Wortzel, I.; Dror, S.; Kenific, C.M.; Lyden, D. Exosome-mediated metastasis: Communication from a distance. Dev. Cell, 2019, 49(3), 347-360.
[http://dx.doi.org/10.1016/j.devcel.2019.04.011] [PMID: 31063754]
[101]
Fu, H.; Yang, H.; Zhang, X.; Xu, W. The emerging roles of exosomes in tumor-stroma interaction. J. Cancer Res. Clin. Oncol., 2016, 142(9), 1897-1907.
[http://dx.doi.org/10.1007/s00432-016-2145-0] [PMID: 26987524]
[102]
Tang, M.K.; Wong, A.S. Exosomes: Emerging biomarkers and targets for ovarian cancer. Cancer Lett., 2015, 367(1), 26-33.
[http://dx.doi.org/10.1016/j.canlet.2015.07.014] [PMID: 26189430]
[103]
Bobrie, A.; Krumeich, S.; Reyal, F.; Recchi, C.; Moita, L.F.; Seabra, M.C.; Ostrowski, M.; Théry, C. Rab27a supports exosome-dependent and independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res., 2012, 72(19), 4920-4930.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0925] [PMID: 22865453]
[104]
Kahlert, C.; Kalluri, R. Exosomes in tumor microenvironment influence cancer progression and metastasis. J. Mol. Med. (Berl.), 2013, 91(4), 431-437.
[http://dx.doi.org/10.1007/s00109-013-1020-6] [PMID: 23519402]
[105]
Luga, V.; Zhang, L.; Viloria-Petit, A.M.; Ogunjimi, A.A.; Inanlou, M.R.; Chiu, E. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell, 2012, 151(7), 1542-1556.
[106]
Wei, Z.; Batagov, A.O.; Schinelli, S.; Wang, J.; Wang, Y.; El Fatimy, R.; Rabinovsky, R.; Balaj, L.; Chen, C.C.; Hochberg, F.; Carter, B.; Breakefield, X.O.; Krichevsky, A.M. Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat. Commun., 2017, 8(1), 1145.
[http://dx.doi.org/10.1038/s41467-017-01196-x] [PMID: 29074968]
[107]
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[108]
Paladini, L.; Fabris, L.; Bottai, G.; Raschioni, C.; Calin, G.A.; Santarpia, L. Targeting microRNAs as key modulators of tumor immune response. J. Exp. Clin. Cancer Res., 2016, 35(1), 103.
[http://dx.doi.org/10.1186/s13046-016-0375-2] [PMID: 27349385]
[109]
Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; Downing, J.R.; Jacks, T.; Horvitz, H.R.; Golub, T.R. MicroRNA expression profiles classify human cancers. Nature, 2005, 435(7043), 834-838.
[http://dx.doi.org/10.1038/nature03702] [PMID: 15944708]
[110]
Cortez, M.A.; Anfossi, S.; Ramapriyan, R.; Menon, H.; Atalar, S.C.; Aliru, M.; Welsh, J.; Calin, G.A. Role of miRNAs in immune responses and immunotherapy in cancer. Genes Chromosomes Cancer, 2019, 58(4), 244-253.
[http://dx.doi.org/10.1002/gcc.22725] [PMID: 30578699]
[111]
Skog, J.; Würdinger, T.; van Rijn, S.; Meijer, D.H.; Gainche, L.; Sena-Esteves, M.; Curry, W.T., Jr; Carter, B.S.; Krichevsky, A.M.; Breakefield, X.O. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol., 2008, 10(12), 1470-1476.
[http://dx.doi.org/10.1038/ncb1800] [PMID: 19011622]
[112]
Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 2007, 9(6), 654-659.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[113]
Korpal, M.; Ell, B.J.; Buffa, F.M.; Ibrahim, T.; Blanco, M.A.; Celià-Terrassa, T.; Mercatali, L.; Khan, Z.; Goodarzi, H.; Hua, Y.; Wei, Y.; Hu, G.; Garcia, B.A.; Ragoussis, J.; Amadori, D.; Harris, A.L.; Kang, Y. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat. Med., 2011, 17(9), 1101-1108.
[http://dx.doi.org/10.1038/nm.2401] [PMID: 21822286]
[114]
Pencheva, N.; Tavazoie, S.F. Control of metastatic progression by microRNA regulatory networks. Nat. Cell Biol., 2013, 15(6), 546-554.
[http://dx.doi.org/10.1038/ncb2769] [PMID: 23728460]
[115]
Fong, M.Y.; Zhou, W.; Liu, L.; Alontaga, A.Y.; Chandra, M.; Ashby, J.; Chow, A.; O’Connor, S.T.; Li, S.; Chin, A.R.; Somlo, G.; Palomares, M.; Li, Z.; Tremblay, J.R.; Tsuyada, A.; Sun, G.; Reid, M.A.; Wu, X.; Swiderski, P.; Ren, X.; Shi, Y.; Kong, M.; Zhong, W.; Chen, Y.; Wang, S.E. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat. Cell Biol., 2015, 17(2), 183-194.
[http://dx.doi.org/10.1038/ncb3094] [PMID: 25621950]
[116]
Ding, X.; Park, S.I.; McCauley, L.K.; Wang, C-Y. Signaling between transforming growth factor β (TGF-β) and transcription factor SNAI2 represses expression of microRNA miR-203 to promote epithelial-mesenchymal transition and tumor metastasis. J. Biol. Chem., 2013, 288(15), 10241-10253.
[http://dx.doi.org/10.1074/jbc.M112.443655] [PMID: 23447531]
[117]
Peng, Y.; Croce, C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther., 2016, 1, 15004.
[http://dx.doi.org/10.1038/sigtrans.2015.4] [PMID: 29263891]
[118]
Zhang, Z.; Zhang, B.; Li, W.; Fu, L.; Fu, L.; Zhu, Z.; Dong, J.T. Epigenetic silencing of miR-203 upregulates SNAI2 and contributes to the invasiveness of malignant breast cancer cells. Genes Cancer, 2011, 2(8), 782-791.
[http://dx.doi.org/10.1177/1947601911429743] [PMID: 22393463]
[119]
Almeida, M.I.; Reis, R.M.; Calin, G.A. MYC-microRNA-9-metastasis connection in breast cancer. Cell Res., 2010, 20(6), 603-604.
[http://dx.doi.org/10.1038/cr.2010.70] [PMID: 20502442]
[120]
Ma, L.; Young, J.; Prabhala, H.; Pan, E.; Mestdagh, P.; Muth, D.; Teruya-Feldstein, J.; Reinhardt, F.; Onder, T.T.; Valastyan, S.; Westermann, F.; Speleman, F.; Vandesompele, J.; Weinberg, R.A. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat. Cell Biol., 2010, 12(3), 247-256.
[http://dx.doi.org/10.1038/ncb2024] [PMID: 20173740]
[121]
Guo, R.; Su, Y.; Xue, J.; Si, J.; Chi, Y.; Wu, J. Abstract P6-05-01: A novel cleaved cytoplasmic lncRNA LacRNA interacts with PHB2 and suppresses breast cancer metastasis via repressing MYC targets. 2019.
[http://dx.doi.org/10.1158/1538-7445.SABCS18-P6-05-01]
[122]
Thakur, B.K.; Zhang, H.; Becker, A.; Matei, I.; Huang, Y.; Costa-Silva, B.; Zheng, Y.; Hoshino, A.; Brazier, H.; Xiang, J.; Williams, C.; Rodriguez-Barrueco, R.; Silva, J.M.; Zhang, W.; Hearn, S.; Elemento, O.; Paknejad, N.; Manova-Todorova, K.; Welte, K.; Bromberg, J.; Peinado, H.; Lyden, D. Double-stranded DNA in exosomes: A novel biomarker in cancer detection. Cell Res., 2014, 24(6), 766-769.
[http://dx.doi.org/10.1038/cr.2014.44] [PMID: 24710597]
[123]
Sansone, P.; Savini, C.; Kurelac, I.; Chang, Q.; Amato, L.B.; Strillacci, A.; Stepanova, A.; Iommarini, L.; Mastroleo, C.; Daly, L.; Galkin, A.; Thakur, B.K.; Soplop, N.; Uryu, K.; Hoshino, A.; Norton, L.; Bonafé, M.; Cricca, M.; Gasparre, G.; Lyden, D.; Bromberg, J. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc. Natl. Acad. Sci. USA, 2017, 114(43), E9066-E9075.
[http://dx.doi.org/10.1073/pnas.1704862114] [PMID: 29073103]
[124]
Bakhoum, S.F.; Ngo, B.; Laughney, A.M.; Cavallo, J-A.; Murphy, C.J.; Ly, P.; Shah, P.; Sriram, R.K.; Watkins, T.B.K.; Taunk, N.K.; Duran, M.; Pauli, C.; Shaw, C.; Chadalavada, K.; Rajasekhar, V.K.; Genovese, G.; Venkatesan, S.; Birkbak, N.J.; McGranahan, N.; Lundquist, M.; LaPlant, Q.; Healey, J.H.; Elemento, O.; Chung, C.H.; Lee, N.Y.; Imielenski, M.; Nanjangud, G.; Pe’er, D.; Cleveland, D.W.; Powell, S.N.; Lammerding, J.; Swanton, C.; Cantley, L.C. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature, 2018, 553(7689), 467-472.
[http://dx.doi.org/10.1038/nature25432] [PMID: 29342134]
[125]
Bernard, V.; Kim, D.U.; San Lucas, F.A.; Castillo, J.; Allenson, K.; Mulu, F.C. Circulating nucleic acids are associated with outcomes of patients with pancreatic cáncer. Gastroenterology, 2019, 156(1), 108-118. e104.
[126]
Madhavan, D.; Wallwiener, M.; Bents, K.; Zucknick, M.; Nees, J.; Schott, S.; Cuk, K.; Riethdorf, S.; Trumpp, A.; Pantel, K.; Sohn, C.; Schneeweiss, A.; Surowy, H.; Burwinkel, B. Plasma DNA integrity as a biomarker for primary and metastatic breast cancer and potential marker for early diagnosis. Breast Cancer Res. Treat., 2014, 146(1), 163-174.
[http://dx.doi.org/10.1007/s10549-014-2946-2] [PMID: 24838941]
[127]
Tan, A.S.; Baty, J.W.; Dong, L-F.; Bezawork-Geleta, A.; Endaya, B.; Goodwin, J.; Bajzikova, M.; Kovarova, J.; Peterka, M.; Yan, B.; Pesdar, E.A.; Sobol, M.; Filimonenko, A.; Stuart, S.; Vondrusova, M.; Kluckova, K.; Sachaphibulkij, K.; Rohlena, J.; Hozak, P.; Truksa, J.; Eccles, D.; Haupt, L.M.; Griffiths, L.R.; Neuzil, J.; Berridge, M.V. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab., 2015, 21(1), 81-94.
[http://dx.doi.org/10.1016/j.cmet.2014.12.003] [PMID: 25565207]
[128]
Guha, M.; Avadhani, N.G. Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion, 2013, 13(6), 577-591.
[http://dx.doi.org/10.1016/j.mito.2013.08.007] [PMID: 24004957]
[129]
Orend, G.; Chiquet-Ehrismann, R. Tenascin-C induced signaling in cancer. Cancer Lett., 2006, 244(2), 143-163.
[http://dx.doi.org/10.1016/j.canlet.2006.02.017] [PMID: 16632194]
[130]
von Holst, A. Tenascin C in stem cell niches: Redundant, permissive or instructive? Cells Tissues Organs (Print), 2008, 188(1-2), 170-177.
[http://dx.doi.org/10.1159/000112848] [PMID: 18160825]
[131]
Tavazoie, S.F.; Alarcón, C.; Oskarsson, T.; Padua, D.; Wang, Q.; Bos, P.D.; Gerald, W.L.; Massagué, J. Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 2008, 451(7175), 147-152.
[http://dx.doi.org/10.1038/nature06487] [PMID: 18185580]
[132]
Minn, A.J.; Kang, Y.; Serganova, I.; Gupta, G.P.; Giri, D.D.; Doubrovin, M.; Ponomarev, V.; Gerald, W.L.; Blasberg, R.; Massagué, J. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J. Clin. Invest., 2005, 115(1), 44-55.
[http://dx.doi.org/10.1172/JCI22320] [PMID: 15630443]
[133]
O’Connell, J.T.; Sugimoto, H.; Cooke, V.G.; MacDonald, B.A.; Mehta, A.I.; LeBleu, V.S.; Dewar, R.; Rocha, R.M.; Brentani, R.R.; Resnick, M.B.; Neilson, E.G.; Zeisberg, M.; Kalluri, R. VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc. Natl. Acad. Sci. USA, 2011, 108(38), 16002-16007.
[http://dx.doi.org/10.1073/pnas.1109493108] [PMID: 21911392]
[134]
Barker, N.; van Es, J.H.; Kuipers, J.; Kujala, P.; van den Born, M.; Cozijnsen, M.; Haegebarth, A.; Korving, J.; Begthel, H.; Peters, P.J.; Clevers, H. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 2007, 449(7165), 1003-1007.
[http://dx.doi.org/10.1038/nature06196] [PMID: 17934449]
[135]
Imai, T.; Tokunaga, A.; Yoshida, T.; Hashimoto, M.; Mikoshiba, K.; Weinmaster, G.; Nakafuku, M.; Okano, H. The neural RNA-binding protein Musashi1 translationally regulates mammalian numb gene expression by interacting with its mRNA. Mol. Cell. Biol., 2001, 21(12), 3888-3900.
[http://dx.doi.org/10.1128/MCB.21.12.3888-3900.2001] [PMID: 11359897]
[136]
Okano, H.; Kawahara, H.; Toriya, M.; Nakao, K.; Shibata, S.; Imai, T. Function of RNA-binding protein Musashi-1 in stem cells. Exp. Cell Res., 2005, 306(2), 349-356.
[http://dx.doi.org/10.1016/j.yexcr.2005.02.021] [PMID: 15925591]
[137]
Sun, Z.; Velázquez-Quesada, I.; Murdamoothoo, D.; Ahowesso, C.; Yilmaz, A.; Spenlé, C.; Averous, G.; Erne, W.; Oberndorfer, F.; Oszwald, A.; Kain, R.; Bourdon, C.; Mangin, P.; Deligne, C.; Midwood, K.; Abou-Faycal, C.; Lefebvre, O.; Klein, A.; van der Heyden, M.; Chenard, M.P.; Christofori, G.; Mathelin, C.; Loustau, T.; Hussenet, T.; Orend, G. Tenascin-C increases lung metastasis by impacting blood vessel invasions. Matrix Biol., 2019, 83, 26-47.
[http://dx.doi.org/10.1016/j.matbio.2019.07.001] [PMID: 31288084]
[138]
Catela Ivkovic, T.; Voss, G.; Cornella, H.; Ceder, Y. microRNAs as cancer therapeutics: A step closer to clinical application. Cancer Lett., 2017, 407, 113-122.
[http://dx.doi.org/10.1016/j.canlet.2017.04.007] [PMID: 28412239]
[139]
Takamizawa, J.; Konishi, H.; Yanagisawa, K.; Tomida, S.; Osada, H.; Endoh, H.; Harano, T.; Yatabe, Y.; Nagino, M.; Nimura, Y.; Mitsudomi, T.; Takahashi, T. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res., 2004, 64(11), 3753-3756.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0637] [PMID: 15172979]
[140]
Mendell, J.T. miRiad roles for the miR-17-92 cluster in development and disease. Cell, 2008, 133(2), 217-222.
[141]
Zhang, Y.; Yang, P.; Wang, X-F. Microenvironmental regulation of cancer metastasis by miRNAs. Trends Cell Biol., 2014, 24(3), 153-160.
[http://dx.doi.org/10.1016/j.tcb.2013.09.007] [PMID: 24125906]
[142]
Mani, S.A.; Guo, W.; Liao, M-J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008, 133(4), 704-715.
[143]
Karnoub, A.E.; Dash, A.B.; Vo, A.P.; Sullivan, A.; Brooks, M.W.; Bell, G.W.; Richardson, A.L.; Polyak, K.; Tubo, R.; Weinberg, R.A. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 2007, 449(7162), 557-563.
[http://dx.doi.org/10.1038/nature06188] [PMID: 17914389]
[144]
Qian, B-Z.; Li, J.; Zhang, H.; Kitamura, T.; Zhang, J.; Campion, L.R.; Kaiser, E.A.; Snyder, L.A.; Pollard, J.W. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature, 2011, 475(7355), 222-225.
[http://dx.doi.org/10.1038/nature10138] [PMID: 21654748]
[145]
Ho, A.S.; Huang, X.; Cao, H.; Christman-Skieller, C.; Bennewith, K.; Le, Q-T.; Koong, A.C. Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Transl. Oncol., 2010, 3(2), 109-113.
[http://dx.doi.org/10.1593/tlo.09256] [PMID: 20360935]
[146]
Semenza, G.L. Hypoxia-inducible factors in physiology and medicine. Cell, 2012, 148(3), 399-408.
[147]
Smyth, M.J.; Dunn, G.P.; Schreiber, R.D. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv. Immunol., 2006, 90, 1-50.
[http://dx.doi.org/10.1016/S0065-2776(06)90001-7] [PMID: 16730260]
[148]
Vesely, M.D.; Kershaw, M.H.; Schreiber, R.D.; Smyth, M.J. Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol., 2011, 29, 235-271.
[http://dx.doi.org/10.1146/annurev-immunol-031210-101324] [PMID: 21219185]
[149]
Kogure, A.; Kosaka, N.; Ochiya, T. Cross-talk between cancer cells and their neighbors via miRNA in extracellular vesicles: An emerging player in cancer metastasis. J. Biomed. Sci., 2019, 26(1), 7.
[http://dx.doi.org/10.1186/s12929-019-0500-6] [PMID: 30634952]
[150]
Zhang, Z.; Qiao, J.; Zhang, D.; Zhu, W.; Zhu, J.; Leng, X.; Li, S. Noncoding RNAs act as tumor-derived molecular components in inducing premetastatic niche formation. BioMed Res. Int., 2019, 20199258075
[http://dx.doi.org/10.1155/2019/9258075] [PMID: 31309120]
[151]
Mandel, P.; Metais, P. Les acides nucléiques du plasma sanguin chez l’homme. C. R. Seances Soc. Biol. Fil., 1948, 142(3-4), 241-243.
[PMID: 18875018]
[152]
Anker, P.; Stroun, M.; Maurice, P.A. Spontaneous release of DNA by human blood lymphocytes as shown in an in vitro system. Cancer Res., 1975, 35(9), 2375-2382.
[PMID: 1149042]
[153]
Aucamp, J.; Bronkhorst, A.J.; Badenhorst, C.P.S.; Pretorius, P.J. The diverse origins of circulating cell-free DNA in the human body: A critical re-evaluation of the literature. Biol. Rev. Camb. Philos. Soc., 2018, 93(3), 1649-1683.
[http://dx.doi.org/10.1111/brv.12413] [PMID: 29654714]
[154]
Jahr, S.; Hentze, H.; Englisch, S.; Hardt, D.; Fackelmayer, F.O.; Hesch, R-D.; Knippers, R. DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res., 2001, 61(4), 1659-1665.
[PMID: 11245480]
[155]
Leon, S.A.; Shapiro, B.; Sklaroff, D.M.; Yaros, M.J. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res., 1977, 37(3), 646-650.
[PMID: 837366]
[156]
De Mattos-Arruda, L.; Cortes, J.; Santarpia, L.; Vivancos, A.; Tabernero, J.; Reis-Filho, J.S.; Seoane, J. Circulating tumour cells and cell-free DNA as tools for managing breast cancer. Nat. Rev. Clin. Oncol., 2013, 10(7), 377-389.
[http://dx.doi.org/10.1038/nrclinonc.2013.80] [PMID: 23712187]
[157]
Ralph, S.J.; Rodríguez-Enríquez, S.; Neuzil, J.; Saavedra, E.; Moreno-Sánchez, R. The causes of cancer revisited: “mitochondrial malignancy” and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy. Mol. Aspects Med., 2010, 31(2), 145-170.
[http://dx.doi.org/10.1016/j.mam.2010.02.008] [PMID: 20206201]
[158]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[159]
Hanahan, D.; Weinberg, R.A.; Hanahan, P.D. 2 Biological hallmarks of cáncer 2017.
[160]
Ishikawa, K.; Takenaga, K.; Akimoto, M.; Koshikawa, N.; Yamaguchi, A.; Imanishi, H.; Nakada, K.; Honma, Y.; Hayashi, J. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science, 2008, 320(5876), 661-664.
[http://dx.doi.org/10.1126/science.1156906] [PMID: 18388260]
[161]
Petros, J.A.; Baumann, A.K.; Ruiz-Pesini, E.; Amin, M.B.; Sun, C.Q.; Hall, J.; Lim, S.; Issa, M.M.; Flanders, W.D.; Hosseini, S.H.; Marshall, F.F.; Wallace, D.C. mtDNA mutations increase tumorigenicity in prostate cancer. Proc. Natl. Acad. Sci. USA, 2005, 102(3), 719-724.
[http://dx.doi.org/10.1073/pnas.0408894102] [PMID: 15647368]
[162]
Tan, A.S.; Baty, J.W.; Berridge, M.V. The role of mitochondrial electron transport in tumorigenesis and metastasis. Biochim. Biophys. Acta, 2014, 1840(4), 1454-1463.
[http://dx.doi.org/10.1016/j.bbagen.2013.10.016] [PMID: 24141138]
[163]
Tang, W.; Chowdhury, A.R.; Guha, M.; Huang, L.; Van Winkle, T.; Rustgi, A.K.; Avadhani, N.G. Silencing of IkBβ mRNA causes disruption of mitochondrial retrograde signaling and suppression of tumor growth in vivo. Carcinogenesis, 2012, 33(9), 1762-1768.
[http://dx.doi.org/10.1093/carcin/bgs190] [PMID: 22637744]
[164]
Brellier, F.; Martina, E.; Degen, M.; Heuzé-Vourc’h, N.; Petit, A.; Kryza, T.; Courty, Y.; Terracciano, L.; Ruiz, C.; Chiquet-Ehrismann, R. Tenascin-W is a better cancer biomarker than tenascin-C for most human solid tumors. BMC Clin. Pathol., 2012, 12(1), 14.
[http://dx.doi.org/10.1186/1472-6890-12-14] [PMID: 22947174]
[165]
Jahkola, T.; Toivonen, T.; Virtanen, I.; von Smitten, K.; Nordling, S.; von Boguslawski, K.; Haglund, C.; Nevanlinna, H.; Blomqvist, C. Tenascin-C expression in invasion border of early breast cancer: a predictor of local and distant recurrence. Br. J. Cancer, 1998, 78(11), 1507-1513.
[http://dx.doi.org/10.1038/bjc.1998.714] [PMID: 9836485]
[166]
Rudnick, J.A.; Kuperwasser, C. Stromal biomarkers in breast cancer development and progression. Clin. Exp. Metastasis, 2012, 29(7), 663-672.
[http://dx.doi.org/10.1007/s10585-012-9499-8] [PMID: 22684404]
[167]
Radisky, E.S.; Radisky, D.C. Matrix metalloproteinases as breast cancer drivers and therapeutic targets. Front. Biosci., 2015, 20, 1144-1163.
[http://dx.doi.org/10.2741/4364] [PMID: 25961550]
[168]
Vihinen, P.; Kähäri, V.M. Matrix metalloproteinases in cancer: Prognostic markers and therapeutic targets. Int. J. Cancer, 2002, 99(2), 157-166.
[http://dx.doi.org/10.1002/ijc.10329] [PMID: 11979428]
[169]
Dave, H.; Trivedi, S.; Shah, M.; Shukla, S. Transforming growth factor β 2: A predictive marker for breast cancer. Indian J. Exp. Biol., 2011, 49(11), 879-887.
[PMID: 22126020]
[170]
Ivanović, V.; Todorović-Raković, N.; Demajo, M.; Nesković-Konstantinović, Z.; Subota, V.; Ivanisević-Milovanović, O.; Nikolić-Vukosavljević, D. Elevated plasma levels of transforming growth factor-β 1 (TGF-β 1) in patients with advanced breast cancer: association with disease progression. Eur. J. Cancer, 2003, 39(4), 454-461.
[http://dx.doi.org/10.1016/S0959-8049(02)00502-6] [PMID: 12751375]
[171]
Rydén, L.; Jirström, K.; Haglund, M.; Stål, O.; Fernö, M. Epidermal growth factor receptor and vascular endothelial growth factor receptor 2 are specific biomarkers in triple-negative breast cancer. Results from a controlled randomized trial with long-term follow-up. Breast Cancer Res. Treat., 2010, 120(2), 491-498.
[http://dx.doi.org/10.1007/s10549-010-0758-6] [PMID: 20135347]
[172]
Bottino, J.; Gelaleti, G.B.; Maschio, L.B.; Jardim-Perassi, B.V.; de Campos Zuccari, D.A.P. Immunoexpression of ROCK-1 and MMP-9 as prognostic markers in breast cancer. Acta Histochem., 2014, 116(8), 1367-1373.
[http://dx.doi.org/10.1016/j.acthis.2014.08.009] [PMID: 25218053]
[173]
Janyasupab, M.; Lee, Y-H.; Zhang, Y.; Liu, C.W.; Cai, J.; Popa, A.; Samia, A.C.; Wang, K.W.; Xu, J.; Hu, C.C.; Wendt, M.K.; Schiemann, B.J.; Thompson, C.L.; Yen, Y.; Schiemann, W.P.; Liu, C.C. Detection of lysyl oxidase-like 2 (LOXL2), a biomarker of metastasis from breast cancers using human blood samples. Recent Pat. Biomark., 2015, 5(2), 93-100.
[http://dx.doi.org/10.2174/2210309005666150804195033] [PMID: 28670509]
[174]
Kirschmann, D.A.; Seftor, E.A.; Fong, S.F.; Nieva, D.R.; Sullivan, C.M.; Edwards, E.M.; Sommer, P.; Csiszar, K.; Hendrix, M.J. A molecular role for lysyl oxidase in breast cancer invasion. Cancer Res., 2002, 62(15), 4478-4483.
[PMID: 12154058]
[175]
Côme, C.; Magnino, F.; Bibeau, F.; De Santa Barbara, P.; Becker, K.F.; Theillet, C.; Savagner, P. Snail and slug play distinct roles during breast carcinoma progression. Clin. Cancer Res., 2006, 12(18), 5395-5402.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0478] [PMID: 17000672]
[176]
Hesari, A.; Golrokh Moghadam, S.A.; Siasi, A.; Rahmani, M.; Behboodi, N.; Rastgar-Moghadam, A.; Ferns, G.A.; Ghasemi, F.; Avan, A. Tumor-derived exosomes: Potential biomarker or therapeutic target in breast cancer? J. Cell. Biochem., 2018, 119(6), 4236-4240.
[http://dx.doi.org/10.1002/jcb.26364] [PMID: 28833502]
[177]
Jia, Y.; Chen, Y.; Wang, Q.; Jayasinghe, U.; Luo, X.; Wei, Q.; Wang, J.; Xiong, H.; Chen, C.; Xu, B.; Hu, W.; Wang, L.; Zhao, W.; Zhou, J. Exosome: Emerging biomarker in breast cancer. Oncotarget, 2017, 8(25), 41717-41733.
[http://dx.doi.org/10.18632/oncotarget.16684] [PMID: 28402944]
[178]
Iranpour, M.; Soudyab, M.; Geranpayeh, L.; Mirfakhraie, R.; Azargashb, E.; Movafagh, A.; Ghafouri-Fard, S. Expression analysis of four long noncoding RNAs in breast cancer. Tumour Biol., 2016, 37(3), 2933-2940.
[http://dx.doi.org/10.1007/s13277-015-4135-2] [PMID: 26409453]
[179]
Zhang, X-F.; Liu, T.; Li, Y.; Li, S. Overexpression of long non-coding RNA CCAT1 is a novel biomarker of poor prognosis in patients with breast cancer. Int. J. Clin. Exp. Pathol., 2015, 8(8), 9440-9445.
[PMID: 26464701]
[180]
Ahmad, A.; Aboukameel, A.; Kong, D.; Wang, Z.; Sethi, S.; Chen, W.; Sarkar, F.H.; Raz, A. Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res., 2011, 71(9), 3400-3409.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0965] [PMID: 21389093]
[181]
Ye, F.; Tang, H.; Liu, Q.; Xie, X.; Wu, M.; Liu, X.; Chen, B.; Xie, X. miR-200b as a prognostic factor in breast cancer targets multiple members of RAB family. J. Transl. Med., 2014, 12(1), 17.
[http://dx.doi.org/10.1186/1479-5876-12-17] [PMID: 24447584]
[182]
Canzoniero, J.V.; Park, B.H. Use of cell free DNA in breast oncology. Biochim. Biophys. Acta, 2016, 1865(2), 266-274.
[183]
Schwarzenbach, H. Circulating nucleic acids as biomarkers in breast cancer. Breast Cancer Res., 2013, 15(5), 211.
[http://dx.doi.org/10.1186/bcr3446] [PMID: 24090167]
[184]
Hsu, C.W.; Yin, P.H.; Lee, H.C.; Chi, C.W.; Tseng, L.M. Mitochondrial DNA content as a potential marker to predict response to anthracycline in breast cancer patients. Breast J., 2010, 16(3), 264-270.
[http://dx.doi.org/10.1111/j.1524-4741.2010.00908.x] [PMID: 20408822]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy