Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Revealing Changes in Curcumin Bioavailability using Vitamin C as an Enhancer by HPLC-MS/MS

Author(s): Xufen Dai, Jiaxue Hao, Ying Feng, Jing Wang, Qiannan Li, Cuicui Ma, Xing Wang, Zhongman Chang, Shixiang Wang and Yuxin Wang*

Volume 17, Issue 4, 2021

Published on: 20 December, 2019

Page: [537 - 546] Pages: 10

DOI: 10.2174/1573412916666191220150039

Price: $65

Abstract

Background: Curcumin (CUR), a natural isolated compound from turmeric, helps in fighting many diseases, but the broad application of curcumin has been limited ascribed to low bioavailability.

Objective: The aim of this study is to pursue the enhancement of curcumin bioavailability through coadministration of vitamin C.

Methods: Such purpose was achieved through the analysis of curcumin pharmacokinetics by highperformance liquid chromatography coupled with electrospray ionization - tandem mass spectrometry (HPLC - ESI - MS/MS). The plasma was separated on a C18 reverse-phase column using acetonitrile and ammonium formate solution (pH 6.5; 2.0 mM) at 0.8 mL/min. MS/MS detection was carried out in negative mode using mass patterns of m/z 367.0 > 216.7 for curcumin and m/z 265.2 > 223.9 for internal standard (honokiol).

Results: Successful application of the proposed method in the pharmacokinetic study presented clear changes in key pharmacokinetic parameters, including the growth of AUC (0-t) up to 2.4 times, a 2.2- fold increase of Cmax, 2.2-fold loss of CL, and 1.5-fold diminishment of t1/2.

Conclusion: An HPLC-ESI-MS/MS method for the determination of curcumin in rat plasma and validated the improvement of bioavailability of curcumin through co-administration of vitamin C was determined. These changes were reasoned to the inhibition of lipid peroxidation induced by the use of vitamin C. Such a simple strategy is possible to become an alternative for enhancing curcumin efficiency in practice.

Keywords: Curcumin, vitamin C, antioxidants, HPLC–MS/MS, bioavailability, plasma.

Graphical Abstract

[1]
Siviero, A.; Gallo, E.; Maggini, V.; Gori, L.; Mugelli, A.; Firenzuoli, F.; Vannacci, A. Curcumin, a golden spice with a low bioavailability. J. Herb. Med., 2015, 5(2), 57-70.
[http://dx.doi.org/10.1016/j.hermed.2015.03.001]
[2]
Zhou, H.; Beevers, C.S.; Huang, S. The targets of curcumin. Curr. Drug Targets, 2011, 12(3), 332-347.
[http://dx.doi.org/10.2174/138945011794815356] [PMID: 20955148]
[3]
Henrotin, Y.; Priem, F.; Mobasheri, A. Curcumin: a new paradigm and therapeutic opportunity for the treatment of osteoarthritis: curcumin for osteoarthritis management. Springerplus, 2013, 2(1), 56.
[http://dx.doi.org/10.1186/2193-1801-2-56] [PMID: 23487030]
[4]
Ryan, J.L.; Heckler, C.E.; Ling, M.; Katz, A.; Williams, J.P.; Pentland, A.P.; Morrow, G.R. Curcumin for radiation dermatitis: a randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients. Radiat. Res., 2013, 180(1), 34-43.
[http://dx.doi.org/10.1667/RR3255.1] [PMID: 23745991]
[5]
Akyuz, S.; Turan, F.; Gurbuzler, L.; Arici, A.; Sogut, E.; Ozkan, O. The anti-inflammatory and antioxidant effects of curcumin in middle ear infection. J. Craniofac. Surg., 2016, 27(5), e494-e497.
[http://dx.doi.org/10.1097/SCS.0000000000002810] [PMID: 27380582]
[6]
Nimiya, Y.; Wang, W.; Du, Z.; Sukamtoh, E.; Zhu, J.; Decker, E.; Zhang, G. Redox modulation of curcumin stability: Redox active antioxidants increase chemical stability of curcumin. Mol. Nutr. Food Res., 2016, 60(3), 487-494.
[http://dx.doi.org/10.1002/mnfr.201500681] [PMID: 26608515]
[7]
Cheng, A.L.; Hsu, C.H.; Lin, J.K.; Hsu, M.M.; Ho, Y.F.; Shen, T.S.; Ko, J.Y.; Lin, J.T.; Lin, B.R.; Ming-Shiang, W.; Yu, H.S.; Jee, S.H.; Chen, G.S.; Chen, T.M.; Chen, C.A.; Lai, M.K.; Pu, Y.S.; Pan, M.H.; Wang, Y.J.; Tsai, C.C.; Hsieh, C.Y. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res., 2001, 21(4B), 2895-2900.
[PMID: 11712783]
[8]
Bava, S.V.; Puliyappadamba, V.T.; Deepti, A.; Nair, A.; Karunagaran, D.; Anto, R.J. Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization. J. Biol. Chem., 2005, 280(8), 6301-6308.
[http://dx.doi.org/10.1074/jbc.M410647200] [PMID: 15590651]
[9]
Aggarwal, B.B.; Harikumar, K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol., 2009, 41(1), 40-59.
[http://dx.doi.org/10.1016/j.biocel.2008.06.010] [PMID: 18662800]
[10]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[11]
Vareed, S.K.; Kakarala, M.; Ruffin, M.T.; Crowell, J.A.; Normolle, D.P.; Djuric, Z.; Brenner, D.E. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol. Biomarkers Prev., 2008, 17(6), 1411-1417.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-2693] [PMID: 18559556]
[12]
Lollo, G.; Ullio-Gamboa, G.; Fuentes, E.; Matha, K.; Lautram, N.; Benoit, J.P. In vitro anti-cancer activity and pharmacokinetic evaluation of curcumin-loaded lipid nanocapsules. Mater. Sci. Eng. C, 2018, 91, 859-867.
[http://dx.doi.org/10.1016/j.msec.2018.06.014] [PMID: 30033321]
[13]
Yang, H.; Du, Z.; Wang, W.; Song, M.; Sanidad, K.; Sukamtoh, E.; Zheng, J.; Tian, L.; Xiao, H.; Liu, Z.; Zhang, G. Structure-activity relationship of curcumin: role of the methoxy group in anti-inflammatory and anticolitis effects of curcumin. J. Agric. Food Chem., 2017, 65(22), 4509-4515.
[http://dx.doi.org/10.1021/acs.jafc.7b01792] [PMID: 28513174]
[14]
Gao, Y.; Li, Z.; Sun, M.; Li, H.; Guo, C.; Cui, J.; Li, A.; Cao, F.; Xi, Y.; Lou, H.; Zhai, G. Preparation, characterization, pharmacokinetics, and tissue distribution of curcumin nanosuspension with TPGS as stabilizer. Drug Dev. Ind. Pharm., 2010, 36(10), 1225-1234.
[http://dx.doi.org/10.3109/03639041003695139 ] [PMID: 20545506]
[15]
Kakkar, V.; Singh, S.; Singla, D.; Kaur, I.P. Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol. Nutr. Food Res., 2011, 55(3), 495-503.
[http://dx.doi.org/10.1002/mnfr.201000310PMID: 20938993]
[16]
Alexis, F.; Pridgen, E.; Molnar, L.K.; Farokhzad, O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm., 2008, 5(4), 505-515.
[http://dx.doi.org/10.1021/mp800051m] [PMID: 18672949]
[17]
Khalil, N.M.; Carraro, E.; Cotica, L.F.; Mainardes, R.M. Potential of polymeric nanoparticles in AIDS treatment and prevention. Expert Opin. Drug Deliv., 2011, 8(1), 95-112.
[http://dx.doi.org/10.1517/17425247.2011.543673] [PMID: 21143001]
[18]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[19]
Rahman, N.; Azmi, S.N.H.; Wu, H.F. The importance of impurity analysis in pharmaceutical products: An integrated approach. Accredit. Qual. Assur., 2006, 11(1-2), 69-74.
[http://dx.doi.org/10.1007/s00769-006-0095-y]
[20]
Alothman, Z.A.; Rahman, N.; Siddiqui, M.R. Review on pharmaceutical impurities, stability studies and degradation products: An Analytical Approach. Reviews in Advanced Sciences &amp. Engineering, 2013, 2(2), 155-166.
[http://dx.doi.org/10.1166/rase.2013.1039]
[21]
Siddiqui, M.R.; Alothman, Z.A.; Rahman, N. Analytical techniques in pharmaceutical analysis: A review. Arab. J. Chem., 2017, 10(S1), S1409-S1421.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.016]
[22]
Shaikh, J.; Ankola, D.D.; Beniwal, V.; Singh, D.; Kumar, M.N.V.R. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur. J. Pharm. Sci., 2009, 37(3-4), 223-230.
[http://dx.doi.org/10.1016/j.ejps.2009.02.019] [PMID: 19491009]
[23]
Liu, A.; Lou, H.; Zhao, L.; Fan, P. Validated LC/MS/MS assay for curcumin and tetrahydrocurcumin in rat plasma and application to pharmacokinetic study of phospholipid complex of curcumin. J. Pharm. Biomed. Anal., 2006, 40(3), 720-727.
[http://dx.doi.org/10.1016/j.jpba.2005.09.032] [PMID: 16316738]
[24]
Ma, Z.; Shayeganpour, A.; Brocks, D.R.; Lavasanifar, A.; Samuel, J. High-performance liquid chromatography analysis of curcumin in rat plasma: application to pharmacokinetics of polymeric micellar formulation of curcumin. Biomed. Chromatogr., 2007, 21(5), 546-552.
[http://dx.doi.org/10.1002/bmc.795 ] [PMID: 17340565]
[25]
Cao, Y.; Xu, R.X.; Liu, Z. A high-throughput quantification method of curcuminoids and curcumin metabolites in human plasma via high-performance liquid chromatography/tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 949-950, 70-78.
[http://dx.doi.org/10.1016/j.jchromb.2013.12.039] [PMID: 24480327]
[26]
Wang, Y.; Wang, C.; Zhao, J.; Ding, Y.; Li, L. A cost-effective method to prepare curcumin nanosuspensions with enhanced oral bioavailability. J. Colloid Interface Sci., 2017, 485, 91-98.
[http://dx.doi.org/10.1016/j.jcis.2016.09.003] [PMID: 27657837]
[27]
Khalil, N.M.; do Nascimento, T.C.; Casa, D.M.; Dalmolin, L.F.; de Mattos, A.C.; Hoss, I.; Romano, M.A.; Mainardes, R.M. Pharmacokinetics of curcumin-loaded PLGA and PLGA-PEG blend nanoparticles after oral administration in rats. Colloids Surf. B Biointerfaces, 2013, 101(1), 353-360.
[http://dx.doi.org/10.1016/j.colsurfb.2012.06.024] [PMID: 23010041]
[28]
Chen, W.; Fan-Havard, P.; Yee, L.D.; Cao, Y.; Stoner, G.D.; Chan, K.K.; Liu, Z. A liquid chromatography-tandem mass spectrometric method for quantification of curcumin-O-glucuronide and curcumin in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 900(12), 89-93.
[http://dx.doi.org/10.1016/j.jchromb.2012.05.026] [PMID: 22682887]
[29]
Yang, K.Y.; Lin, L.C.; Tseng, T.Y.; Wang, S.C.; Tsai, T.H. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 853(1-2), 183-189.
[http://dx.doi.org/10.1016/j.jchromb.2007.03.010] [PMID: 17400527]
[30]
Sasaki, H.; Sunagawa, Y.; Takahashi, K.; Imaizumi, A.; Fukuda, H.; Hashimoto, T.; Wada, H.; Katanasaka, Y.; Kakeya, H.; Fujita, M.; Hasegawa, K.; Morimoto, T. Innovative preparation of curcumin for improved oral bioavailability. Biol. Pharm. Bull., 2011, 34(5), 660-665.
[http://dx.doi.org/10.1248/bpb.34.660] [PMID: 21532153]
[31]
Szymusiak, M.; Hu, X.; Leon Plata, P.A.; Ciupinski, P.; Wang, Z.J.; Liu, Y. Bioavailability of curcumin and curcumin glucuronide in the central nervous system of mice after oral delivery of nano-curcumin. Int. J. Pharm., 2016, 511(1), 415-423.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.027] [PMID: 27426105]
[32]
Gupta, N.K.; Dixit, V.K. Bioavailability enhancement of curcumin by complexation with phosphatidyl choline. J. Pharm. Sci., 2011, 100(5), 1987-1995.
[http://dx.doi.org/10.1002/jps.22393] [PMID: 21374628]
[33]
Kakkar, V.; Singh, S.; Singla, D.; Sahwney, S.; Chauhan, A.S.; Singh, G.; Kaur, I.P. Pharmacokinetic applicability of a validated liquid chromatography tandem mass spectroscopy method for orally administered curcumin loaded solid lipid nanoparticles to rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(32), 3427-3431.
[http://dx.doi.org/10.1016/j.jchromb.2010.10.017] [PMID: 21111692]
[34]
Chuah, A.M.; Jacob, B.; Jie, Z.; Ramesh, S.; Mandal, S.; Puthan, J.K.; Deshpande, P.; Vaidyanathan, V.V.; Gelling, R.W.; Patel, G.; Das, T.; Shreeram, S. Enhanced bioavailability and bioefficacy of an amorphous solid dispersion of curcumin. Food Chem., 2014, 156, 227-233.
[http://dx.doi.org/10.1016/j.foodchem.2014.01.108] [PMID: 24629962]
[35]
Zhang, X.; Li, L.C.; Mao, S. Nanosuspensions of poorly water soluble drugs prepared by top-down technologies. Curr. Pharm. Des., 2014, 20(3), 388-407.
[http://dx.doi.org/10.2174/13816128113199990401] [PMID: 23651400]
[36]
Schneider, C.; Gordon, O.N.; Edwards, R.L.; Luis, P.B. Degradation of curcumin: from mechanism to biological implications. J. Agric. Food Chem., 2015, 63(35), 7606-7614.
[http://dx.doi.org/10.1021/acs.jafc.5b00244] [PMID: 25817068]
[37]
Griesser, M.; Pistis, V.; Suzuki, T.; Tejera, N.; Pratt, D.A.; Schneider, C. Autoxidative and cyclooxygenase-2 catalyzed transformation of the dietary chemopreventive agent curcumin. J. Biol. Chem., 2011, 286(2), 1114-1124.
[http://dx.doi.org/10.1074/jbc.M110.178806] [PMID: 21071447]
[38]
Ak, T.; Gulcin, I. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact., 2008, 174(1), 27-37.
[http://dx.doi.org/10.1016/j.cbi.2008.05.003] [PMID: 18547552]
[39]
Magalhaes, A.S.; Silva, B.M.; Pereira, J.A.; Andrade, P.B.; Valentao, P.; Carvalho, M. Protective effect of quince (Cydonia oblonga Miller) fruit against oxidative hemolysis of human erythrocytes. Food Chem. Toxicol., 2009, 47(6), 1372-1377.
[http://dx.doi.org/10.1016/j.fct.2009.03.017] [PMID: 19306906]
[40]
Jayaprakasha, G.K.; Rao, L.J.; Sakariah, K.K. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin.Food Chem., 2006, 98(4), 720-724.,
[http://dx.doi.org/10.1016/j.foodchem.2005.06.037]

© 2025 Bentham Science Publishers | Privacy Policy