摘要
改变药物用途是开发针对另一种疾病的现有或废弃药物的过程。 重新用途可以避免与传统药物发现策略相关的更高成本和时间,因为通常已经建立了毒性和药代动力学特征。 这篇简短的综述着重于将药物重新用于皮肤癌的努力,并包括在一系列其他药物中重复使用抗高血压药,驱虫药和抗真菌药。 重新利用不仅可以为有新适应症的药物带来希望,而且重新利用的过程可以揭示疾病发病机理的新机制,并为药物干预提供新的机会。
关键词: 药物再定位,黑素瘤,皮肤癌,癌症,疾病,黑素瘤。
[1]
World Health Organization Cancer Today. International agency for research on cancer., Available at
http://gco.iarc.fr/today/home
(Accessed Date: 16th January, 2020)
[2]
Cancer Australia. cancer in Australia statistics. International Agency for Research on Cancer. Available at
https://canceraustralia.gov.au/affected-cancer/what-cancer/cancer-australia-statistics (Accessed Date: 16th January, 2020)
[3]
International agency for research on cancer. World Cancer Report; World Health Organization: Lyon, France, 2014.
[4]
Burki, T.K. Oncology drug market worth predicted to increase. Lancet Oncol., 2015, 16(1)e10
[http://dx.doi.org/10.1016/S1470-2045(14)71164-7] [PMID: 25638545]
[http://dx.doi.org/10.1016/S1470-2045(14)71164-7] [PMID: 25638545]
[5]
World health organization, skin cancers.. Available at
https://www.who.int/uv/faq/skincancer/en/index1.html
(Accessed Date: 16th January, 2020)
[6]
GLOBOCAN 2012: estimated cancer incidence, mortality and prevalence worldwide 2012. Available at
https://publica-tions.iarc.fr/Databases/Iarc-Cancerbases/GLOBOCAN-2012-Estimated-Cancer-Incidence-Mortality-And-Prevalen-ce-Worldwide-In-2012-V1.0-2012
(Accessed Date: 16th January, 2020)
[7]
Cancer Council. Skin cancer., Available at
https://www.cancer.org.au/cancer-information/types-of-cancer/skin-cancer
(Accessed Date: 16th January, 2020)
[8]
Staples, M.P.; Elwood, M.; Burton, R.C.; Williams, J.L.; Marks, R.; Giles, G.G. Non-melanoma skin cancer in Australia: the 2002 national survey and trends since 1985. Med. J. Aust., 2006, 184(1), 6-10.
[http://dx.doi.org/10.5694/j.1326-5377.2006.tb00086.x] [PMID: 16398622]
[http://dx.doi.org/10.5694/j.1326-5377.2006.tb00086.x] [PMID: 16398622]
[9]
Cancer Australia. Melanoma of the skin statistics. Available at
https://melanoma.canceraustralia.gov.au/statistics
(Accessed Date: 16th January, 2020)
[10]
Jenkins, R.W.; Barbie, D.A.; Flaherty, K.T. Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer, 2018, 118(1), 9-16.
[http://dx.doi.org/10.1038/bjc.2017.434] [PMID: 29319049]
[http://dx.doi.org/10.1038/bjc.2017.434] [PMID: 29319049]
[11]
Lim, S.Y.; Rizos, H. Immune cell profiling in the age of immune checkpoint inhibitors: implications for biomarker discovery and un-derstanding of resistance mechanisms. Mamm. Genome, 2018, 29(11-12), 866-878.
[http://dx.doi.org/10.1007/s00335-018-9757-4] [PMID: 29968076]
[http://dx.doi.org/10.1007/s00335-018-9757-4] [PMID: 29968076]
[12]
Shergold, A.L.; Millar, R.; Nibbs, R.J.B. Understanding and overcoming the resistance of cancer to PD-1/PD-L1 blockade. Pharmacol. Res., 2019, 145104258
[http://dx.doi.org/10.1016/j.phrs.2019.104258] [PMID: 31063806]
[http://dx.doi.org/10.1016/j.phrs.2019.104258] [PMID: 31063806]
[13]
Lucena, S.R.; Salazar, N.; Gracia-Cazaña, T.; Zamarrón, A.; González, S.; Juarranz, Á.; Gilaberte, Y. Combined treatments with pho-todynamic therapy for non-melanoma skin cancer. Int. J. Mol. Sci., 2015, 16(10), 25912-25933.
[http://dx.doi.org/10.3390/ijms161025912] [PMID: 26516853]
[http://dx.doi.org/10.3390/ijms161025912] [PMID: 26516853]
[14]
Clark, C.M.; Furniss, M.; Mackay-Wiggan, J.M. Basal cell carcinoma: an evidence-based treatment update. Am. J. Clin. Dermatol., 2014, 15(3), 197-216.
[http://dx.doi.org/10.1007/s40257-014-0070-z] [PMID: 24733429]
[http://dx.doi.org/10.1007/s40257-014-0070-z] [PMID: 24733429]
[15]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[16]
Pantziarka, P.; Verbaanderd, C.; Sukhatme, V.; Rica Capistrano, I.; Crispino, S.; Gyawali, B.; Rooman, I.; Van Nuffel, A.M.; Meheus, L.; Sukhatme, V.P.; Bouche, G. ReDO_DB: the repurposing drugs in oncology database. Ecancermedicalscience, 2018, 12, 886.
[http://dx.doi.org/10.3332/ecancer.2018.886] [PMID: 30679953]
[http://dx.doi.org/10.3332/ecancer.2018.886] [PMID: 30679953]
[17]
Brown, A.S.; Patel, C.J. A standard database for drug repositioning. Sci. Data, 2017.4170029
[http://dx.doi.org/10.1038/sdata.2017.29] [PMID: 28291243]
[http://dx.doi.org/10.1038/sdata.2017.29] [PMID: 28291243]
[18]
Gns, H.S.; Gr, S.; Murahari, M.; Krishnamurthy, M. An update on drug repurposing: re-written saga of the drug’s fate. Biomed. Pharmacother., 2019, 110, 700-716.
[http://dx.doi.org/10.1016/j.biopha.2018.11.127] [PMID: 30553197]
[http://dx.doi.org/10.1016/j.biopha.2018.11.127] [PMID: 30553197]
[19]
Nowak-Sliwinska, P.; Scapozza, L.; Ruiz i Altaba, A.; Altaba, A. Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer. Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(2), 434-454.
[http://dx.doi.org/10.1016/j.bbcan.2019.04.005] [PMID: 31034926]
[http://dx.doi.org/10.1016/j.bbcan.2019.04.005] [PMID: 31034926]
[20]
Australian Government. Ritauximab. The pharmaceutical benefits scheme. Available at
https://www.pbs.gov.au/medicine/item/9544h-9611w
(Accessed Date: 16th January, 2020)
[21]
Traish, A.M.; Melcangi, R.C.; Bortolato, M.; Garcia-Segura, L.M.; Zitzmann, M. Adverse effects of 5α-reductase inhibitors: what do we know, don’t know, and need to know? Rev. Endocr. Metab. Disord., 2015, 16(3), 177-198.
[http://dx.doi.org/10.1007/s11154-015-9319-y] [PMID: 26296373]
[http://dx.doi.org/10.1007/s11154-015-9319-y] [PMID: 26296373]
[22]
Friedman, B.; Cronstein, B. Methotrexate mechanism in treatment of rheumatoid arthritis. Joint Bone Spine, 2019, 86(3), 301-307.
[http://dx.doi.org/10.1016/j.jbspin.2018.07.004] [PMID: 30081197]
[http://dx.doi.org/10.1016/j.jbspin.2018.07.004] [PMID: 30081197]
[23]
Colleoni, M.; Rocca, A.; Sandri, M.T.; Zorzino, L.; Masci, G.; Nolè, F.; Peruzzotti, G.; Robertson, C.; Orlando, L.; Cinieri, S. de, B.F.; Viale, G.; Goldhirsch, A. Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumor activity and correlation with vascular endothelial growth factor levels. Ann. Oncol., 2002, 13(1), 73-80.
[http://dx.doi.org/10.1093/annonc/mdf013] [PMID: 11863115]
[http://dx.doi.org/10.1093/annonc/mdf013] [PMID: 11863115]
[24]
Mangoni, A.A.; Tommasi, S.; Zinellu, A.; Sotgia, S.; Carru, C.; Piga, M.; Erre, G.L. Repurposing existing drugs for cardiovascular risk management: a focus on methotrexate. Drugs Context, 2018, 7212557
[http://dx.doi.org/10.7573/dic.212557] [PMID: 30459819]
[http://dx.doi.org/10.7573/dic.212557] [PMID: 30459819]
[25]
Ridker, P.M.; Everett, B.M.; Pradhan, A.; MacFadyen, J.G.; Solomon, D.H.; Zaharris, E.; Mam, V.; Hasan, A.; Rosenberg, Y.; Itur-riaga, E.; Gupta, M.; Tsigoulis, M.; Verma, S.; Clearfield, M.; Libby, P.; Goldhaber, S.Z.; Seagle, R.; Ofori, C.; Saklayen, M.; Butman, S.; Singh, N.; Le May, M.; Bertrand, O.; Johnston, J.; Paynter, N.P.; Glynn, R.J.; Investigators, C. CIRT investigators. low-dose methotrexate for the prevention of atherosclerotic events. N. Engl. J. Med., 2019, 380(8), 752-762.
[http://dx.doi.org/10.1056/NEJMoa1809798] [PMID: 30415610]
[http://dx.doi.org/10.1056/NEJMoa1809798] [PMID: 30415610]
[26]
Libby, P.; Ridker, P.M.; Hansson, G.K. Leducq transatlantic network on atherothrombosis. Inflammation in atherosclerosis: from pathophysiology to practice. J. Am. Coll. Cardiol., 2009, 54(23), 2129-2138.
[http://dx.doi.org/10.1016/j.jacc.2009.09.009] [PMID: 19942084]
[http://dx.doi.org/10.1016/j.jacc.2009.09.009] [PMID: 19942084]
[27]
Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; Kastelein, J.J.P.; Cornel, J.H.; Pais, P.; Pella, D.; Genest, J.; Cifkova, R.; Lorenzatti, A.; Forster, T.; Kobalava, Z.; Vida-Simiti, L.; Flather, M.; Shimokawa, H.; Ogawa, H.; Dellborg, M.; Rossi, P.R.F.; Troquay, R.P.T.; Libby, P.; Glynn, R.J.; Group, C.T. CANTOS trial group. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med., 2017, 377(12), 1119-1131.
[http://dx.doi.org/10.1056/NEJMoa1707914] [PMID: 28845751]
[http://dx.doi.org/10.1056/NEJMoa1707914] [PMID: 28845751]
[28]
Crockett, S.D.; Schectman, R.; Stürmer, T.; Kappelman, M.D. Topiramate use does not reduce flares of inflammatory bowel disease. Dig. Dis. Sci., 2014, 59(7), 1535-1543.
[http://dx.doi.org/10.1007/s10620-014-3040-7] [PMID: 24504592]
[http://dx.doi.org/10.1007/s10620-014-3040-7] [PMID: 24504592]
[29]
Bharadwaj, P.R.; Bates, K.A.; Porter, T.; Teimouri, E.; Perry, G.; Steele, J.W.; Gandy, S.; Groth, D.; Martins, R.N.; Verdile, G. Latrepirdine: molecular mechanisms underlying potential therapeutic roles in Alzheimer’s and other neurodegenerative diseases. Transl. Psychiatry, 2013, 3(12)e332
[http://dx.doi.org/10.1038/tp.2013.97] [PMID: 24301650]
[http://dx.doi.org/10.1038/tp.2013.97] [PMID: 24301650]
[30]
Ortiz, A.; Gui, J.; Zahedi, F.; Yu, P.; Cho, C.; Bhattacharya, S.; Carbone, C.J.; Yu, Q.; Katlinski, K.V.; Katlinskaya, Y.V.; Handa, S.; Haas, V.; Volk, S.W.; Brice, A.K.; Wals, K.; Matheson, N.J.; Antrobus, R.; Ludwig, S.; Whiteside, T.L.; Sander, C.; Tarhini, A.A.; Kirkwood, J.M.; Lehner, P.J.; Guo, W.; Rui, H.; Minn, A.J.; Koumenis, C.; Diehl, J.A.; Fuchs, S.Y. An Interferon-driven oxysterol-based defense against tumor-derived extracellular vesicles. Cancer Cell, 2019, 35(1), 33-45.e6.
[http://dx.doi.org/10.1016/j.ccell.2018.12.001] [PMID: 30645975]
[http://dx.doi.org/10.1016/j.ccell.2018.12.001] [PMID: 30645975]
[31]
He, X.; Wang, J.; Dou, J.; Yu, F.; Cai, K.; Li, X.; Zhang, H.; Gu, N. Antitumor efficacy induced by a B16F10 tumor cell vaccine treated with mitoxantrone alone or in combination with reserpine and verapamil in mice. Exp. Ther. Med., 2011, 2(5), 911-916.
[http://dx.doi.org/10.3892/etm.2011.283] [PMID: 22977597]
[http://dx.doi.org/10.3892/etm.2011.283] [PMID: 22977597]
[32]
Perissin, L.; Rapozzi, V.; Zorzet, S.; Giraldi, T. Blockers of adrenergic neurons and receptors, tumor progression and effects of rotational stress in mice. Anticancer Res., 1996, 16(6B), 3409-3413.
[PMID: 9042199]
[PMID: 9042199]
[33]
Riedel, T.; Demaria, O.; Zava, O.; Joncic, A.; Gilliet, M.; Dyson, P.J. Drug repurposing approach identifies a synergistic drug combi-nation of an antifungal agent and an experimental organometallic drug for melanoma treatment. Mol. Pharm., 2018, 15(1), 116-126.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00764] [PMID: 29185769]
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00764] [PMID: 29185769]
[34]
Trousil, S.; Chen, S.; Mu, C.; Shaw, F.M.; Yao, Z.; Ran, Y.; Shakuntala, T.; Merghoub, T.; Manstein, D.; Rosen, N.; Cantley, L.C.; Zippin, J.H.; Zheng, B. Phenformin enhances the efficacy of ERK inhibition in NF1-mutant melanoma. J. Invest. Dermatol., 2017, 137(5), 1135-1143.
[http://dx.doi.org/10.1016/j.jid.2017.01.013] [PMID: 28143781]
[http://dx.doi.org/10.1016/j.jid.2017.01.013] [PMID: 28143781]
[35]
Petrachi, T.; Romagnani, A.; Albini, A.; Longo, C.; Argenziano, G.; Grisendi, G.; Dominici, M.; Ciarrocchi, A.; Dallaglio, K. Thera-peutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma. Oncotarget, 2017, 8(4), 6914-6928.
[http://dx.doi.org/10.18632/oncotarget.14321] [PMID: 28036292]
[http://dx.doi.org/10.18632/oncotarget.14321] [PMID: 28036292]
[36]
Kim, S.H.; Li, M.; Trousil, S.; Zhang, Y.; Pasca di Magliano, M.; Swanson, K.D.; Zheng, B. Phenformin inhibits myeloid-derived suppressor cells and enhances the anti-tumor activity of PD-1 blockade in melanoma. J. Invest. Dermatol., 2017, 137(8), 1740-1748.
[http://dx.doi.org/10.1016/j.jid.2017.03.033] [PMID: 28433543]
[http://dx.doi.org/10.1016/j.jid.2017.03.033] [PMID: 28433543]
[37]
Tripathi, R.; Fiore, L.S.; Richards, D.L.; Yang, Y.; Liu, J.; Wang, C.; Plattner, R. Abl and Arg mediate cysteine cathepsin secretion to facilitate melanoma invasion and metastasis. Sci. Signal., 2018, 11(518)eaao0422
[http://dx.doi.org/10.1126/scisignal.aao0422] [PMID: 29463776]
[http://dx.doi.org/10.1126/scisignal.aao0422] [PMID: 29463776]
[38]
Guo, J.; Carvajal, R.D.; Dummer, R.; Hauschild, A.; Daud, A.; Bastian, B.C.; Markovic, S.N.; Queirolo, P.; Arance, A.; Berking, C.; Camargo, V.; Herchenhorn, D.; Petrella, T.M.; Schadendorf, D.; Sharfman, W.; Testori, A.; Novick, S.; Hertle, S.; Nourry, C.; Chen, Q.; Hodi, F.S. Efficacy and safety of nilotinib in patients with KIT-mutated metastatic or inoperable melanoma: final results from the global, single-arm, phase II TEAM trial. Ann. Oncol., 2017, 28(6), 1380-1387.
[http://dx.doi.org/10.1093/annonc/mdx079] [PMID: 28327988]
[http://dx.doi.org/10.1093/annonc/mdx079] [PMID: 28327988]
[39]
Delyon, J.; Chevret, S.; Jouary, T.; Dalac, S.; Dalle, S.; Guillot, B.; Arnault, J.P.; Avril, M.F.; Bedane, C.; Bens, G.; Pham-Ledard, A.; Mansard, S.; Grange, F.; Machet, L.; Meyer, N.; Legoupil, D.; Saiag, P.; Idir, Z.; Renault, V.; Deleuze, J.F.; Hindie, E.; Battistella, M.; Dumaz, N.; Mourah, S.; Lebbe, C. GCC (French group of skin cancer). STAT3 mediates nilotinib response in KIT-altered melanoma: a phase II multicenter trial of the french skin cancer network. J. Invest. Dermatol., 2018, 138(1), 58-67.
[http://dx.doi.org/10.1016/j.jid.2017.07.839] [PMID: 28843487]
[http://dx.doi.org/10.1016/j.jid.2017.07.839] [PMID: 28843487]
[40]
Li, Y.; Acharya, G.; Elahy, M.; Xin, H.; Khachigian, L.M. The anthelmintic flubendazole blocks human melanoma growth and metastasis and suppresses programmed cell death protein-1 and myeloid-derived suppressor cell accumulation. Cancer Lett., 2019, 459, 268-276.
[http://dx.doi.org/10.1016/j.canlet.2019.05.026] [PMID: 31128215]
[http://dx.doi.org/10.1016/j.canlet.2019.05.026] [PMID: 31128215]
[41]
Oh, E.; Kim, Y.J.; An, H.; Sung, D.; Cho, T.M.; Farrand, L.; Jang, S.; Seo, J.H.; Kim, J.Y. Flubendazole elicits anti-metastatic effects in triple-negative breast cancer via STAT3 inhibition. Int. J. Cancer, 2018, 143(8), 1978-1993.
[http://dx.doi.org/10.1002/ijc.31585] [PMID: 29744876]
[http://dx.doi.org/10.1002/ijc.31585] [PMID: 29744876]
[42]
Hou, Z.J.; Luo, X.; Zhang, W.; Peng, F.; Cui, B.; Wu, S.J.; Zheng, F.M.; Xu, J.; Xu, L.Z.; Long, Z.J.; Wang, X.T.; Li, G.H.; Wan, X.Y.; Yang, Y.L.; Liu, Q. Flubendazole, FDA-approved anthelmintic, targets breast cancer stem-like cells. Oncotarget, 2015, 6(8), 6326-6340.
[http://dx.doi.org/10.18632/oncotarget.3436] [PMID: 25811972]
[http://dx.doi.org/10.18632/oncotarget.3436] [PMID: 25811972]
[43]
Zhou, X.; Liu, J.; Zhang, J.; Wei, Y.; Li, H. Flubendazole inhibits glioma proliferation by G2/M cell cycle arrest and pro-apoptosis. Cell Death Discov., 2018, 4, 18.
[http://dx.doi.org/10.1038/s41420-017-0017-2] [PMID: 29531815]
[http://dx.doi.org/10.1038/s41420-017-0017-2] [PMID: 29531815]
[44]
Spagnuolo, P.A.; Hu, J.; Hurren, R.; Wang, X.; Gronda, M.; Sukhai, M.A.; Di Meo, A.; Boss, J.; Ashali, I.; Beheshti Zavareh, R.; Fine, N.; Simpson, C.D.; Sharmeen, S.; Rottapel, R.; Schimmer, A.D. The antihelmintic flubendazole inhibits microtubule function through a mechanism distinct from Vinca alkaloids and displays preclinical activity in leukemia and myeloma. Blood, 2010, 115(23), 4824-4833.
[http://dx.doi.org/10.1182/blood-2009-09-243055] [PMID: 20348394]
[http://dx.doi.org/10.1182/blood-2009-09-243055] [PMID: 20348394]
[45]
Zhang, Q.L.; Lian, D.D.; Zhu, M.J.; Li, X.M.; Lee, J.K.; Yoon, T.J.; Lee, J.H.; Jiang, R.H.; Kim, C.D. Antitumor effect of albendazole on cutaneous squamous cell carcinoma (SCC) cells. BioMed Res. Int., 2019, 20193689517
[http://dx.doi.org/10.1155/2019/2076579] [PMID: 31281836]
[http://dx.doi.org/10.1155/2019/2076579] [PMID: 31281836]
[46]
Patel, K.; Doudican, N.A.; Schiff, P.B.; Orlow, S.J. Albendazole sensitizes cancer cells to ionizing radiation. Radiat. Oncol., 2011, 6, 160.
[http://dx.doi.org/10.1186/1748-717X-6-160] [PMID: 22094106]
[http://dx.doi.org/10.1186/1748-717X-6-160] [PMID: 22094106]
[47]
Jacobson, M.K.; Jacobson, E.L. Vitamin B3 in health and disease: toward the second century of discovery. Methods Mol. Biol., 2018, 1813, 3-8.
[http://dx.doi.org/10.1007/978-1-4939-8588-3_1] [PMID: 30097857]
[http://dx.doi.org/10.1007/978-1-4939-8588-3_1] [PMID: 30097857]
[48]
Chen, A.C.; Martin, A.J.; Choy, B.; Fernández-Peñas, P.; Dalziell, R.A.; McKenzie, C.A.; Scolyer, R.A.; Dhillon, H.M.; Vardy, J.L.; Kricker, A.; St George, G.; Chinniah, N.; Halliday, G.M.; Damian, D.L. A phase 3 randomized trial of nicotinamide for skin-cancer chemoprevention. N. Engl. J. Med., 2015, 373(17), 1618-1626.
[http://dx.doi.org/10.1056/NEJMoa1506197] [PMID: 26488693]
[http://dx.doi.org/10.1056/NEJMoa1506197] [PMID: 26488693]
[49]
Kim, D.J.; Kim, J.; Spaunhurst, K.; Montoya, J.; Khodosh, R.; Chandra, K.; Fu, T.; Gilliam, A.; Molgo, M.; Beachy, P.A.; Tang, J.Y. Open-label, exploratory phase II trial of oral itraconazole for the treatment of basal cell carcinoma. J. Clin. Oncol., 2014, 32(8), 745-751.
[http://dx.doi.org/10.1200/JCO.2013.49.9525] [PMID: 24493717]
[http://dx.doi.org/10.1200/JCO.2013.49.9525] [PMID: 24493717]
[50]
Gailani, M.R.; Ståhle-Bäckdahl, M.; Leffell, D.J.; Glynn, M.; Zaphiropoulos, P.G.; Pressman, C.; Undén, A.B.; Dean, M.; Brash, D.E.; Bale, A.E.; Toftgård, R. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat. Genet., 1996, 14(1), 78-81.
[http://dx.doi.org/10.1038/ng0996-78] [PMID: 8782823]
[http://dx.doi.org/10.1038/ng0996-78] [PMID: 8782823]
[51]
Dahmane, N.; Lee, J.; Robins, P.; Heller, P.; Ruiz i Altaba, A. Activation of the transcription factor Gli1 and the Sonic hedgehog sig-nalling pathway in skin tumours. Nature, 1997, 389(6653), 876-881.
[http://dx.doi.org/10.1038/39918] [PMID: 9349822]
[http://dx.doi.org/10.1038/39918] [PMID: 9349822]
[52]
Xie, J.; Murone, M.; Luoh, S.M.; Ryan, A.; Gu, Q.; Zhang, C.; Bonifas, J.M.; Lam, C.W.; Hynes, M.; Goddard, A.; Rosenthal, A.; Epstein, E.H. Jr.; de Sauvage, F.J. Activating smoothened mutations in sporadic basal-cell carcinoma. Nature, 1998, 391(6662), 90-92.
[http://dx.doi.org/10.1038/34201] [PMID: 9422511]
[http://dx.doi.org/10.1038/34201] [PMID: 9422511]
[53]
Kim, J.; Tang, J.Y.; Gong, R.; Kim, J.; Lee, J.J.; Clemons, K.V.; Chong, C.R.; Chang, K.S.; Fereshteh, M.; Gardner, D.; Reya, T.; Liu, J.O.; Epstein, E.H.; Stevens, D.A.; Beachy, P.A. Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell, 2010, 17(4), 388-399.
[http://dx.doi.org/10.1016/j.ccr.2010.02.027] [PMID: 20385363]
[http://dx.doi.org/10.1016/j.ccr.2010.02.027] [PMID: 20385363]
[54]
Liang, G.; Liu, M.; Wang, Q.; Shen, Y.; Mei, H.; Li, D.; Liu, W. Itraconazole exerts its anti-melanoma effect by suppressing Hedgehog, Wnt, and PI3K/mTOR signaling pathways. Oncotarget, 2017, 8(17), 28510-28525.
[http://dx.doi.org/10.18632/oncotarget.15324] [PMID: 28212537]
[http://dx.doi.org/10.18632/oncotarget.15324] [PMID: 28212537]
[55]
Carbone, C.; Martins-Gomes, C.; Pepe, V.; Silva, A.M.; Musumeci, T.; Puglisi, G.; Furneri, P.M.; Souto, E.B. Repurposing itraconazole to the benefit of skin cancer treatment: A combined azole-DDAB nanoencapsulation strategy. Colloids Surf. B Biointerfaces, 2018, 167, 337-344.
[http://dx.doi.org/10.1016/j.colsurfb.2018.04.031] [PMID: 29684903]
[http://dx.doi.org/10.1016/j.colsurfb.2018.04.031] [PMID: 29684903]
[56]
Khosravi, A.; Jayaram, B.; Goliaei, B.; Masoudi-Nejad, A. Active repurposing of drug candidates for melanoma based on GWAS, PheWAS and a wide range of omics data. Mol. Med., 2019, 25(1), 30.
[http://dx.doi.org/10.1186/s10020-019-0098-x] [PMID: 31221082]
[http://dx.doi.org/10.1186/s10020-019-0098-x] [PMID: 31221082]
[57]
Han, Y.; Gu, Z.; Wu, J.; Huang, X.; Zhou, R.; Shi, C.; Tao, W.; Wang, L.; Wang, Y.; Zhou, G.; Li, J.; Zhang, Z.; Sun, S. Repurposing ponatinib as a potent agent against KIT mutant melanomas. Theranostics, 2019, 9(7), 1952-1964.
[http://dx.doi.org/10.7150/thno.30890] [PMID: 31037149]
[http://dx.doi.org/10.7150/thno.30890] [PMID: 31037149]
[58]
National cancer institute.. Drugs approved for skin cancer. Available at:
https://www.cancer.gov/about-cancer/treat-ment/drugs/skin
(Accessed Date: 16th January, 2020)