Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Effectiveness of Bacteriophage Therapy in Field Conditions and Possible Future Applications

Author(s): Niran Adhikari and Krishna P. Acharya*

Volume 21, Issue 5, 2020

Page: [364 - 373] Pages: 10

DOI: 10.2174/1389201021666191217111156

Price: $65

Abstract

Background: Bacteriophages are viruses, which are obligate parasites of specific bacteria for the completion of their lifecycle. Bacteriophages could be the possible alternative to antibioticresistant bacterial diseases. With this objective, extensive research in different fields is published which are discussed in this article.

Methods: After a review of bacteriophage therapy, bacteriophages were found to be effective against the multidrug-resistant bacteria individually or synergistically with antibiotics. They were found to be more effective, even better than the bacteria in the development of a vaccine.

Results: Apart from the bacteriophages, their cell contents like Lysin enzymes were found equally very much effective. Only the major challenge faced in phage therapy was the identification and characterization of bacteria-specific phages due to the wide genetic diversity of bacterial populations. Similarly, the threshold level of bacteriophages to act effectively was altered by ultraviolet radiation and heat exposure.

Conclusion: Thus, bacteriophage therapy offers promising alternatives in the treatment of antibioticresistant bacteria in different fields. However, their effectiveness is determined by a triad of bacteriophages (type & quantity), host (bacteria) and environmental factors.

Keywords: Bacteriophages, antibiotics, lysin, vaccine, infection, MDR.

Graphical Abstract

[1]
Chanishvili, N. Phage therapy--history from Twort and d’Herelle through Soviet experience to current approaches. Adv. Virus Res., 2012, 83, 3-40.
[http://dx.doi.org/10.1016/B978-0-12-394438-2.00001-3] [PMID: 22748807]
[2]
Ackermann, H-W. The first phage electron micrographs. Bacteriophage, 2011, 1(4), 225-227.
[http://dx.doi.org/10.4161/bact.1.4.17280] [PMID: 23050215]
[3]
Yoshikawa, T.T. Antimicrobial resistance and aging: beginning of the end of the antibiotic era? J. Am. Geriatr. Soc., 2002, 50(7)(Suppl.), S226-S229.
[http://dx.doi.org/10.1046/j.1532-5415.50.7s.2.x] [PMID: 12121517]
[4]
Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; Greko, C.; So, A.D.; Bigdeli, M.; Tomson, G.; Woodhouse, W.; Ombaka, E.; Peralta, A.Q.; Qamar, F.N.; Mir, F.; Kariuki, S.; Bhutta, Z.A.; Coates, A.; Bergstrom, R.; Wright, G.D.; Brown, E.D.; Cars, O. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis., 2013, 13(12), 1057-1098.
[http://dx.doi.org/10.1016/S1473-3099(13)70318-9] [PMID: 24252483]
[5]
Zhang, X-X.; Zhang, T.; Fang, H.H.P. Antibiotic resistance genes in water environment. Appl. Microbiol. Biotechnol., 2009, 82(3), 397-414.
[http://dx.doi.org/10.1007/s00253-008-1829-z] [PMID: 19130050]
[6]
Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis., 2009, 48(1), 1-12.
[http://dx.doi.org/10.1086/595011] [PMID: 19035777]
[7]
Lin, D.M.; Koskella, B.; Lin, H.C. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther., 2017, 8(3), 162-173.http://www.ncbi.nlm.nih.gov/pubmed/28828194
[8]
Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N. WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[http://dx.doi.org/10.1016/S1473-3099(17)30753-3] [PMID: 29276051]
[9]
Cha, K.; Oh, H.K.; Jang, J.Y.; Jo, Y.; Kim, W.K.; Ha, G.U.; Ko, K.S.; Myung, H. Characterization of two novel bacteriophages infecting multidrug-resistant (MDR) Acinetobacter baumannii and evaluation of their therapeutic efficacy in vivo. Front. Microbiol., 2018, 9(APR), 696.
[http://dx.doi.org/10.3389/fmicb.2018.00696] [PMID: 29755420]
[10]
Zhou, W.; Feng, Y.; Zong, Z. Two new lytic bacteriophages of the Myoviridae family against carbapenem-resistant Acinetobacter baumannii. Front. Microbiol., 2018, 9(APR), 850.
[http://dx.doi.org/10.3389/fmicb.2018.00850] [PMID: 29760690]
[11]
Ghajavand, H.; Esfahani, B.N.; Havaei, A.; Fazeli, H.; Jafari, R.; Moghim, S. Isolation of bacteriophages against multidrug resistant Acinetobacter baumannii. Res. Pharm. Sci., 2017, 12(5), 373-380.
[http://dx.doi.org/10.4103/1735-5362.213982] [PMID: 28974975]
[12]
Forti, F.; Roach, D.R.; Cafora, M.; Pasini, M.E.; Horner, D.S.; Fiscarelli, E.V. Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. Antimicrob. Agents Chemother., 2018, 62(6), e02573-17.
[13]
Schooley, R.T.; Biswas, B.; Gill, J.J.; Hernandez-Morales, A.; Lancaster, J.; Lessor, L.; Barr, J.J.; Reed, S.L.; Rohwer, F.; Benler, S.; Segall, A.M.; Taplitz, R.; Smith, D.M.; Kerr, K.; Kumaraswamy, M.; Nizet, V.; Lin, L.; McCauley, M.D.; Strathdee, S.A.; Benson, C.A.; Pope, R.K.; Leroux, B.M.; Picel, A.C.; Mateczun, A.J.; Cilwa, K.E.; Regeimbal, J.M.; Estrella, L.A.; Wolfe, D.M.; Henry, M.S.; Quinones, J.; Salka, S.; Bishop-Lilly, K.A.; Young, R.; Hamilton, T. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother., 2017, 61(10)
[14]
Fong, S.A.; Drilling, A.; Morales, S.; Cornet, M.E.; Woodworth, B.A.; Fokkens, W.J. Activity of bacteriophages in removing biofilms of Pseudomonas aeruginosa isolates from chronic rhinosinusitis patients. Front. Cell. Infect. Microbiol., 2017, 7, 418.http://www.ncbi.nlm.nih.gov/pubmed/2901877310.3389/fcimb.2017.00418
[15]
Chan, B.K.; Sistrom, M.; Wertz, J.E.; Kortright, K.E.; Narayan, D.; Turner, P.E. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci. Rep., 2016, 6, 26717.
[http://dx.doi.org/10.1038/srep26717] [PMID: 27225966]
[16]
Bolocan, A.S.; Callanan, J.; Forde, A.; Ross, P.; Hill, C. Phage therapy targeting Escherichia coli-a story with no end? FEMS Microbiol. Lett., 2016, 363(22)http://www.ncbi.nlm.nih.gov/pubmed/27974392
[17]
Vahedi, A.; Soltan Dallal, M.M.; Douraghi, M.; Nikkhahi, F.; Rajabi, Z.; Yousefi, M. Isolation and identification of specific bacteriophage against enteropathogenic Escherichia coli (EPEC) and in vitro and in vivo characterization of bacteriophage. FEMS Microbiol. Lett., 2018, 365(16) pii: fny136http://www.ncbi.nlm.nih.gov/pubmed/29945166
[18]
Tkhilaishvili, T.; Di Luca, M.; Abbandonato, G.; Maiolo, E.M.; Klatt, A-B.; Reuter, M. Real-time assessment of bacteriophage T3-derived antimicrobial activity against planktonic and biofilm-embedded Escherichia coli by isothermal microcalorimetry. Res. Microbiol., 2018, 169(9), 515-521.http://www.ncbi.nlm.nih.gov/pubmed/2988625710.1016/j.resmic.2018.05.010
[19]
Cao, F.; Wang, X.; Wang, L.; Li, Z.; Che, J.; Wang, L. Evaluation of the efficacy of a bacteriophage in the treatment of pneumonia induced by multidrug resistance Klebsiella pneumoniae in mice. BioMed Res. Int., 2015, 2015 752930http://www.ncbi.nlm.nih.gov/pubmed/25879036
[20]
Taha, O.A.; Connerton, P.L.; Connerton, I.F.; El-Shibiny, A. Bacteriophage ZCKP1: A potential treatment for Klebsiella pneumoniae isolated from diabetic foot patients. Front. Microbiol., 2018, 9, 2127.
[http://dx.doi.org/10.3389/fmicb.2018.02127] [PMID: 30254618]
[21]
Sklar, I.B.; Joerger, R.D. Attempts to utilize bacteriophage to combat Salmonella enterica, Serovar entemtidis infection in chickens. J. Food Saf., 2001, 21(1), 15-29.http://doi.wiley.com/10.1111/j.1745-4565.2001.tb00305.x
[22]
Clavijo, V.; Baquero, D.; Hernandez, S.; Farfan, J.C.; Arias, J.; Arévalo, A.; Donado-Godoy, P.; Vives-Flores, M. Phage cocktail SalmoFREE® reduces Salmonella on a commercial broiler farm. Poult. Sci., 2019, 98(10), 5054-5063.
[http://dx.doi.org/10.3382/ps/pez251] [PMID: 31073590]
[23]
Fiorentin, L.; Vieira, N.D.; Barioni, W., Jr Oral treatment with bacteriophages reduces the concentration of Salmonella Enteritidis PT4 in caecal contents of broilers. Avian Pathol., 2005, 34(3), 258-263.http://www.ncbi.nlm.nih.gov/pubmed/16191711
[24]
Atterbury, R.J.; Van Bergen, M.A.P.; Ortiz, F.; Lovell, M.A.; Harris, J.A.; De Boer, A. Bacteriophage therapy to reduce salmonella colonization of broiler chickens. Appl. Environ. Microbiol., 2007, 73(14), 4543-4549.http://www.ncbi.nlm.nih.gov/pubmed/1752679410.1128/AEM.00049-07
[25]
Lim, T-H.; Kim, M-S.; Lee, D-H.; Lee, Y-N.; Park, J-K.; Youn, H-N. Use of bacteriophage for biological control of Salmonella Enteritidis infection in chicken. Res. Vet. Sci., 2012, 93(3), 1173-1178.http://www.ncbi.nlm.nih.gov/pubmed/2279567410.1016/j.rvsc.2012.06.004
[26]
Andreatti Filho, R.L.; Higgins, J.P.; Higgins, S.E.; Gaona, G.; Wolfenden, A.D.; Tellez, G. Ability of bacteriophages isolated from different sources to reduce Salmonella enterica serovar enteritidis in vitro and in vivo. Poult. Sci., 2007, 86(9), 1904-1909.http://www.ncbi.nlm.nih.gov/pubmed/1770437710.1093/ps/86.9.1904
[27]
Toro, H.; Price, S.B.; McKee, S.; Hoerr, F.J.; Krehling, J.; Perdue, M. Use of bacteriophages in combination with reduce salmonella from infected chickens competitive exclusion to. Avian Dis., 2005, 49(1), 118-124.http://www.ncbi.nlm.nih.gov/pubmed/1583942410.1637/7286-100404R
[28]
Nabil, N.M.; Tawakol, M.M.; Hassan, H.M. Assessing the impact of bacteriophages in the treatment of Salmonella in broiler chickens. Infect. Ecol. Epidemiol., 2018, 8(1) 1539056
[http://dx.doi.org/10.1080/20008686.2018.1539056] [PMID: 30397428]
[29]
Huff, W.E.; Huff, G.R.; Rath, N.C.; Balog, J.M.; Donoghue, A.M. Therapeutic efficacy of bacteriophage and Baytril (enrofloxacin) individually and in combination to treat colibacillosis in broilers. Poult. Sci., 2004, 83(12), 1944-1947.http://www.ncbi.nlm.nih.gov/pubmed/15615004
[30]
El-Gohary, F.A.; Huff, W.E.; Huff, G.R.; Rath, N.C.; Zhou, Z.Y.; Donoghue, A.M. Environmental augmentation with bacteriophage prevents colibacillosis in broiler chickens. Poult. Sci., 2014, 93(11), 2788-2792.http://www.ncbi.nlm.nih.gov/pubmed/2521455510.3382/ps.2014-04282
[31]
Atterbury, R.J.; Dillon, E.; Swift, C.; Connerton, P.L.; Frost, J.A.; Dodd, C.E.R. Correlation of Campylobacter bacteriophage with reduced presence of hosts in broiler chicken ceca. Appl. Environ. Microbiol., 2005, 71(8), 4885-4887.http://www.ncbi.nlm.nih.gov/pubmed/1608588910.1128/AEM.71.84885-4887.2005
[32]
El-Shibiny, A.; Scott, A.; Timms, A.; Metawea, Y.; Connerton, P.; Connerton, I. Application of a group II Campylobacter bacteriophage to reduce strains of Campylobacter jejuni and Campylobacter coli colonizing broiler chickens. J. Food Prot., 2009, 72(4), 733-740.http://www.ncbi.nlm.nih.gov/pubmed/19435220
[33]
Wagenaar, J.A.; Van Bergen, M.A.P.; Mueller, M.A.; Wassenaar, T.M.; Carlton, R.M. Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet. Microbiol., 2005, 109(3-4), 275-283.http://www.ncbi.nlm.nih.gov/pubmed/1602418710.1016/j.vetmic.2005.06.002
[34]
Richards, P.J.; Connerton, P.L.; Connerton, I.F. Phage biocontrol of Campylobacter jejuni in chickens does not produce collateral effects on the gut microbiota. Front. Microbiol., 2019, 10, 476.
[http://dx.doi.org/10.3389/fmicb.2019.00476] [PMID: 30930877]
[35]
Austin, B.; Austin, D.A. Conclusions. In: Bacterial Fish Pathogens [Internet]; 652.http://www.springerlink.com/index/10.1007/978-94-007-4884-2_16
[http://dx.doi.org/10.1007/978-94-007-4884-2_16]
[36]
Gon Choudhury, T.; Tharabenahalli Nagaraju, V.; Gita, S.; Paria, A.; Parhi, J. Advances in bacteriophage research for bacterial disease control in aquaculture. Vol. 25. Rev. Fish. Sci. Aquacult., 2017, 25, 113-125.
[http://dx.doi.org/10.1080/23308249.2016.1241977]
[37]
Nakai, T.; Sugimoto, R.; Park, K.; Matsuoka, S.; Mori, K.; Nishioka, T. Protective effects of bacteriophage on experimental Lacto-Coccus garvieae infection in yellowtail. Dis. Aquat. Organ., 1999, 37(1), 33-41.http://www.ncbi.nlm.nih.gov/pubmed/1043990110.3354/dao037033
[38]
Park, S.; Nakai, T. Bacteriophage control of Pseudomonas plecoglossicida infection in ayu Plecoglossis altivelis. Dis. Aquat. Organ., 2003, 53(1), 33-39.http://www.ncbi.nlm.nih.gov/pubmed/12608566
[39]
Vinod, M.G.; Shivu, M.M.; Umesha, K.R.; Rajeeva, B.C.; Krohne, G.; Karunasagar, I. Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture, 2006, 255(1-4), 117-124.https://www.sciencedirect.com/science/article/abs/pii/S004484860500746510.1016/j.aquaculture.2005.12.003
[40]
Matsuoka, S.; Hashizume, T.; Kanzaki, H.; Iwamoto, E.; Se Chang, P.; Yoshida, T. Phage therapy against β-hemolytic Streptococcicosis of Japanese Flounder Paralichthys olivaceus. Fish Pathol., 2007, 42(4), 181-189.http://joi.jlc.jst.go.jp/JST.JSTAGE/jsfp/42.181?from=CrossRef10.3147/jsfp.42.181
[41]
Verner-Jeffreys, D.W.; Algoet, M.; Pond, M.J.; Virdee, H.K.; Bagwell, N.J.; Roberts, E.G. Furunculosis in Atlantic salmon (Salmo salar L.) is not readily controllable by bacteriophage therapy. Aquaculture, 2007, 270(1-4), 475-484.https://www.sciencedirect.com/science/article/abs/pii/S0044848607004553
[42]
Smith, H.W.; Huggins, M.B. Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. Microbiol., 1983, 129(8), 2659-2675.http://www.ncbi.nlm.nih.gov/pubmed/6355391
[43]
Jamalludeen, N.; Johnson, R.P.; Shewen, P.E.; Gyles, C.L. Evaluation of bacteriophages for prevention and treatment of diarrhea due to experimental enterotoxigenic Escherichia coli O149 infection of pigs. Vet. Microbiol., 1982, 136, 135-141.https://pdfs.semanticscholar.org/3d09/807275c292f30959ec975233ad633d64bb3c.pdf
[44]
Callaway, T.R.; Edrington, T.S.; Brabban, A.D.; Anderson, R.C.; Rossman, M.L.; Engler, M.J. Bacteriophage isolated from feedlot cattle can reduce Escherichia coli O157:H7 populations in ruminant gastrointestinal tracts. Foodborne Pathog. Dis., 2008, 5(2), 183-191.http://www.ncbi.nlm.nih.gov/pubmed/18407757
[45]
Sheng, H.; Knecht, H.J.; Kudva, I.T.; Hovde, C.J. Application of bacteriophages to control intestinal Escherichia coli O157:H7 levels in ruminants. Appl. Environ. Microbiol., 2006, 72(8), 5359-5366.http://www.ncbi.nlm.nih.gov/pubmed/16885287
[46]
Santos, T.M.A.; Ledbetter, E.C.; Caixeta, L.S.; Bicalho, M.L.S.; Bicalho, R.C. Isolation and characterization of two bacteriophages with strong in vitro antimicrobial activity against Pseudomonas aeruginosa isolated from dogs with ocular infections. Am. J. Vet. Res., 2011, 72(8), 1079-1086.http://www.ncbi.nlm.nih.gov/pubmed/21801066
[47]
Moore, E. D’Herelle’s bacteriophage in relation to plant parasites. South Afr. J. Sci., 1926, 23, 306.https://journals.co.za/content/sajsci/23/12/AJA00382353_10080
[48]
Gill, J.J.; Pacan, J.C.; Carson, M.E.; Leslie, K.E.; Griffiths, M.W.; Sabour, P.M. Efficacy and pharmacokinetics of bacteriophage therapy in treatment of subclinical Staphylococcus aureus mastitis in lactating dairy cattle. Antimicrob. Agents Chemother., 2006, 50(9), 2912-2918.http://www.ncbi.nlm.nih.gov/pubmed/1694008110.1128/AAC.01630-05
[49]
Freitag, T.; Squires, R.A.; Schmid, J. Naturally occurring bacteriophages lyse a large proportion of canine and feline uropathogenic Escherichia coli isolates in vitro. Res. Vet. Sci., 2008, 85(1), 1-7.http://www.ncbi.nlm.nih.gov/pubmed/1795921110.1016/j.rvsc.2007.09.004
[50]
Mallmann, W.L.; Hemstreet, C. Isolation of an inhibitory substance from plants 1. J. Agric. Res., 1928, 28(6), 599-602.https://naldc.nal.usda.gov/download/IND43966880/PDF
[51]
Thomas, R.C. A bacteriophage in relation to Stewarts disease of corn. Phytopathology, 1935, 25(3), 371-372.https://eurekamag.com/research/029/596/029596111.php
[52]
Vidaver, A.K. Prospects for control of phytopathogenic bacteria by bacteriophages and bacteriocins. Annu. Rev. Phytopathol., 1976, 14(1), 451-465.http://www.annualreviews.org/doi/10.1146/annurev.py.14.090176.00231510.1146/annurev.py.14.090176.002315
[53]
Svircev, A.M.; Lehman, S.M.; Kim, W.S.; Barszcz, E.; Schneider, K.E.; Castle, A.J. Control of the fire blight pathogen with bacteriophages. Proc. 1st Int. Symposium on Biological Control of Bacterial Plant Diseases. ; P. Parey: Germany, 2005, pp. [cited 2018 May 21]. 259-261.https://www.cabdirect.org/cabdirect/abstract/20113330650
[54]
Jones, J.B.; Lacy, G.H.; Bouzar, H.; Stall, R.E.; Schaad, N.W. Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst. Appl. Microbiol., 2004, 27(6), 755-762.http://www.ncbi.nlm.nih.gov/pubmed/1561263410.1078/0723202042369884
[55]
Balogh, B. Strategies for improving the efficacy of bacteriophages for controlling bacterial spot of tomato [Internet]. University of Florida, 2002.[cited 2018 May 21]. http://etd.fcla.edu/UF/UFE1000106/balogh_b.pdf
[56]
Iriarte, F.B.; Balogh, B.; Momol, M.T.; Smith, L.M.; Wilson, M.; Jones, J.B. Factors affecting survival of bacteriophage on tomato leaf surfaces. Appl. Environ. Microbiol., 2007, 73(6), 1704-1711.http://www.ncbi.nlm.nih.gov/pubmed/1725936110.1128/AEM.02118-06
[57]
Czajkowski, R.; Ozymko, Z.; de Jager, V.; Siwinska, J.; Smolarska, A.; Ossowicki, A. Genomic, proteomic and morphological characterization of two novel broad host lytic bacteriophages ΦPD10.3 and ΦPD23.1 infecting pectinolytic Pectobacterium spp. and Dickeya spp. PLoS One, 2015, 10(3) e0119812http://www.ncbi.nlm.nih.gov/pubmed/25803051
[58]
Ramesh, M.N. Sterilization of Foods. In: Encyclopedia of Food Sciences and Nutrition;[Internet]; Elsevier, 2003; pp. http://linkinghub.elsevier.com/retrieve/pii/B012227055X011482[cited 2018 Jun 8]. 5593-603.
[http://dx.doi.org/10.1016/B0-12-227055-X/01148-2]
[59]
Abnet, C.C. Carcinogenic food contaminants. Cancer Invest., 25(3) 189196http://www.ncbi.nlm.nih.gov/pubmed/1753048910.1080/07357900701208733
[60]
Hagens, S.; Loessner, M.J. Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Curr. Pharm. Biotechnol., 2010, 11(1), 58-68.http://www.ncbi.nlm.nih.gov/pubmed/2021460810.2174/138920110790725429
[61]
Ye, J.; Kostrzynska, M.; Dunfield, K.; Warriner, K. Control of Salmonella on sprouting mung bean and alfalfa seeds by using a biocontrol preparation based on antagonistic bacteria and lytic bacteriophages. J. Food Prot., 2010, 73(1), 9-17.http://www.ncbi.nlm.nih.gov/pubmed/20051198
[62]
Martínez, B.; Obeso, J.M.; Rodríguez, A.; García, P. Nisin-bacteriophage crossresistance in Staphylococcus aureus. Int. J. Food Microbiol., 2008, 122(3), 253-258.http://www.ncbi.nlm.nih.gov/pubmed/1828111810.1016/j.ijfoodmicro.2008.01.011
[63]
Tabla, R.; Martínez, B.; Rebollo, J.E.; González, J.; Ramírez, M.R.; Roa, I. Bacteriophage performance against Staphylococcus aureus in milk is improved by high hydrostatic pressure treatments. Int. J. Food Microbiol., 2012, 156(3), 209-213.http://www.ncbi.nlm.nih.gov/pubmed/2252545910.1016/j.ijfoodmicro.2012.03.023
[64]
Rosenquist, H.; Nielsen, N.L.; Sommer, H.M.; Nørrung, B.; Christensen, B.B. Quantitative risk assessment of human campylobacteriosis associated with thermophilic Campylobacter species in chickens. Int. J. Food Microbiol., 2003, 83(1), 87-103.http://www.ncbi.nlm.nih.gov/pubmed/1267259510.1016/S01681605 (02)00317-3
[65]
Bren, L. Bacteria-eating virus approved as food additive. FDA Consum., 2018, 41(1), 20-22.http://www.ncbi.nlm.nih.gov/pubmed/1734283310.1037/e589942007-003
[66]
Bigot, B.; Lee, W-J.; McIntyre, L.; Wilson, T.; Hudson, J.A.; Billington, C. Control of Listeria monocytogenes growth in a ready-to-eat poultry product using a bacteriophage. Food Microbiol., 2011, 8(8), 1448-1452.http://www.ncbi.nlm.nih.gov/pubmed/2192502710.1016/j.fm.2011.07.001
[67]
Tyagi, A.K.; Giraffa, G.; Ryu, S.; Kr, S.A.; Lee, J-H.; Bai, J. Biocontrol and rapid detection of food-borne pathogens using bacteriophages and endolysins. Front Microbiol., 2016, 7(7), 474, 3389-3474.https://pdfs.semanticscholar.org/d895/0379c5d575275da16dc8051a72e1a5979a27.pdf
[68]
Fischetti, V.A. Bacteriophage lysins as effective antibacterials. Curr. Opin. Microbiol., 2008, 11(5), 393-400.http://www.ncbi.nlm.nih.gov/pubmed/1882412310.1016/j.mib.2008.09.012
[69]
Yoong, P.; Schuch, R.; Nelson, D.; Fischetti, V.A. Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. J. Bacteriol., 2004, 186(14), 4808-4812.http://www.ncbi.nlm.nih.gov/pubmed/15231813
[70]
Fischetti, V.A. Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int. J. Med. Microbiol., 2010, 300(6), 357-362.http://www.ncbi.nlm.nih.gov/pubmed/2045228010.1016/j.ijmm.2010.04.002
[71]
Cof fey, B.; Mills, S.; Coffey, A.; McAuliffe, O.; Ross, R.P. Phage and their lysins as biocontrol agents for food safety applications. Annu. Rev. Food Sci. Technol., 2010, 1(1), 449-468.http://www.ncbi.nlm.nih.gov/pubmed/22129344
[72]
Gaca, A.O.; Gilmore, M.S. A lysin to kill. eLife, 2016.
[http://dx.doi.org/10.7554/eLife.16111]
[73]
Rao, V.; Tao, V.P.; Mahalingam, M.; Bernard, M.; Zhang, Z.; Chopra, A. Delivery of vaccine genes and proteins into dendritic cells using the bacteriophage T4 DNA packaging machine (P3273). J. Immunol., 2013, 190(1 Supplement) 192.22http://www.jimmunol.org/content/190/1_Supplement/192.22
[74]
Frenzel, A.; Kügler, J.; Helmsing, S.; Meier, D.; Schirrmann, T.; Hust, M. Designing human antibodies by phage display. Transfus. Med. Hemother., 2017, 44(5), 312-318.http://www.ncbi.nlm.nih.gov/pubmed/2907097610.1159/000479633
[75]
Bao, Q.; Li, X.; Han, G.; Zhu, Y.; Mao, C.; Yang, M. Phage-based vaccines. Adv. Drug Deliv. Rev., 2019, 145, 40-56.
[http://dx.doi.org/10.1016/j.addr.2018.12.013] [PMID: 30594492]
[76]
Smith, G.P.; Scott, J.K. Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol., 1993, 217, 228-257.http://www.ncbi.nlm.nih.gov/pubmed/768264510.1016/00766879 (93)17065-D
[77]
Noren, K.A.; Noren, C.J. Construction of high-complexity combinatorial phage display peptide libraries. Methods, 2001, 23(2), 169-178.http://www.ncbi.nlm.nih.gov/pubmed/1118103610.1006/meth.2000.1118
[78]
de la Cruz, V.F.; Lal, A.A.; McCutchan, T.F. Immunogenicity and epitope mapping of foreign sequences via genetically engineered filamentous phage. J. Biol. Chem., 1988, 263(9), 4318-4322.http://www.ncbi.nlm.nih.gov/pubmed/2450091
[79]
Merril, C.R.; Geier, M.R.; Petricciani, J.C. Bacterial virus gene expression in human cells. Nature, 2018, 233(5319), 398-400.http://www.ncbi.nlm.nih.gov/pubmed/494043610.1038/233398a0
[80]
Bakhshinejad, B.; Sadeghizadeh, M. Bacteriophages as vehicles for gene delivery into mammalian cells: prospects and problems. Expert Opin. Drug Deliv., 2014, 11(10), 1561-1574.http://www.ncbi.nlm.nih.gov/pubmed/2495586010.1517/17425247.2014.927437
[81]
Adhya, S.; Merril, C.R.; Biswas, B. Therapeutic and prophylactic applications of bacteriophage components in modern medicine. Cold Spring Harb. Perspect. Med., 2014, 4(1), a012518-a012518.http://www.ncbi.nlm.nih.gov/pubmed/2438481110.1101/cshperspect.a012518
[82]
Bruttin, A.; Brüssow, H. Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob. Agents Chemother., 2005, 49(7), 2874-2878.http://www.ncbi.nlm.nih.gov/pubmed/1598036310.1128/AAC.49.7.2874-2878.2005
[83]
Vanhouten, N.; Zwick, M.; Menendez, A.; Scott, J. Filamentous phage as an immunogenic carrier to elicit focused antibody responses against a synthetic peptide. Vaccine, 2006, 24(19), 4188-4200.http://www.ncbi.nlm.nih.gov/pubmed/16488517
[84]
Bazan, J.; Całkosiński, I.; Gamian, A.; Zwick, M.; Menendez, A.; Scott, J. Filamentous phage as an immunogenic carrier to elicit focused antibody responses against a synthetic peptide. Vaccine, 2006, 24(19), 4188-4200.http://www.ncbi.nlm.nih.gov/pubmed/22906938
[85]
Rhoads, D.D.; Wolcott, R.D.; Kuskowski, M.A.; Wolcott, B.M.; Ward, L.S.; Sulakvelidze, A. Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J. Wound Care, 2009, 18(6), 237-238, 240-243.
[http://dx.doi.org/10.12968/jowc.2009.18.6.42801] [PMID: 19661847]
[86]
Wright, A.; Hawkins, C.H.; Anggård, E.E.; Harper, D.R. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol., 2009, 34(4), 349-357.http://www.ncbi.nlm.nih.gov/pubmed/19673983
[87]
Payne, R.J.H.; Jansen, V.A.A. Pharmacokinetic principles of bacteriophage therapy. Clin. Pharmacokinet., 2003, 42(4), 315-325.http://www.ncbi.nlm.nih.gov/pubmed/1264802410.2165/00003088-200342040-00002
[88]
Dufour, N.; Delattre, R.; Ricard, J-D.; Debarbieux, L. The lysis of pathogenic Escherichia coli by bacteriophages releases less endotoxin than by β-Lactams. Clin. Infect. Dis., 2017, 64(11), 1582-1588.http://www.ncbi.nlm.nih.gov/pubmed/2832937910.1093/cid/cix184
[89]
Furfaro, L.L.; Payne, M.S.; Chang, B.J. Bacteriophage therapy: Clinical trials and regulatory hurdles. Front. Cell. Infect. Microbiol., 2018, 8, 376.https://www.frontiersin.org/article/10.3389/fcimb.2018.00376/full
[90]
Pirnay, J-P.; De Vos, D.; Verbeken, G.; Merabishvili, M.; Chanishvili, N.; Vaneechoutte, M. The phage therapy paradigm: prêt-à-porter or sur-mesure? Pharm. Res., 2011, 28(4), 934-937.http://www.ncbi.nlm.nih.gov/pubmed/21063753
[91]
Kutter, E.; Sulakvelidze, A. Bacteriophages: Biology and applications; CRC Press, 2005, p. 510.
[92]
Babalova, E.G.; Katsitadze, K.T.; Sakvarelidze, L.A.; Imnaishvili, N.Sh.; Sharashidze, T.G.; Badashvili, V.A. [Preventive value of dried dysentery bacteriophage]. Zh. Mikrobiol. Epidemiol. Immunobiol., 1968, 45(2), 143-145.http://www.ncbi.nlm.nih.gov/pubmed/5650719
[93]
Zschach, H.; Joensen, K.G.; Lindhard, B.; Lund, O.; Goderdzishvili, M.; Chkonia, I.; Jgenti, G.; Kvatadze, N.; Alavidze, Z.; Kutter, E.M.; Hasman, H.; Larsen, M.V. What can we learn from a metagenomic analysis of a georgian bacteriophage cocktail? Viruses, 2015, 7(12), 6570-6589.
[http://dx.doi.org/10.3390/v7122958] [PMID: 26703713]
[94]
Shan, J.; Ramachandran, A.; Thanki, A.M.; Vukusic, F.B.I.; Barylski, J.; Clokie, M.R.J. Bacteriophages are more virulent to bacteria with human cells than they are in bacterial culture; insights from HT-29 cells. Sci. Rep., 2018, 8(1), 5091.http://www.nature.com/articles/s41598-018-23418-y
[95]
Smith, H.W.; Huggins, M.B. Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. Microbiol., 1982, 128(2), 307-318.http://www.ncbi.nlm.nih.gov/pubmed/704290310.1099/00221287-128-2-307
[96]
Goodridge, L.D. Bacteriophages for managing Shigella in various clinical and non-clinical settings. Bacteriophage, 2013, 3(1) e25098http://www.ncbi.nlm.nih.gov/pubmed/23819110
[97]
Wang, J.; Hu, B.; Xu, M.; Yan, Q.; Liu, S.; Zhu, X. Therapeutic effectiveness of bacteriophages in the rescue of mice with extended spectrum beta-lactamase-producing Escherichia coli bacteremia. Int. J. Mol. Med., 2006, 17(2), 347-355.http://www.ncbi.nlm.nih.gov/pubmed/16391836
[98]
Obeso, J.M.; Martínez, B.; Rodríguez, A.; García, P. Lytic activity of the recombinant staphylococcal bacteriophage ΦH5 endolysin active against Staphylococcus aureus in milk. Int. J. Food Microbiol., 2008, 128(2), 212-218.http://www.ncbi.nlm.nih.gov/pubmed/1880921910.1016/j.ijfoodmicro.2008.08.010
[99]
Zimmer, M.; Vukov, N.; Scherer, S.; Loessner, M.J. The murein hydrolase of the bacteriophage phi3626 dual lysis system is active against all tested Clostridium perfringens strains. Appl. Environ. Microbiol., 2002, 68(11), 5311-5117.http://www.ncbi.nlm.nih.gov/pubmed/12406719
[100]
Gaeng, S.; Scherer, S.; Neve, H.; Loessner, M.J. Gene cloning and expression and secretion of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis. Appl. Environ. Microbiol., 2000, 66(7), 2951-2958.http://www.ncbi.nlm.nih.gov/pubmed/1087779110.1128/AEM.66.7.2951-2958.2000
[101]
Letkiewicz, S.; Międzybrodzki, R.; Fortuna, W.; Weber-Dąbrowska, B.; Górski, A. Eradication of Enterococcus faecalis by phage therapy in chronic bacterial prostatitis-case report. Folia Microbiol., 2009, 54(5), 457-461.http://www.ncbi.nlm.nih.gov/pubmed/19937220
[102]
Górski, A.; Jończyk-Matysiak, E.; Łusiak-Szelachowska, M.; Międzybrodzki, R.; Weber-Dąbrowska, B.; Borysowski, J. Bacteriophages targeting intestinal epithelial cells: a potential novel form of immunotherapy. Cell. Mol. Life Sci., 2018, 75(4), 589-595.http://www.ncbi.nlm.nih.gov/pubmed/2916427110.1007/s00018-017-2715-6
[103]
Fogelman, I.; Davey, V.; Ochs, H.D.; Elashoff, M.; Feinberg, M.B.; Mican, J. Evaluation of CD4+ T cell function In vivo in HIV-infected patients as measured by bacteriophage phiX174 immunization. J. Infect. Dis., 2000, 182(2), 435-441.http://www.ncbi.nlm.nih.gov/pubmed/10915073

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy